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OSCILLATION OF THE SOLUTIONS OF
IMPULSIVE DIFFERENTIAL EQUATIONS
AND INEQUALITIES WITH A RETARDED ARGUMENT

D.D. BAINOV, M.B. DIMITROVA AND A.B. DISHLIEV

ABSTRACT. Sufficient conditions for oscillation of all solu-
tions of a class of impulsive differential equations and inequal-
ities with a retarded argument and fixed moments of impulse
effect are found.

1. Introduction. The impulsive differential equations are an ad-
equate mathematical apparatus for simulation of processes and phe-
nomena observed in control theory, physics, chemistry, population dy-
namics, biotechnologies, industrial robotics, economics, etc. Due to
this reason, in recent years they have been an object of active research.
In the monographs [2-4] a number of properties of their solutions are
studied and an extensive bibliography is given.

We shall note that, in spite of the great number of investigations of
the impulsive differential equations, their oscillation theory has not
yet been elaborated unlike the oscillation theory of the differential
equations with a deviating argument (see the monographs [6-8]).

The first work in which the oscillatory behavior of impulsive dif-
ferential equations with a deviating argument and fixed moments of
impulsive effect is investigated is [5]. Moreover, we shall note the work
[1] in which the Sturmian theory for impulsive differential equations is
considered.

In the present work sufficient conditions for oscillation of all solutions
of a class of impulsive differential equations and inequalities with a
retarded argument and fixed moments of impulse effect are found.

2. Preliminary notes. Let N,,, = {1,2,... ,m} and h; be positive
constants, i € N,,,, h = max{h; : i € N,,}, h = min{h; : i € N,,,},
{m}32; be a monotone increasing, unbounded sequence of positive
numbers, and let {b;}7°; be a sequence of real numbers.
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Consider the impulsive differential equation and inequalities with a
retarded argument

Z'(t) + a(t)z(t) + p(t) f(x(t — h1),z(t — h2),... ,@(t — hy)) <0,
(1) t# T
Azx(r,) = z(m, + 0) — z(1, — 0) = bz (7 — 0),

where z(1, — 0) = z(7%);

2 (t) + a(t)z(t) + p(t) f(a(t — k), z(t — ha),...,z(t — hin)) >0,
(2) t# Ty
Aw(Tk) = bkx(Tk),

and
Z'(t) + a(t)z(t) + p(t) f(x(t — h1),z(t — h2),... ,2(t — hy)) = 0,

(3) t # Tk
A:E(Tk) = bkl‘(Tk),

with initial function

(4) z(t) = ¢(t), te[-h,0]

where ¢ € C([—h,0],R).
Introduce the following conditions:
HI. a € Cioc (R,R*), RT = (0,00), R" = [0, 00).
H2. p € Cloc (ﬁJr, R™).
H3. f € Cic (R™R), f(ur,uz,... ,um)ur > 0 for uy # 0 and

Sgn U1 = SgN Ug = * ++ = SN Upy,.

H4. There exist constants L > 0 and o, a2, ... ,0m, a; > 0,1 € Ny,
such that ;" a; = 1 and

|f(ur,uzy ooy Um)| > Lluwg " ug|® - - |um| ™.

Hb5. There exist constants [; and [y such that

(Tk - kll) = 12.

lim
k— o0
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H6. There exists a constant M > 0 such that, for any £ € N, the
inequalities 0 < b, < M are valid.

H7. 7jpy1 — 7 > T > h for k € N.

Denote by i[a,b] the number of the impulse moments in the interval
[a,b], 0 < a <b< 0.

Let us construct the sequence

{ti}i2, ={n}i2, U {TiS}?il,szl

where 7,5 =7, + hs, 1 € N, s € N,,, and ¢; < t;41,¢ € N.

Definition 1. By a solution of equation (3) with initial function
(4), we mean any function z : [~h,00) — R for which the following
conditions are valid:

1. If —h < t <0, then z(t) = ¢(t).
2. If 0 <t <ty = 711, then x coincides with the solution of the
problem
#'(t) + a(t)z(t) + pt) f(z(t — ha),... ,@(t — hm)) =0
with initial condition (4).
3. If t; <t < tigy, ti € {mi}2 \{mis}§2, /2, then = coincides with
the solution of the problem
' (t) + a(t)z(t) + p(t) f(x(t — h1),... ,&(t — hy)) =0
z(t; +0) = (1 + by, )x(t;)
where the number k; is determined from the equality ¢; = 7,.
4. If t; <t < tiy1, t; € {Tis}?il,sgl\{ﬁ}?ila then z coincides with
the solution of the problem
(6) + a(0)a(t +0) 4 p(0)f(a(t by +0),.{t by +0) = 0
I(t,’ + 0) = m(ti).
5. If t; <t <tipy, ti € {Ti}2) N{mis}§2 7, then z coincides with
the solution of the problem
' (t) +a(t)z(t +0) + p(t) f(x(t — h1 +0),... ,2(t — hp +0)) =0
z(ti +0) = (1 + b, )z(t:).
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Remark 1. The definition of a solution of the problem (1), (4) ((2),
(4)) is analogous to Definition 1.

Definition 2. The nonzero solution z of the equation (3) is said to
be nonoscillating if there exists a point tg > 0 such that z(t) has a
constant sign for ¢ > ¢y. Otherwise, the solution z is said to oscillate.

3. Main results.

Lemma 1. Let condition H5 hold. Then there exists a constant
l € N such that the number of the impulse moments in each of the
intervals [a,a + h], a > 0 is not greater than I.

Proof. In view of 7, > 0, k = 1,2,..., it follows that [; > 0. Let
€0 < l1/2. Then there exists kg € N such that, for any k > ko, we have

lo —eo < 1 — kly <y + €g,

ie.,
lo —eg+kly <1 <lo+eg+ Ekly.

Analogously, we obtain
lo 780+(k‘+1)11 < Tpg1 < l2+50+(k+l)l1
whence we deduce

T+l — Tk > [l2—€0+(k+1)ll]— [l2+€0+k‘l1] =1y —2e9 > 0.

Consequently, if a > 74,, then in the interval [a,a + h] there are at
most h/(ly — 2e¢) impulse moments.

Finally, in each interval of the form [a,a + k], a > 0, we have at most
I =ko+ h/(ly — 2¢¢) impulse moments. o

Theorem 1. Let the following conditions hold:
1. Conditions H1-H6 are met.
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t—oc0

t

lim inf/ a(s)ds >k >0,
t—h

where k = const.

3.

t 1 M 21
litm inf p(s)ds > A+ M7
—00

1 ! L
- Tok max{e,Q(l—i-M) (1+ M) 1]}

where e = exp.

Then the inequality (1) has no positive solutions.

Proof. Let x be a positive solution of the inequality (1) for ¢ > tg > 0.
It is clear that (¢t — h;) > 0, ¢ € Ny, and
f(z(t —hy),z(t —hg),...,z(t —hy)) >0
for t >ty + h.

Let t > T > to + h. Multiply (1) by efT )9 and obtain
t ’ t
(5) (200elr@®) 4 p(e)er O f(a(t — ). 2t~ b)) < 0.

Set
(6) () = a(t)elr e s
and from (5) find that

t—hy

2(0) + o0l O p (s mye S O,
t—hm
(7) cey2(t=hp)e fT a(s) ds) <0, t#m%,

d

Az(tg) = z(16 + 0) — 2(7%) = bk:v(Tk)ef;k als)ds _ bz (Tk).

From (6) it follows that z(¢) > 0 for ¢ > T. Then z(t — h;) > 0,
1t € N, and

t—h t—hm
f(z(t —hy)e Jo et . ,2(t— hm)e Sz e ds) >0
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fort>T, =T+ h.

From the above inequalities and from (7) it follows that z is a
nonincreasing function in the set (71, 75)U[US2 (7, Ti4+1)], where 751 <
T < 7s.

Introduce the notation

Let us renumber the points of jump so that
t—h<Ti<T<---<T\<t

where, by Lemma 1, A <[, A\ € N. Then

2(t—h) > 2(m) = 7Z(1bel())
> z(t) S z(t)

i.e.,

®) v =" 2 @ray

We shall prove that the function w is bounded from above for
sufficiently large ¢.

From condition 3 of Theorem 1 it follows that there exists a constant
N > 0 such that

/t p(s)ds > N > O—E—A]:[)mmax{lﬁ(l + M1+ M) - 1]}
t—h € €

for sufficiently large t, t > T5.

Let t* > T3 for some T3 > T5. Then there exists a point ¢, t > T5,
such that t* € (¢t — h,t) and

r N g N
/ p(s)ds > —, / p(s)ds > —.
t—h 2 t* 2
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Integrate (7) from t — h to t* and obtain that

(9) 2(t—h)—z2(t')+ > bez(r)

TR E[t—h,t*)

¢ .
> L/ p(s)efT a(wdu o (s — h1)z*?(s — ha)
¢

—h

s—h;
<27 (s — hp) H N M L

Moreover,

ef a(u) duH —a; f au)du:Heaifsihia(“)du
(10) i=1 i=1

ZZI a; liminf,_, o fS*hi a(u) du > m

e >e >e

From the fact that z is a nonincreasing function in the set (77, 75) U
(U2 (73, Tit+1)], it follows that

z(s — h) z(s — h)
z(s — h;) > 1+ M)i[s—hivs—h] - —|—M)l'
Then
i i z(s —h)
11 ) > = .
e -
From (9), (10) and (11), we obtain that
(12) 2t —h)—z(t)+ > bra()
TRE[t—h,t*]
LeF v
>__ 7 _
Z Ay /t;hp(s)z(s h)ds
Le*N
>_2C 0 gt _
= 2(1 +M)l se[tlilh,t*]z(s h)
LNek z(t* — h)

> - .
= 2(1 + M)l (1 + M)z[t—?h,t*—h}
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Since i[t — 2h,t* — h] <, then from (12) it follows that

%[z(t—h)—i— 3 bkz(Tk)].

TR E[t—h,t*]

(13)  2(t*—h) <

Integrate (7) from ¢* to ¢ and obtain that

) -2+ Y bkz(rk)zz(LL inf (- h)

l .
el ] 1+ M) seft1
k —
(14) > LNe z(t' *h)
2(1 + M)l (1 +M)z[t —h,t—h]
LNe*

> mz(t —h).

From (14) it follows that

21
(15) z(t—h)g%[w*w ezh;t]bkzm)].

From (13) and (15) there follows the estimate

(16) =z(t* —h) < A%2(t*) + A? Z brz(mk) + A Z brz(Tk)

TR E[t*,t] TR E[t—h,t*]

where A = 2(1 + M)?'/(LNe*).

Moreover,
i[t*,t]
(17) Z z(m) < 2(t%) Z (14 M)t
TR E[t*,t] s=1
i[t—h,t"]
(18) Soooam)<at—h) Y 1+ M)
TR E[t—h,t*] s=1
t—h
(19) A —h) > — )

(1 + M)i[t*—h,t—h] ’
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From (18) and (19) it follows that

i[t—h,t*]

(200 > z(m) < a(t*—h)(L4+ M)TTTRERNT (14 Ayt

K E[t—h,t*] s=1

From (16), (17) and (20), we obtain that
(21)
2(t* —h) < A%(t*) + A’M Z z(m) + AM Z z(k)
TR E[t*,t] TR E[t—h,t*]
14+ M) 1 —q
M
; (14 M)ilt=htT 1
i[t*—h,t—h]
M

< A%z(t) + AZMz(t*)(

+ AM=(t* — h)(1 + M)

< A%(tY) + A%2(t9)[(1 + M) - 1]
+2(t* — h)[AQ + M)* — A(1 + M)').

From (21) it follows that
(22)  2(t* —h)[1 — AL+ M)? + A(1+ M)" < A%(1 + M)'2(t*).

The function w is bounded from above if the coefficient at z(t* — h)
in (22) is positive, i.e., if

1—A(1+ M2 + A0+ M) >0,
AL+ M) — A1+ M) <1,
A+ M1+ M) 1] <1,

2(1+ M)* ! !

—— 1+ M) |1+ M) -1 1

2(1+ M)3 (14 M) —1]

I < N.

The last inequality follows from condition 3 of Theorem 1.
Divide (7) by z(t) > 0 for t > T3, integrate the inequality obtained
from t — h to t and obtain that

l

z(t—h) z(m; +0) Le¥ ¢ . z(s—h) .
B AR TRy 2 Wy IRCE-ra
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i.e.,

ek t
(23) (1 + M)hw(t)] > ﬁ /t  pu(s)ds.

Introduce the notation wy = liminf;, . w(t). It is clear that 0 <
woy < 0.

From (23) it follows that

¢ . .
lminf [ p(s)ds < (L) I3+ M) ]

t—o0 t—h Lek Wo

c QM)A+ M)t (14 M)
—  Lek e ~ Lektt

The last inequality contradicts condition 3 of Theorem 1. u]

Example 1. Let us consider the following impulsive differential
inequality with a retarded argument

o' () + z(t) + 2° /22t — Da(t —2) <0, t# 7,
z( +0) — z(m) = %m(rk),
p(t)y=0, tel[-2,0],

where m = 2, hy = 1, hy = 2, h = 2, b, = 1/k, 7 = k,
k=1,2,...,a(t) =1, p(t) = 2°.
It can be checked immediately that [ = 3. It is clear that conditions

H1, H2 and H6 are fulfilled for M = 1. The condition H3 is satisfied
too since

uy f(u1,u2) = ug {/uduz >0

for u; # 0 and sgn u; = sgn us.

Condition H4 holds true for L = 1, a; = 2/3, as = 1/3, and condition
H5 is true for Iy = 1, [ = 0. Later, condition 2 of Theorem 1 is fulfilled
for k = 2. Finally, for the given values of the above constants, condition
3 of Theorem 1 is satisfied too.

According to Theorem 1 the impulsive differential inequality with a
retarded argument written above has no positive solution.
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Corollary 1. Let the conditions of Theorem 1 hold. Then:
1. The inequality (2) has no negative solutions.

2. All solutions of equation (3) are oscillating.

Theorem 2. Let the following conditions hold:
1. Conditions H1-H4 and H7 are met.

2. b > -1,k € N.

3.

Tk +h S () du 1
/ p(s)efsfh W gs > —.

Tk

lim su
koo’ 1+ by

Then:
1. All solutions of equation (3) oscillate.
2. The inequality (1) has no positive solutions.

3. The inequality (2) has no negative solutions.

Proof of 1. Let z be a nonoscillating solution of equation (3).
Without loss of generality we may assume that z(t) > 0 for ¢t > ¢; > 0.
It is clear that x(t—h;) > 0, ¢ € Ny, and f(z(¢—hq),... ,2(t—hp)) >0
for t > t1 + h =to.

Then from (3) it follows that « is a nonincreasing function in the set
(t2, 7s) U [U2 (74, Tit1)], where 75_1 < t2 < Ts.

t t
Multiply (3) by efT als)ds get z(t) = m(t)efT @(#)ds 5nd analogously
to the proof of Theorem 1 obtain

t—hy

2'(t) + p(t)eth a(u) duf(z(t —hy)e” Jo et du .,

t—hm
(24) z2(t —hy)e Jo et du) =0, t#Tg

Az(1g) = bpz(1k)-
Integrate (24) from 7 to 7 + h, k > s, and obtain

(25) Z(Tk, + h) — Z(Tk + 0)

Teth fs a(u)du e
+ L/ p(s)els—r Hza"(s —h;)ds <0.

k i=1
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But, for each s € [y, 7 + h] in the interval [s — h;, s — h] there is no
point of jump. From this fact and from the nonincreasing character of
the function z in the interval [s — h;, s — h], s € [1x, Tx + h] it follows
that

m

(26) 2% (s — h;) > z4«i=1 % (s — h) = z(s — h).

—

i=1

From (25) and (26) there follow the inequalities

Teth fs a(u) du
z(tx +h) — 2(7, +0) + L p(s)els—r z(s —h)ds <0,

Tk

Teth fs a(u)du
LZ(Tk,)/ p(s)els—nr ds < (1+ bg)z(7x),

k

1 Teth fs a(u) du 1
s— < —.
14 b, / p(s)etem ds < L

Tk

The last inequality contradicts condition 3 of Theorem 2.

The proofs of Assertions 2 and 3 of the theorem are analogous to the
proof of Assertion 1. ]

Corollary 2. Let the following conditions hold:
1. Conditions H1-H4, H6 and H7 are met.

2.
Teth * a(u)du 1+ M
limsup/ p(s)efS*h (W gs > —; .

k—oco Tk

Then:
1. The inequality (1) has no positive solutions.
2. The inequality (2) has no negative solutions.

3. All solutions of equation (3) oscillate.

Corollary 3. Let the following conditions hold:
1. Conditions H1-H4 and H7 are met.
2. by > -1, ke N.



OSCILLATION OF SOLUTIONS 37

Tk
lim inf/ a(u)du > s >0, s= const.
Te—h

k—o0

1 Tkth 1
i ds > .
ey, [, M g

Tk
Then the assertions of Corollary 2 are valid.

Theorem 3. Let the following conditions hold:
1. Conditions H1-H6 are met.
2.

Tk +h S () du 1+ M2
limsup/ p(s)efsfh W gs > M

k—o0 & L

Then:
1. All solutions of equation (3) oscillate.
2. The inequality (1) has no positive solutions.

3. The inequality (2) has no negative solutions.

Proof of 1. Let z(t) be a positive solution of equation (3) for
t > to > 0. Then we also have z(¢ —_hi) > 0, ¢ € N,, and
flx(t=h1),...,z(t — hy)) > 0 for t >ty + h.

¢ — t
Multiply (3) by elr“V%, ¢ > 7 > 1+ B, set 2(t) = a(t)elr *%,

substitute into (3) and obtain (24). Integrate (24) from 74 to 7% + h
and deduce

k+i-1
(27) 2+ h)—2(m +0) = > bez(r)

Teth fs a(u)du e
+ L/ p(s)els—r Hza"(s —h;)ds <0.

k i=1
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)

For each s € [ry, 7, + h], let the interval [s — h;, s — h] contain lz(k points
of jump, I € N, I%¥) < 1. Then
z(s —h) z(s —h)
z(s — hi) > G > L)
1+ ML~ 1+ M)
and
L " 2%(s—h)  z(s—h)
2 Yi(s — h;) > = .
(8) gz (S )_@1;[1 1+M)°‘il (l—i—M)l
From (27) and (28) we obtain that
1 Teth ° a(u) du
Ax /;k p(s)efs—h z(s — h)ds
ktl—1
< (4b)2(m) + Y bsz(7a),
s=k+1
1 Teth * a(u)du
(29) mz(ﬂc) /7:k p(s)efs—h ds
k-1
< (L4 M)a(me) + M D> (7).
s=k+1
But
2(thy1) < 2(me +0) = (1 + bg)z(mx) < (14 M)z(m),
2Thr2) < 2(Thi1 +0) < - < (L4 M)22(m),
2(Thpi—1) < oo < (L4 M) e ()
Then
k-1 -1 '
Z 2(7s) < 2(7%) Z(l + M)
(30) s=k+1 i=1

= z2(m)(1 + M)w
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From (29) and (30) it follows that

L Teth * a(u)du
ESTI [ wel i s < stmya
Tk

Teth * a(u)du 14+ M)2
/ p(s)efs_h (wydu e < %

Tk

The last inequality contradicts condition 2 of Theorem 3.

The proofs of Assertions 2 and 3 of the theorem do not principally
differ from the proof of Assertion 1. O

Corollary 4. Let the following conditions hold:
1. Conditions H1-H3 and H7 are met.

2. by > -1, ke N.

3.

k— o0

Tk
1iminf/ a(s)ds > s >0, s=const.
TL—h

lim sup
k— oo

Tet+h 14+ M)2
/T p(s)ds > %.

k

Then the assertions of Theorem 3 are valid.
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