A NOTE ON DEDEKIND DOMAINS

SHING HING MAN

There are many equivalent conditions for one-dimensional Noetherian domains to be Dedekind domains, see [2, Theorem 6.20]. In this short note we shall prove another one. The terminology from [3] will be used freely.

Theorem. Let R be a one-dimensional Noetherian domain. Then the following statements are equivalent:

- (1) R is a Dedekind domain.
- (2) For any finitely generated R-module M, the torsion submodule of M is a direct summand of M.
 - (3) For any finitely generated R-module M, we have

$$T(M) \cap IM = I \cdot T(M)$$

where T(M) is the torsion submodule of M and I is the intersection of all the nonzero associated prime ideals of M. If 0 is the only associated prime ideal of M, then we put I = R.

Proof. (1) \Rightarrow (2) is well known. It is easily seen that (2) \Rightarrow (3). We now show (3) \Rightarrow (1) by a contrapositive argument. First of all, note that $I \cdot T(M) \subseteq T(M) \cap IM$ holds for any idea I of any commutative domain R and any R-module M. Suppose R is not a Dedekind domain. Then there exists a maximal ideal M such that $R_{\mathcal{M}}$ is not a DVR. Choose $x \in R$ with $x \in \mathcal{M}R_{\mathcal{M}} \setminus \mathcal{M}^2R_{\mathcal{M}}$. As $R_{\mathcal{M}}$ is not a DVR, there exists $a \in R$ with $a \in \mathcal{M}R_{\mathcal{M}} \setminus (xR_{\mathcal{M}} + \mathcal{M}^2R_{\mathcal{M}})$. Since dim $R_{\mathcal{M}} = 1$, there exists $b \in R_{\mathcal{M}}$ and natural number n with $a^n = xb$ in $R_{\mathcal{M}}$. We may assume n is the least natural number with $a^n \in xR_{\mathcal{M}}$. By our choice of $a, n \geq 2$. As $x \in \mathcal{M}R_{\mathcal{M}} \setminus \mathcal{M}^2R_{\mathcal{M}}$, $b \in \mathcal{M}R_{\mathcal{M}}$. By multiplying b with a suitable element of $R \setminus \mathcal{M}$, we may assume $b \in \mathcal{M}$.

Received by the editors on January 9, 1996, and in revised form on August 20, 1996.

Put $y=a^{n-1}$. Let $\Lambda_R(x,y)=\{(r_1,r_2)\in R\oplus R: xr_2=yr_1\}$ and $M=R\oplus R/(x,y)R$. It is easily checked that $(a,b)\in \Lambda_R(x,y)$ and $T(M)=\Lambda_R(x,y)/(x,y)R$. Now $T(M_{\mathcal{M}})=(T(M))_{\mathcal{M}}=\Lambda_{R_{\mathcal{M}}}(x,y)/(x,y)R_{\mathcal{M}}$. Clearly, $(a,b)\in \Lambda_{R_{\mathcal{M}}}(x,y)\backslash(x,y)R_{\mathcal{M}}$ and hence $T(M_{\mathcal{M}})\neq 0$. As dim $R_{\mathcal{M}}=1$ and $T(M_{\mathcal{M}})\neq 0$, we have $\mathcal{M}R_{\mathcal{M}}\in \mathrm{Ass}_{R_{\mathcal{M}}}(M_{\mathcal{M}})$. It follows that $\mathcal{M}\in \mathrm{Ass}_R(M)$. It remains to show $T(M)\cap IM$ is not contained in $I\cdot T(M)$ where I is as defined in statement (3). Choose an element r of R such that r lies in all the associated prime ideals of M except for M. If M is the only associated prime ideal of M, then we put r=1. Then $(ra,rb)+(x,y)R\in T(M)\cap IM$ and (ra,rb)+(x,y)R do not lie in $I\cdot T(M)$. For, otherwise, we would have $(a,b)+(x,y)R_{\mathcal{M}}\in \mathcal{M}\cdot T(M_{\mathcal{M}})=\mathcal{M}(\Lambda_{R_{\mathcal{M}}}(x,y)/(x,y)R_{\mathcal{M}})$. By our choices of x and y, $\Lambda_{R_{\mathcal{M}}}(x,y)\subseteq \mathcal{M}R_{\mathcal{M}}\oplus \mathcal{M}R_{\mathcal{M}}$. Hence we would get $a\in xR_{\mathcal{M}}+\mathcal{M}^2R_{\mathcal{M}}$ which contradicts our choice of a.

The equivalence of (1) and (2) is known. More precisely, it was shown in [1] that statement (2) is a necessary and sufficient condition for an integral domain, not necessarily Noetherian, to be a Prüfer ring.

Acknowledgment. The author would like to thank the referee for his/her comments and W.V. Vasconcelos for informing him about Kaplansky's result.

REFERENCES

- 1. I. Kaplansky, A characterization of Prüfer rings, J. Indian Math. Soc. 24 (1960), 279–281.
- 2. M.D. Larsen and P.J. McCarthy, Multiplicative theory of ideals, Academic Press, Boston, 1971.
- 3. H. Matsumura, Commutative ring theory, Cambridge University Press, Cambridge, 1986.

DEPARTMENT OF MATHEMATICS, NATIONAL UNIVERSITY OF SINGAPORE, SINGAPORE 119260