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RIEMANNIAN MANIFOLDS WITH
CONICAL SINGULARITIES

ZHONG-DONG LIU, ZHONGMIN SHEN AND DAGANG YANG

ABSTRACT. We study Riemannian manifolds with isolated
conical singularities, in particular, the relationship between
the curvature near singularities and the geometry of the tan-
gent cones. We obtain some local and global rigidity theorems
for singular metrics.

1. Introduction. Singular spaces appear naturally in many areas
in both mathematics and physics. In general, it is difficult to study the
global geometry of singular spaces. There is a special class of singular
spaces, namely, Riemannian manifolds with conical singularities, which
have been investigated by several people. See, e.g., [3, 4, 7, 8, 15, 16],
etc. In this paper we shall study the geometric structure of singular
Riemannian manifolds from a different point of view.

Throughout this paper, S*! and B"(r) denote the standard unit
sphere and the standard r-ball in the Euclidean space R™, respectively.
Let ¥ be an (n — 1)-dimensional connected closed C'* manifold. The
topological cone C(X) over ¥ is defined by

C(%) :=[0,00) x B/({0} x ).

Denote points in C'(X) by [t,z] and the vertex by o. For r > 0, put
C.(%) = {[t,z] € C(X) : t < r}. Thus B"(r) = C,(S™1). From now
on, “=" means the canonical pointed-isometry (preserving the vertices).
A lens space is the quotient space S"~!/I', where I is a finite group
acting freely on S”~! by isometries. We shall always denote by df? the
canonical quotient metric on S”~!/T. The action of I on S™~! can be
lifted to an action of I' on B™(r) such that B"(r)/T' = C,.(S"~!/T).
Thus C,.(S"!/I) is a topological orbifold.

An n-dimensional C*° manifold with isolated conical singularities
is a Hausdorff space with countably many points, called singular
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points, S, such that M \ S is an n-dimensional C'*° manifold with-
out boundary, and for each p € S, there is a pointed-diffeomorphism
ep + (Cr,(Ep),0) = (Up,p) with ¢,(0) = p. (Cr,(Zp), pp) is called
a conical chart at p. If p is a regular point, let ¥, = S~ and
¢p : B™(r,) = U, C M\ S is a coordinate map.

Let g be an arbitrary Riemannian metric on the regular part M \ S.
Without any condition on g, the geometry near singularities can be
complicated. For example, take a two-dimensional cone. Embed it into
R? so that its tip spirals around z-axis infinitely many times, and its
vertex is the origin. With the induced metric, the resulting surface does
not have natural tangent cone at the singular point. Therefore we will
impose some reasonable conditions on the metrics near singularities.
For the sake of simplicity, our conditions on the metrics are slightly
stronger than that given by D. Stone [15].

Definition 1.1. Let M be a C* manifold with isolated singularities
S. A Riemannian metric g on M \ S is called C°-conical, respectively
C?-conical, at a singular point p € S, if there is a conical chart
(Cr,(£p), pp) and a Riemannian metric h, on ¥, such that (1.1) and
(1.2), respectively (1.1) and (1.2'), hold.

(1.1) ppg = dt? ® hy, where hy is a family of metrics on X,;

(1.2) (1/t*)hy — hy, (1/(2t))(8/0t)hy — hy in the C° topology on

D3

(1.2') (1/t*)hy — hy, (1/(2t))(0/0t)he — hy, (1/2)(D?/0t*)hy — hy
in the C? topology on p.

(Cr,(Ep), 0p) is called a metric-conical chart at p, (Xp, hy) is called
the space of directions at p and (C(%,), gp) is called the tangent cone
at p, where g, := dt* & t>h,,.

In this paper we begin with studying the relationship between the
geometry of (X,,h,) and the curvature near singularities. Thus we
shall restrict our attention to C,.(X) equipped with a singular metric
g = dt?> @ hy such that g is C*-conical at the vertex o. Let (2, h) be the
space of directions at o. Let K_(t), respectively Ric_(t), denote the
minimum of the sectional curvature K, respectively the Ricci curvature
Ric, on the t-sphere S(o,t) C C,(X) around the vertex o. Let K(t),
respectively Ric (t), denote the maximum of the absolute value of K,
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respectively Ric, on S(o,t). We have the following rigidity theorem for
(2, h).

Theorem A. Let n = dim M > 2. Let g = dt*> @ hy be a C*-conical
Riemannian metric on C(X), k = 0 in the sectional curvature case and
k = 2 in the Ricct curvature case.

(a) If
liminf K _(t) > 0,
t—0+
respectively
(1.3) lim ¢*Ric_(¢) > 0,

t—0+

then (X, h) has sectional curvature Ky, > 1, respectively Ricci curvature
Ricy > n —2;

(b) If
lim *K(t) =0,
t—0+
respectively
(1.4) lim #*Ric (t) = 0,

t—0t

then (X, h) has sectional curvature Ky, = 1, respectively Ricci curvature
Rics =n — 2.

If the sectional curvature near a singular point p satisfies (1.4), then
the topology at p is of a very restricted type. Let (C., (X,),¢p) be a
metric-conical chart at p. Suppose that ¢} g satisfies (1.4). By Theorem
A (b), there is an isometry 1, : S"~!/T, — (X,, hp), which induces a
pointed-diffeomorphism 1, : B™(rp,)/T, = C, (S"7!/T}) — C, (Zp).
Let ¢, = ¢p 0 9. The above argument shows that U, is a topological
orbifold with respect to ¢,. In general, the lift of the metric ¢;g to
B"(r,) cannot be smoothly extended across the origin and the lifted
action of I', on B"™(r,) is not by isometries. Thus (U,,g) is not a
Riemannian orbifold with respect to @, : B"(r,) /I, — Up.

When does (Up, g) become a Riemannian orbifold with respect to
the above chart ¢, : B”(rp)/T', — U,? Let siny(t) denote the unique
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solution of ¥ + Ay = 0, y(0) = 0,7'(0) = 1. Assume that ;g has the
form

(1.5) ©pg = dt? @ sin3 (t)h,,.

Then @%g has the form @rg = dt* @ sinj (t) d9%. In this case, the lift
of p3g to B™(r,) is a smooth metric (across the origin) of constant
curvature A and I', acts on B™(r,) by isometries. Hence (U,,g) is a
Riemannian orbifold. We assert that (1.5) is satisfied if K5 = A.
More precisely, we have the following

Theorem B. Let (M™,g), n > 3, be a Riemannian manifold
with isolated C°-conical singularities S. Assume that Kyns = A
Then, for every singular point p, there is a metric-conical chart ¢, :
C,, (8" 1/T}) = Uy, such that ¢%g = di* @ sin} (t) d6. Hence (U, g)
is a Riemannian orbifold. With the above metric-conical charts, (M, g)
is isometric to M™(\)/T for some discrete group I' acting on the space
form M™(\) by isometries with finite isotropic subgroup at isolated
points.

Let (M, g) be a Riemannian manifold with isolated conical singular-
ities S. Let d* denote the induced metric on M \ S by g. Hence the
topology on M \ S defined by d* coincides with the manifold topology
of M\ S. (M,g) is called complete if every bounded subset A C M \ S
contains a sequence convergent to a point in M. It is easy to see that
there is a unique metric d on M such that (M, d) is the completion of
(M \ S,d*). Further, the topology determined by d coincides with the
topology of M. In [1], (M,d) is called finitely compact.

A natural question is if the Bishop-Gromov volume comparison the-
orem still holds for open metric r-balls B(p,r). The answer is neg-
ative in dimension 2. Consider the cone C(S') with the metric
g = dt? @ 2t2d#?, where df? is the canonical metric on the unit cir-
cle St. Let p = [1,z] € C(S'). It is easy to see that g is flat and the
ratio vol [B(p,r)]/r? is strictly increasing across r = 1.

Nevertheless, we have the following

Theorem C. Let (M", g) be a complete Riemannian n-manifold with
isolated C?-conical singularities S. Suppose that Ricpng > (n — 1)A
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(and diam (X,) < 7 if n = 2). Then for any p € M, the ratio
vp(r) == vol [B(p, r)]/Va(r) is nonincreasing. In particular, we have

vol (X,)
1. 1(B < ——P
(1.6 vol (B(p) < ity
Here Vy\(r) denotes the volume of the r-ball in the space form M™(X)
of constant curvature A. If the equality in (1.6) holds, for some
r > 0, then B(p,r) is isometric to the cone C,(X,) with the metric
g =dt* ®sin}(t)hy, 0 <t < r.

V)\ (7‘)

The following is an important application of Theorem C. It is the
conical singularity version of Bonnet-Myers’s theorem and Cheng’s
maximal diameter theorem.

Theorem D. Let (M,g) be a complete Riemannian manifold of
dimension n > 3 with isolated C?-conical singularities S. Suppose
that Ricyps > (n —1). Then the diameter diamy = d(p,q) < w. The
equality holds if and only if (M, g) is isometric to the standard metric
sine-suspension S(X) over a connected closed Riemannian (n — 1)-

manifold (X, h) with Ricy, > (n — 2).

The sine-suspension S(X) over (3, h) is the quotient space [0, 7] x
¥/({0} x LU {r} x ¥) equipped with the metric dt*> @ sin} (t)h.

2. Curvature and space of directions. In this section we shall
study the role played by the curvature near a singular point in the
topology as well as in the geometry of the tangent cone. In the process,
we prove Theorems A and B.

Proof of Theorem A. Let II; denote the second fundamental form
of the submanifold i; : ¥ — C(X) where i;(z) := [t,z]. Notice that
(it)*9 = h; and T := 9/t is the normal vector to i;(X). Let (z°)
be a local coordinate system for ¥, and (t,z%) be the standard local
coordinate system for C'(X). By an easy calculation, using the definition
of the Levi-Civita connection, we have

(2.1) ()i = 3 o ()i
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We first prove Theorem A in the sectional curvature case. Let R!
denote the curvature tensor of (X, h;). By the Gauss equation

1{0 0 0 0
22) () = R+ 3{ g3 000 5 (0 = g1 bl ol .

If we assume (1.3), then we see that

liminf K5 ;- > 1.
ltlgég (Z,t2hy) Z

Since the lower sectional curvature bound is preserved in the Hausdorff-
Gromov convergence, we have K(x ) > 1.

On the other hand, if we assume (1.4), then

lim K(E,thht)(U) =1.

t—0t

Since t~2h; — h in the C° topology, t~2h; does not collapse, hence
t=2h; — h in the C* topology and the limit metric A has constant
curvature 1 in the sense of Alexandrov. Hence A must be of constant
curvature 1 in the usual sense.

To prove Theorem A in the Ricci curvature case, we need the following
identities.

(2.3) Riytj = —-55

By (2.2) and (2.3), we have

102
(R)sj = Rij + 555 (h)is
10 0
Za(ht)zj(ht)kl&(ht)kl
10 0
- §a(ht)ik(ht)kla(ht)jl-

+

The rest of the proof is similar to that in the sectional curvature case.
Note that, since we do not have Hausdorff-Gromov convergence in
the Ricci case, C2-conical condition has to be assumed instead of C°-
conical. ]
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The following example shows that assumptions (1.3) and (1.4) are
necessary. Let (X,h) be a connected Riemannian manifold. Suppose
that min K, < 1 or maxKy > 1. Let g = dt?> @ sin3(t)h be the
standard metric on C(X). Let K, (t) = maxg,) Ky and K _(t) =
ming(,.+) K¢ (x), where S(o,t) denote the t-sphere around the vertex o.
It is easy to see that

limsupt?K, (t) = max Ky — 1, liminf#?K (t) = min Kx, — 1.

t—0+ t—0t

We now prove Theorem B.

Proof of Theorem B. By Theorem A, (X,, h,) has constant curvature
1. Thus (X,, h,) is isometric to a lens space S”~!/I',. The main task
is to show that (¢,)*g has the following form

(0)"g = dt? @ sin (D).

Let (2') be a local coordinate system for ¥, and (t,z%) be the
standard coordinate system for U, given by the metric-conical chart.
Let H; denote the (n — 1) X (n — 1) matrix ((h:);;) and H denote the
(n —1) X (n — 1) matrix ((hp)i). Since Kppg = A,

(24) Rittj = )\(ht)”

It follows from (2.3) and (2.4) that H, satisfies the following ODE which
is singular at t = 0, because of the term Ht_l,

1 1
(25) AH, = =S H{' + S H{H, " Hy,
with the initial conditions
1 10
—H; — H, ——H;— H.
27t T2ttt

Let
Fy = siny(t) 2 H,.

Then Equation (2.5) becomes

sin (¢)

siny (%)

(2.6) 2F" 4 4 F' —F'FlF =0,
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with initial conditions:

(2.7) lim F; = H, tE,I(I)lJr tF; = 0.

t—0t

We want to show that F; = H for small ¢ > 0.

On the set of (n — 1) x (n — 1) matrices, define an inner product
(A, B) = Xa; jb; j, with associated Lo-norm ||A|| = 1/(A, A). It is easy
to check that ||AB|| < ||A] || B]|-

By (2.7), there are numbers § > 0, C' > 0 and € > 0 with eC < 2,
such that

-1 sm,\(t) /
@8 IFEIsc SREIFI<s 0<t<s
Let f(t) = ||F/||*>. Note that by (2.7) and (2.8),
1/2 sin)\ (t) 124
(2.9) URORS Esin)\(t)7 tg%l+ tfE(E) =0.
By (2.6), we have
’ _ Sinl)\(t) ! ! =1 g
7= ~425 i+ (8, R R
Sln’)\(t) 3/2.
() —=f+Cf
Thus
() < _4sm'/\(t)f + Cesin)) (t)siny () f = —2sin}\ (¢)sin, (¢) f.

It follows that, for 0 < 7 <t < 4,

i) < (S?“A‘T))Qﬂr).

siny (¢)

For any fixed ¢ > 0, letting 7 — 07 and using (2.9), we obtain f(t) = 0.
That is, F} = 0. Thus F; = Fy = H.
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Now we see that M is a Riemannian orbifold with constant curvature.
It is now well-known that such spaces are isometric to a quotient
M"(\)/T for some discrete group I' acting on the space form M™())
by isometries with finite isotropic subgroup at isolated points. See, for
example, [14, Chapter 13]. (We gave a more direct, geometric proof of
this fact in a preliminary version of this paper. It is omitted here for
brevity.) O

3. The index lemma. In order to study the geometry of singular
Riemannian manifolds by comparison method, we need to establish the
basic index lemma.

Let (M,g) be a Riemannian manifold with isolated conical singu-
larities S. Let d* denote the induced metric by g on M \ S. Let
¢: I — M\ S be a continuous curve. c is called a geodesic with respect
to d* if, for any ty € I, there is an open subinterval ty € I' C I such
that, for some p > 0,

(3.1) d*(c(tr), c(t2)) = plty — ta|, Vti,ts € I'.

c is called a geodesic with respect to g, if ¢ is smooth and satisfies the
following geodesic equation

d?z® dxb dze

—+1y.———=0

dt? be dt  dt

A well-known fact is that both definitions are equivalent.

Let (C,,(Xp), »p) be a metric-conical chart at p and (X,,h,) the
space of directions. It is easy to verify that, for any z € X,
d*(pplte, x|, pplta, z]) = |t1 — taof, for all ty,¢5 € (0,7,). Thus B(p,r) =
©plCr(Ep)] for r < r,. We shall always denote by 7, : (0,a;) —
(M \ S,g) the geodesic defined on the mazimal interval such that
Yz (t) = @plt,z], 0 < t < 7).

(3.2)

Let ¢, : X, — C(Xp) denote the natural embedding given by
it(z) = [t,z]. For a vector u € Ty X, let U(t) = (¢p 04t)su. Clearly, U
is a Jacobi field along ’yz|(07Tp). U can be uniquely extended to a Jacobi
field J,, along 7y|(g,a,). The map Z; : u € T, 5, — Ju(t) € 74(t)* is a
linear map for any 0 < t < a;.

Let (z%) be a local coordinate system in ¥, at z and (¢, z") the stan-
dard coordinate system in Uy, along 7vz|(o,.,)- Then J;(t) = (8/02")|(t,2]
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is the Jacobi field corresponding to (8/0z%)|, € T %,. Further,

(3.3) 9(Ji(t), J;(t)) = (ht)sj-
By Schwarz inequality and (3.3),

(34)  |g(B(®), Ji(1)] < g(B(®), E@®)2g(Ji(2), Ji(t)"/? = O(1).

Let W denote the vector space of piecewise smooth vector fields along
Yel(0,r]- The index form on v.| (g, is defined by the following improper
integral

LW, W) = / (W', W) — g(ROW, Ao W) db, YW € W,
0
By (1.2), we have

(3.5) 9(Ju(t), Jo(t) = 5 o (he)(u,v) = O(2).

N | =
S8

Integration by parts yields
Ir(Jua Ju) = g(J'lIJ,(T)7 ‘]U«(T))

Let {ei}?z_ll denote a basis for T,¥, and J; = J., denote the
corresponding Jacobi field along v,. Fix 0 < r < a,.

Lemma 3.1 (Index Lemma). Let J, = u'J; be a Jacobi field along
Yo Then for any W = f'J; along ve|(0,.), where fi : (0,r] = R are
piecewise smooth functions with f;(t) = o(t~'/?) and fi(r) = u?,

L (Jus Ju) < L (W, W),

where the equality holds if and only if W = J along ~z|(0,r]-

Proof. We follow [5] closely. We may let e; = (9/0z¢)|,, hence
Ji(t) = (8/0x") 1,2 An easy computation yields

* 90

o (ht)ij Tk (2)-

JH(0) = (k)
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From (3.5) we see that
(3.6) 9(Ji> J3) = 9(Jj, Ji) = O(t).

Hence integration by parts yields

VW) = 1(00) + [ oliid £305) d
- lim O 0900, 550,

t—0+

(3.7)

By assumption and (3.6), we get

bWﬂWszﬂ+AgMMﬂmﬁ-

The rest is trivial. |

Let W € W be a piecewise smooth vector field along ~,. We say
W (t) = o(t%) if, for every parallel vector field E, g(W (¢), E(t)) = o(t%).
In applications we need the following special version of Lemma 3.1.

Lemma 3.2. Let J,,W be a Jacobi field and a piecewise smooth
vector field along 7y,, respectively, such that W(r) = J,(r) and W (t) =
o(t'/?). Then

(3.8) I (Juy Ju) < L(W, W),

where the equality holds if and only if W = J along v¢|(0,r-

Proof. Let W (t) = fi(t)Ji(t) = h*(t)E;(t), where J;(t) = (0/0z")|}4 4
and E; are parallel vector fields along ~y,. Observe that

g(W (1), J;(t)) = f(8)(he)ij = h*(£)g(J;(t), Bx(2))-
By assumption and (3.4), we have f*(t) = o(t~'/?). Then (3.8) follows

from Lemma 3.1. 0

4. Exponential map and volume comparison. Let (M, g) be
a complete Riemannian manifold with isolated conical singularities S.



636 Z.-D. LIU, Z. SHEN AND D. YANG

Let (M, d) denote the completion of (M\S,d*). By the definition of d, a
continuous curve ¢ : I — M\ S is a geodesic with respect to d if and only
if ¢ is a geodesic with respect to d*. By [2] the following Hopf-Rinow
theorem holds. For any p,q € M with a = d(p, q), there is a continuous
curve v : [0,a] = M with v(0) = p, v(a) = ¢ such that ~ is minimizing
geodesic with respect to d, that is, d(y(t1),v(t2)) = |t1, —t2|, for all
t1,t2 € [0,a]. It is possible that a geodesic passes through some singular
points.

Let (Cy,(23p),¢p) be a metric-conical chart at p. Recall that v, :
(0,a;) — M\ S denotes the smooth geodesic defined on the maximal in-
terval such that v, (t) = pplt, z],0 < t < r,. Notice that (C., (), p59)
is approximated by the tangent cone (C,,(X,),gp). Thus, if 2,y € ¥,
satisfies dp, (z,y) < m, then there is a number r < r, such that

d(7z (t)77y(t)) < 2t7 t<r.

Therefore, the curve v, Uy, is not a geodesic with respect to d.

Let C*(X%,) = {[t,z] € C(%,),t < a,}. Define exp, : C*(X,) - M
by exp,[t,z] = 7;(t). By definition, exp,[t, z] = ¢,[t, ], t < rp. Since
T — ag is lower semi-continuous, C*(X,) is open in C'(X,). From ODE,
one can also see that exp,, is smooth (away from the vertex).

For z € X, let c; to be the least upper bound of all those r < a,
such that v,[j,, is minimizing. c, is called the cut-value of z. Let
¥y = {z € Xp; ¢z < az}. By the standard argument, one can show
that X7 is open in ¥, and the map z € ¥} — ¢, is continuous. Put
Cp :={lcz,z], z € B3} and Q, = {[t, 7], 0 <t < g,z € 5y}, Clearly,
dimp (exp,Cp) < n — 1.

A natural question is whether or not exp,, : {2, — M is almost onto.
Let us look at the following example again. Let C'(S') be the cone with
g = dt* ® 2t*dP*. Let p = [1,2] € C(S'). Clearly, exp, : Q, — C(S')
is not almost onto.

In order to exclude this case, we introduce a notion of convex points.
A point p € M is called convez if, for every z € X, there is at
most one point y € X, such that d(z,y) > . In dimension 2,
if length (Xp,h,) < 27, then p is convex. In higher dimensions, if
Ricpyns > (n — 1)A, then by Theorem A, Ricz, > n — 2. Thus p is
convex by Cheng’s maximal diameter theorem [9].
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Lemma 4.1. Let (M, g) be a complete Riemannian n-manifold with
isolated C°-conical conver singularities S. Then, at each point p, the
ezponential map exp,, : {, — M 1s almost onto.

Proof. By the Hopf-Rinow theorem, every point can be joined to p
by a minimizing geodesic. Let ¢ € S be contained in the interior of a
minimizing geodesic from p. Since ¢ is convex, there is a minimizing
geodesic vy from p, passing through g, such that v is mazimal, i.e.,
if o is another minimizing geodesic from p, passing through ¢, then
o C . Let [; denote the part of v from g on. If ¢ € S is not contained
in the interior of any minimizing geodesic from p, put [, = ¢. Let
L, = Ugesly. Clearly, dim L, < 1.

It suffices to prove that
M = exp, Qp Uexp, Cp U Lp.
Let z € M and v : [0,7] — M be a minimizing geodesic from p to z.

If v contains a point ¢ € S, then z € L,. Now assume that r < a,. If
T = ¢z, then z € exp, Cp, otherwise z € exp,, {2,. ]

An outline of the proof of Theorem C. First by Lemma 4.1, we have

vol[B(p,r)] = / det(exp,).duvy
QpNC(Zp)

:/0{/E @[t,m]dAp}dt,

where dv, denotes the volume form on the tangent cone (C(X,),gp),
dA, denotes the volume form on (X,,h,), and O[t,z] is defined as
follows. Let {ei}?:]l be an orthonormal basis for T, %, and let J; = J,
be the corresponding Jacobi field along v,. Then

Olt,2] = \/det g(J:(t), Jj(1), 0 <t < min(ey, 7).
Otherwise put ©[t, z] = 0.
For 0 < ' < min(c,,7), take {e;} such that g(J;(r'), J;(r")) = 0,
i # j. Thus

dlog(Ot, z])|t=r = 2 %
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Let E; be parallel vector fields along v, with E;(r') = J;(r'). Let
W;(t) = (sinx(t)/ sinr (")) E;(t). By Lemma 3.2,

dlog(Olt,z)lir < 3 %

=1
!

~ [ {r-0a-rict0) (;?j((f,)))g} dt.

By the standard argument one can prove (1.6), see [2, 12].

Suppose that the equality in (1.6) holds for some r > 0. Then
¢z > min(ag,r), for all z € ¥,. Thus

(4.1) Qp N CH(S,) = C*(3,) N Co(,).

Fix any ' < min(a,,r). By the proof of (1.6), we see that, for any
u € Typdp,

- sin)\(t)

 siny(r)

E, (), 0<t<r,

where E, is a parallel vector field along vy, with E,(r") = J,(r'). Since
J, is a Jacobi field,

R(Ey(t), v, ()7, (t) = AEL(t), 0<t <.
Since 7. (r")t = span {J,(r'),u € T,%,} for any r’ < min(a,,r),
R(E(t),v,(t)v=(t) = AE(t), 0 <t < min(a,,r),

where F is an arbitrary parallel vector field along 'yz|(07min(am,,)). By
the proof of Theorem B, we get

g((epr)*U, (expp)*U) = Sil’li (t)hp(u) U),

(4.2) :
0 < t < min(a,,r),

where Uy 5 = (i¢)«u.
By (4.2) exp, : Q, N C(3;) — B(p,) is an embedding preserving
the Riemannian metrics, i.e., (exp,)*g = dt* ® sin3 (¢)hy.



SINGULAR RIEMANNIAN MANIFOLDS 639

By (4.1), it suffices to prove that exp, can be extended to a home-
omorphism ¥ : C,.(X,) — B(p,r). First we assert that, for any
x € Xp, Y. can be uniquely extended to a minimizing geodesic 7,
defined on [0,7]. To see this, let ; € ¥, with a,, > r such that
x; — x. Passing to a subsequence, if necessary, we may assume that
Ye;l[0,-] are minimizing geodesic converging to a minimizing geodesic
v [0,7] = M from p. Since v, (t) = @plt,z;],0 < t < rp, we
must have v(t) = pplt,z] = 72(t),0 < t < rp. Let 4, = . Define
U : C.(X,) — B(p,7) by U[t,z] = 7,(t),0 <t < r. It is easy to see
that ¥ is an onto homeomorphism. o

5. Proof of Theorem D. We first show that if Ricpp\g > (n —1)A
for some constant A > 0, then diamy; < ’/T/\/X

Suppose there are p and ¢ in M such that diamy; = d(p, q) > 7/VA.
We claim that there is a minimizing geodesic v : [0,a] — M, joining
p and some ¢’ near g such that (i) a > 7/V/A, (i) ¢ € Q,. This is
possible because M \ 2, has null measure. On the other hand, by the
index lemma, there is a point v(r), 7 < m/+/A, which is conjugate to
p along 7. By a standard argument, we conclude that i ,4¢] is not
minimizing for any small ¢ > 0. It is a contradiction, see [5, Chapter
1].

It remains to show that if diamy; = 7; then M is isometric to the
standard metric sine-suspension S(X) over a connected manifold with
Ricy > n —2.

Let p,g € M be two points with d(p,q) = 7. Let ey(z) =
d(p,z) + d(q,z) — . Since we have Theorem C, the elegant volume
comparison argument due to Eschenburg, see [11, p. 746], shows that
epg = 0. Let z # p,q be a (possibly singular) point. Let 1, 2 be two
minimizing geodesics from p to z and z to g, respectively. Since epq = 0,
4 = 41 U 2 is a minimizing geodesic from p to q. By the argument
in Section 4, diam (X,) > . On the other hand, by Theorem A,
Ricy, > n — 2. Thus (2., h,) is isometric to the standard unit sphere
S™~! by Cheng’s maximal diameter theorem. For every = € ¥, the
geodesic 7y, can be uniquely extended to a minimizing geodesic 7, from
pto q. Let ¥: S(X,) = M be defined by ¥[t,z] = 7,(t). Clearly, ¥ is
the homeomorphism.

Following the standard volume argument, see, e.g., [12, p. 204] and,
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using Theorem C again, we have

(5.1) vol if((f)’ ) = vol Ef((f)’ ) =const.,, 0<r<m.

By the same argument as in the proof of Theorem C, we conclude
that Q, N Cr(X,) = C*(X,) N Cr(Ey), and exp, : Q, N Cr(E,) — M
is an embedding preserving the Riemannian metrics, i.e., (exp,)*g =
dt* @ sin®(t)h,. Notice that ¥ = exp, on 2, N Cr(E,) C S(5,). We
are done. O

Let us remark that, by Theorem D and Lemma 4.1, we can also
generalize some other well-known theorems in Riemannian geometry,
for example, Gromov’s theorem on the upper bound of the first Betti
number, [10], and Milnor’s theorem on the fundamental group of a
Riemannian manifold with nonnegative Ricci curvature, [13].
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