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ON A CLASS OF ADDITIVE GROUP
ACTIONS ON AFFINE THREE-SPACE

DAVID R. FINSTON AND SEBASTIAN WALCHER

ABSTRACT. Every algebraic action of the additive group
of complex numbers on complex affine space is obtained as the
exponential of a locally nilpotent derivation on its coordinate
ring. Moreover, a locally nilpotent derivation is equivalent to
a polynomial vector field on affine space admitting a strictly
polynomial flow. For three-dimensional affine space it is
known that the group action is triangulable if and only if
the centralizer of the corresponding vector field, in the Lie
algebra of vector fields on affine space, contains a constant
vector field. A class of additive group actions is investigated
with this criterion, and the generic member is shown to be
nontriangulable.

1. Introduction. In [13] Rentschler showed that, for any field
K of characteristic zero, all algebraic actions of the additive group
of K on the affine plane over K are triangulable. The corresponding
assertion in higher dimensions is false, as first demonstrated by Bass in
[1]. Since this example first appeared, several authors have found other
nontriangulable actions of the additive group of complex numbers,
henceforth denoted by G,, or complex affine three space [12, 3, 2,
9, 10]. The interest in these examples stems from the attempts to
understand the structure of the automorphism group of complex affine
space, as an infinite dimensional algebraic group, by investigating
the homomorphisms to it from well understood, finite dimensional,
algebraic groups. Indeed, the Jung-van der Kulk theorem [11] can be
viewed as accomplishing this for the complex plane, and the theorem of
Rentschler can be viewed as a nonlinear Lie-Kolchin theorem. However,
the nontriangulable G, actions on complex three space indicate that no
Lie-Kolchin theorem holds in dimension higher than two, and that the
structure of the automorphism group is far more complicated in these
dimensions.

Received by the editors on February 28, 1996 and in revised form on October
14, 1997.
"1991 AMS Mathematics Subject Classification. Primary 14L30, 17B66.

Copyright ©1998 Rocky Mountain Mathematics Consortium

463



464 D.R. FINSTON AND S. WALCHER

To each polynomial derivation § = .7, p;(0/0x;), with p;, €
Clz1,...,z,] = CJ[z], there corresponds the autonomous polynomial
differential equation £ = P(z) in C™, where z = z(t) has its values in
C", and the vector field P is given by P = (p1,... ,pn). We will not
distinguish between the notions of “differential equation” and “vector
field” and use the terms synonymously.

It is well know that locally nilpotent derivations give rise to algebraic
actions of the additive group of complex numbers as automorphisms of
C[X], hence as polynomial automorphisms of C™. From the differential
equations perspective, the consequence of local nilpotency is that the
differential equation admits a general solution which is polynomial in ¢
and the initial value. Under this condition we say that the differential
equation has a strictly polynomial flow, see [9] for more details.

As the title suggests, our interest is in the case of complex three space,
where it is known that the ring of invariants for any algebraic G, action
(which is equal to the ring of polynomial first integrals of a strictly
polynomial flow vector field) is isomorphic to a polynomial ring in two
variables, cf., Sugie [16]. It should be noted that an analogous result
does not hold in dimension higher than three, e.g., there are G, actions
on complex four space where the ring of invariants is the coordinate
ring of a singular hypersurface in four space [7], and an action on seven
space where the ring of invariants is not finitely generated [6].

If f and g € Cl[zy,x2, 3] generate the ring of invariants for a G,
action induced by the vector field F, then G = grad (f) x grad (g) is a
polynomial vector field with first integrals f and g. It is straightforward
to show that G = ¢F for some rational function ¢. Moreover, it has
been shown that, if the given G, action is fixed point free, then G = A\F
for some complex number A [Deveney and Finston, unpublished]. Until
recently, there were only examples of G, actions on C?® with the
property that their ring of invariants contains a variable. Due to work
of Freudenburg [10], it is now known that there exist other classes of
such actions. The question of whether every fixed point free G, action
on C? fixes a variable, and thus, according to Deveney and Finston [5],
is conjugate to a translation, is still unanswered.

The class of G, actions investigated here are generated by vector
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fields (or corresponding locally nilpotent derivations) of the form

0 0
g=| 0 |+o(d, )| pl@) |,
r(zy) q(z1, z2)

where ¢1(z) = z1 and ¢2(z) = p(z1)w3 — fozz q(z1, u) du.

The vector field is conveniently represented by grad (z1) x grad ys(z)
where y(z) = r(zi)ze — 7(d1(2),42(2)), with 7(z1,22) =
Iy o(@1,u) du. (The origin of v, will become apparent in the remarks
preceding Lemma 2.3.)

This class of examples is included in a class investigated by Daigle
and Freudenburg [3], who determined all reduced locally nilpotent
derivations on C3 that annihilate a variable. Many known examples
of nontriangulable GG, actions are members of the more special class
under investigation in this paper, see [10] for an example not in this
class. Bass’s example [1] has 7(z1) = 0, p(z1) = =1, g¢(z1,22) = z2
and o(¢1, ¢2) = ¢2. Those of Popov [12] have r(z1) = 0 and o(¢1, @2)
chosen to define a surface in C* with an isolated singularity. Popov
also has given examples of this type in higher dimension. Daigle and
Freudenburg [3] examined the case v2(z) = z122 + (173 + 73)? in
detail. Other special cases of such actions were considered by Daigle in
[2] and by the authors in [9].

The general differential equation on C? corresponding to a locally
nilpotent derivation that kills a variable can be transformed into

0 0
T = 0 +o"(z) | p*(x)
r*(z1) 7 (z)

This follows from [3, Corollary 3.2], and perhaps an additional conju-
gation by a polynomial automorphism of C? that fixes z; and induces
linear automorphism of C(z1)[z2, x3]. The additional requirements we
introduce are that o* is a first integral of the second vector field and
that both vector fields commute. An equivalent characterization is
that the associated locally nilpotent derivation of C(z1)[z2, 23] can be
transformed to (0/0z3) by a product of two triangular automorphism.
(This can be seen from the computations in Section 2.)
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Results of Smith [14] and subsequent work in [17] show that all the
group actions in the class we consider are stably tame, and in fact that
their canonical extensions to four-dimensional space are tame. In [4] it
was shown that all these group actions are rationally triangulable.

While finding new examples of additive group actions is of obvious
interest in the quest to understand the automorphism group of affine
space, it is equally important to address conjugacy problems. In this
paper we obtain a fairly complete answer to the question of whether
the actions under consideration are conjugate to a triangular action.
(The case 7 = 0 has been discussed in [9] so we will assume r # 0
here.) Our main result is that generically the group actions induced by
the above vector fields are not triangulable. It must be noted, however,
that there are triangulable examples among these actions even with
r(z1) # 0 and

0
o(¢1,92) | p(z1)

Q(ml,fﬂz)

nontriangulable. The proofs are based on the results of [9], where
it was shown that the question of triangulability in three-dimensional
space can be completely answered by investigating the centralizer of the
given vector field. We also discuss one vector field that is not reduced,
to illustrate that our method works equally well for those cases. Finally,
we suggest a strategy based on centralizers for investigating more
general vector fields on C? that kill a variable.

We will formulate our computations and results in terms of vector
fields, which seems appropriate for our purpose. For more information,
the reader may consult [9] where the terminology used here and the
perhaps more familiar language of derivations were reconciled. A num-
ber of computations have been included for the reader’s convenience,
although they are quite straightforward.

2. Preliminaries and computations. In the following we will
consider the differential equation

0 0
& =F(z):= 0 +o(d1,¢2) [ plxr) |,
r(z1) q(z1,72)
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where p and ¢ are relatively prime polynomials with a common zero,
r is a nonzero polynomial, ¢i(z) := z1, h(z1,z2) = fomz q(z1,u) du,
¢2(x) := p(x1)z3 — h(z1,22) and o is a polynomial not depending only
on the first variable. It is known, see [9], that the general solution
of this equation is a polynomial in z1, 22, z3 and t. We will therefore
describe & = F(z) as having strictly polynomial flow.

In addition we will assume that F' has a stationary point, and finally,
we require F' to be reduced, i.e., the entries of F' are assumed to be
relatively prime. In particular, o and r are relatively prime, although
this condition is not sufficient for reducedness.

(In other language, we are dealing with the locally nilpotent deriva-
tion

+ (o) + 0(01, 01, 72) 5

(1, @)p(xl)a%

of the polynomial algebra C|zy, z3,x3].)

The purpose of this paper is to investigate triangulability of & = F(z).
The method is to utilize two known results which reduce the problem
to elementary, although somewhat involved, computations. Recall that
the Lie bracket of two vector fields F,G, is defined by [G, F](z) :=
DF(z)G(z) — DG(z)F(x), which corresponds to the commutator of
the associated derivations. The polynomial centralizer of F' consists of
all G for which [G, F] = 0.

Lemma 2.1. The equation @ = F(x) on C? is triangulable if
and only if the polynomial centralizer Cpo1(F) contains a vector field
conjugate to a (nonzero) constant vector field.

This was shown in [9, Theorem 2.7]. Incidentally, this criterion can
be shown to be equivalent to the one given by Daigle [2, Corollary
3.4]. (The second variable @) mentioned there corresponds to a cen-
tralizer element of F' which has no stationary point!) We proceed with
investigating centralizer elements, since this will turn out to be quite
straightforward.

The second result we need can be found in Daigle-Freudenburg [3].
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Lemma 2.2. If the differential equation

has strictly polynomial flow and no stationary point, then the vector
field G is conjugate to a constant vector field.

This lemma explains some of the additional conditions imposed on F'.
If F has no stationary point, then F' is conjugate to a constant vector
field, hence triangulable. If p and g have no common zero, then (0, p, q)*
gives rise to a free triangular action, hence is conjugate to a constant
vector field, Snow [15], and triangulability of F' follows easily. (Also, if
o depends only on the first variable, then F is obviously triangulable.)

Similar to the strategy pursued in [9], we start by determining the
rational centralizer Cynt(F'). We first transform F' to a constant vector
field with the help of a birational map. (Finding such a birational map
relies on the well-known technique of inverting an invariant in the image
of the derivation to obtain a slice on an open subset of C?.)

Let H(z) := (0,p(z1),q(z1,22)) and note that [H,F] = 0. De-
fine ¢3(x) := xo/p(x1). Then it is known, see [9], that ®(z) :=
(¢1(z), p2(z), ¢p3(x))t transforms H to (0,0,1)", in other words, (z2/
p(x1)) is a slice for the action on an open subset of C?), and an easy
computation shows that

where
F*(z) := | p(z1r(z1)
o(z1,x2)

Thus, ® transforms F' to F*, which is triangular, and it is straight-
forward to find a birational map that transforms F* to a constant
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vector field. Let ¢1(z) := x1, 7(21,22) 1= [;7 o1, u) du, ¢o(z) :=

p(z1)r(z1)zs — 7(21,22), and ¥3(z) := zo/(p(x1)r(z1)). Then 5 is a
slice for F* on an open subset of C3, hence

Y1(z)
\I/(.Z') = 1,[12 (.Z')
Y3(z)
satisfies
0
DY (x)F*(x)=1[0],
1

and therefore the birational map I' := ¥ o & straightens F to (0,0, 1)".
(The corresponding derivation is (0/0x3).) Explicitly,

L(z) = | p(z1)r(z1)¢s — T(z1, $2)
¢2/(p(z1)r(21))
= | r(z1)z2 — 7(21,p(21)23 — h(21, 22))
(p(z1)z3 — h(z1,22))/ (P(T1)7r(21))

In particular, the polynomials vi(z) := x1 and y2(x) := r(z;)zs —
7(z1, ¢2(x)) are first integrals of ¢ = F(z) (and invariants for the
induced group action).

Since the rational centralizer of (0,0,1)! is the set of all (g1(x1,x2),
g2(w1,72), g3(x1, T2))?, with rational functions g;, the rational central-
izer of F is the set of all

g1(z1,72(2))
DI(z) "' | ga(x1,72(x)) |, with rational g;.

g3(z1,72(2))

A computation yields

1 0 0
DI(z) = | u(z) r(z1)+o(z1,d2(2))g(z1,22) —o(z1,d2(x))p(z1) |,
v(z)  —q(z1,@2)/(p(z1)r(21)) 1/r(21)
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with
u(e) = (@) — T (ar, 6a(@)) — (s, Ba(a)a (o),
1
and
_agr'(z)
v(z) = N

_ p(@1)r(21)(0h/01) (21, x2) — (p(w1)r(21)) h(21, 22)
(p(z1)r(21))? '

The inverse is

0 0
DT(z) ‘=1 1/r(zq1) o(z1, d2(x))p(z1)
*  q(z1,22)/(p(z1)r(22)) r(T1)+0(21, P2())q(21, 22)

where the terms abbreviated by * are not recorded explicitly here. It
is useful to observe that

@ (o ) =0

and, as a consequence,

_ 1 _ (mspr’ | Oh  (pr)
() Oa-p) PP = (B JL g0 ).

The last preliminary result we need is about the algebra of invariants
of the group action induced by F.

Lemma 2.3. The algebra of invariants of ¢ = F(z) is C[y1,Y2].

Proof. 1t is known from a result of Daigle and Freudenburg [3,
Corollary 3.2] that there is a polynomial ps such that the algebra of
invariants is C[zy, u2] and furthermore that

F(z) = grad (z1) x grad (u2)
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holds, where x denotes the vector product.

It is sufficient to show that the degrees of 75 and pq are equal, since
then their difference will be at worst a polynomial in x; only, so that
C[z1, p2] = Clz1,72]. But this follows from the fact that the degree of
F equals degy2 — 1, and is at most equal to deg us — 1.

It should be noted that Lemma 2.3 can also be proved with the help
of van den Essen’s algorithm, cf. [8].

3. On the polynomial centralizer. The results in Section 2
are sufficient to determine Cpa(F). In particular, it follows that every
element G € Cpoi(F) is of the type

) a1 ) 91(71,72)
G=1g2 | =Dl(z) " | g2(7,72) | >
g3 93(71,72)

with the g; still a priori rational functions. From the explicit form of
Dr'(z)~! it follows that §; = g1(71,72), and Lemma 2.3 implies that
g1 is a polynomial, since g; is a polynomial and invariant. From (x) as
in Section 2, we get

Lemma 3.1. IfC:Y s a polynomaal, then

< v (pr)

pxr3— —
r pr

h) - g1(71,72) + prgs(v1,72)

s a polynomial.

Proof. If G is a polynomial, then so is (0,9,—p) - G. O

The next result is crucial for finding the elements with strictly
polynomial flow in Cp.(F), whenever F satisfies a weak additional
condition.

Theorem 3.2. Suppose that there is a root a of p such that o(a,y)
is not constant, or that there is a root B of r such that o(B,y) is
not constant (where y is an indeterminate). Then x; — « divides g1
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respectively, 1 — (3 divides g1 and x1 — « respectively x1 — 3 is a semi-
invariant of G.

In particular, if G has strictly polynomial flow, then g = 0.

Proof. The last assertion follows from [9, Remark 2.1].

In the proof of the first assertion, we will repeatedly use the following
standard result from algebra. Let K be any field, y transcendental
over K and K(y) the field of rational functions in y. Then, for
every nonconstant polynomial f, the degree of the field extension
[K(y) : K(f)] is equal to the degree of f. Thus, if g is another
nonconstant polynomial, then K(f) C K(g) implies that deg g < deg f.

From Lemma 3.1, it follows that
(1) (P*wsr’ — (pr)'h)g1(y1,72) + g5 (71,72) = pr - (some polynomial),

with g3 (v1,72) := (pr)2g3(71,72) necessarily a polynomial.

(i) Assume that p(a) = 0 and that o(a,y) is not constant. The
assumption (z; — «) t g1 will lead to a contradiction.

Thus, assume that £; — o does not divide g;, and divide by highest
possible powers of z; — « to get p = (z1 — a)"p, r = (x1 — &)™ and
g3 = (z1 — @)%g3 with n > 0 and m,d > 0.

Since (z; — @) t ¢1 and (z1 — o) { h (otherwise (z; — a)lg, a
contradiction), the highest (z; — «)-powers dividing the terms on
the lefthand side of (f) are (z; — )?"*™~1 (21 — a)"t™~1 and
(z1 — a)?, respectively, while (z; — a)”*t™ divides the righthand side.
Therefore, d = n +m — 1, and division of (1) by (z1 — a)"*™~! yields
(1 =)™ (...) + a(zr)h(z, 22))g1(21,72) + §3(71,72) = (21 — a) -
(some polynomial), with a(x;) a polynomial such that a(a) # 0. Upon
setting 1 — «, 3 — 0, we find

(t1)  a(a) - h(a,z2) - g1(a, r(a)ze — T(a, —h(a, z2)))
+ gs(a,r(@)ze — 7(o, —h(a, 22))) = 0.

In this equation h(a,z2) is not constant; otherwise, g(a,z2) = 0
and (z; — a)|g, a contradiction. Since o(«,y) is not constant, the
degree of T(a,y) with respect to y is greater than 1, whence r(a)zs —
7(a, —h(a, z3)) has greater degree in z2 than h(a,z2).
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On the other hand, the relation (1) (with a(«) # 0 and g;(«, *) # 0)
implies that h(a,z2) € C(r(a)ze — (o, —h(a, 2))), a contradiction.
Therefore, (7 —a)|g1, according to the remark at the beginning of this
proof.

(ii) Now suppose that 7(8) = 0, that o(8,y) is not constant and that
x1 — B does not divide q.

Again, assume that (z; — 8) f ¢1, and let r = (21 — B)™F, p =
(1 — B)"p and g5 = (z1 — B3)%g3, with highest possible powers divided
out, and m > 0. Since (z1 — 8) t ¢, we have that (z; — ) { h,
and therefore the highest powers of z; — 8 dividing the terms on the
lefthand side of (1) are (z; — 8)™ 271, (z; — B)™*" ! and (z; — )4,
respectively, while (z; — 3)™*™ divides the righthand side.

Comparing degrees shows that d > m +n — 1 (we may have “>” in
case n = 0) and division by (z1 —3)™*"~! and setting x1 — 3, z3 — 0
yields

a(ﬁ) ) h(/Bv IQ) 01 (ﬂ: —T(,B, —h(ﬁ, 372))) + gS(ﬁa _T(/Bv _h(ﬁv 332))) =0,

with a polynomial a such that a(8) # 0 and g3 := (z1 — B)4+H1~"""gs.

Since h(8,z2) is not constant and 7(3,y) has degree greater than
1 in y, this relation implies h(3,z2) € C(—7(8, —h(8,z2))) (whether
J3(B,%) = 0 or not), which is a contradiction as in (i). Therefore,

(z1 — B)lg1-

(iii) Finally let 7(8) = 0, and suppose that o (3, y) is not constant and
that 1 — B divides q. Then (zy — ) t p, since p and q are relatively
prime, and (zy — B)|h. Let h = (z1 — ,B)sz, with a polynomial h and s
maximal. Furthermore, let 7 = (z, — 3)™#, and g% = (z1 — 3)%33, with
highest powers factored out.

Once more, assume that (z1 — 8) t g1. Then (z1 — 8)™71, (1 —
B)m+s=1 and (z; — B)9, respectively, are the highest powers dividing
each term on the lefthand side of (}), while (zq; — 8)™ divides the
righthand side. It follows that d = m — 1, since s > 0. Divide (1) by
(z; — B)™~! and set x; — B to obtain

(T T T) arsy - gl(ﬂv’)?(ﬁam%x?))) +g3(6)72(ﬁ7x2a$3)) = 0)

with some a € C*.
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Now h(B,z2) = 0 and r(8) = 0 imply ¢2(8,z2,23) = p(B8)zs and
Y2(B, 22, 23) = —7(B, p(B)23).

With p(8) # 0, the relation ({1 1) implies z3 € C(7(8,p(8)x3)), a
contradiction, since 7(53,y) has degree > 1 in y. Therefore, (1 — 8)|g1,
and the proof is finished. a

The partial computation of DI'(z)~! in Section 2 immediately yields

Corollary 3.3. Under the assumptions of the theorem, an element
of Cpol (F') with strictly polynomial flow has the form

0
g5(x1,72) - | p | +95(21,72) - F.
q

It should be emphasized, however, that g5 and g5 are not necessarily

polynomials. From
p ap _
det (q T+0q>—pr

it follows that prg; and prgj must be polynomials.

Now it is easy to determine all the elements with strictly polynomial
flow in Cpol(F).

Proposition 3.4. The polynomial vector field
B 0
G=gs(@,7) | p | +oi(e,) F
q

has strictly polynomial flow if and only if g5 is a function of x1 alone.

Proof. To see that the condition is necessary, consider the map

A:CP—C?, z+— (1;53)
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Then DA(z)G(z) = G(D(x)), with G(z) = (0, p(z1)r(z1)g5 (x1, 22))",
as the following computation shows:

Yo () = r(z1)z2 — 7(21, P2(2)); $2(x) = p(x1)xs — h(21, T2);

02 _ _ o 942
9zs r(zy) 92, (z1, ¢2) 075

= r(xl) + O'(l'l, 0'2) : q(:l?1,l'2);
Oy __ O 00>

Oxs - _0—@(:1717(172) ’ Oxs = —o(z1,¢2) - p(z1);

therefore, D2 (z)G () = p(x1)r(w1)g5(z1,72)-

Thus A maps solutions of & = G(z) to solutions of & = G(z) in C?,
and the latter will have strictly polynomial flow if the former has. But
any vector field of the form (0, u(x1,2))" has strictly polynomial flow
only if u is a polynomial in z; alone.

To prove sufficiency, denote the derivation corresponding to G by 6,
and let B be the subalgebra of Clzy, 2, 23] consisting of all polynomials
annihilated by some power of §.

Then z; € B is obvious, and the above computation yields 0(y2) =
p(z1)r(z1)95(z1) € B, so va € B. Furthermore,

8(p2) = g3 (@1, 7v2)r(21)(0¢2/0x3) = p(z1)r(z1)g3(21,72) € B,

hence ¢2 € B.

Finally, 6(z2) € Clz1,7v2,¢2] C B, hence z2 € B, and §(z3) €
Clz1, T2,72, 2] € B, whence z3 € B. This shows B = C[zy, 22, 23]
and ¢ is locally nilpotent. o

It is worth emphasizing that, without any additional assumptions on
F| every element G as given in Proposition 3.4 lies in the centralizer of
F and has strictly polynomial flow. The restriction on F' in Theorem 3.2
is a technicality making sure that the given proof works. Indeed, it can
be shown to follow from Daigle [2, Theorem 2.5] that the conclusion of
Theorem 3.2 holds without any further restriction on F. On the other
hand, our proof of Theorem 3.2 requires only elementary methods,
and the restrictive condition forced by our proof has the benefit of
identifying triangulable vector fields:
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Proposition 3.5. For every polynomial m in one variable and every
polynomial o* in two variables, the vector field

0 0
F=1 0 |+ (m(z1)+pl@)r(zi)o’(z1,¢2)) - | plz1)
r(zy) q(z1, z2)

is triangulable.

Proof. According to Proposition 3.4, the vector field

0 0 0
F—m-|p =7°-< 0] +po*|p )
q

1 q

is contained in the centralizer of F' and has strictly polynomial flow.
But then the same is true for

0 0
0] +ps*|p],
1 q

which has no stationary point. From Lemmas 2.1 and 2.2, it follows
that F'is triangulable. ]

Note that the vector fields of Proposition 3.5 do not satisfy the
hypothesis of Theorem 3.2, and that they are the only ones with this
property when p and r are given as relatively prime polynomials with
simple roots. Incidentally, the centralizer of such a vector field also
satisfies the conclusion of Theorem 3.2, as was proven in [9] for all
triangular vector fields having a stationary point. It seems likely that
all the vector fields F' that violate the hypothesis of Theorem 3.2 are
triangulable. The following example lends additional support to this
conjecture.

Example 3.6. The vector field

0 0
F = 0 +(1+2I1¢2) -l
T L2
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is triangulable.

To see this, consider the polynomial centralizer element

1 0
—<F— Il > +2’)/2F,

x
1 T

for which it is elementary to verify that there is no stationary point.
Triangulability follows as in Proposition 3.5.

Note that, once more, the hypothesis of Theorem 3.2 is not satisfied,
yet this is not a special case of Proposition 3.5.

4. Nontriangulability in the generic case. This section is
devoted to the investigation of polynomial vector fields of the type

B 0
G(z) = g5(z1) | p(z1)
Q(Ilax2)
0
+ g5(21,72) o(z1, p2)p(z1)

r(z1) + o(z1, ¢2)q(z1, z2)

From Section 3 we know that every such vector field is contained in
the centralizer of F' and has strictly polynomial flow. If, in addition, the
hypothesis of Theorem 3.2 is satisfied, then these are the only vector
fields of this kind. Our first result is that F' is not triangulable in
general.

Theorem 4.1. If p has a root a such that o(,y) and q(a,y) are
not constant (where y is some indeterminate), then G has a stationary
point. In particular, © = F(z) is not triangulable.

Proof. Lemma 2.1 shows that it is sufficient to prove the first
assertion.

(i) Recall that go = prgs and g3 = prg} are polynomials. Since G is
a polynomial, it follows that

929 + g3(r + o0q) = pr - (some polynomial).
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Let p= (21 —a)"-p and r = (1 — )™ #, with highest powers factored
out. According to the hypothesis, we have n > 0. Since (z; — ) does
not divide ¢ (as p and q are relatively prime), and (z; — «) does not
divide (r+oq) (as F is reduced), the assumption that go = (z;—a)?- g,
with d < n +m and g2(a) # 0, implies that g3 = (z; — a)? - g3, with
g3(a, *) # 0. Then division by (z; —a)? and substitution z; — a yields
g2(a)-q(a, v2)+gs(a, r(a)ry—7(a, —h(a, x2)))-(r(e) +o(a, —h(a, x2))-
Q(aa :Ez)) =0.

Note that the second summand is not zero and has higher degree in
x2 than g(a, x2). (This follows from the facts that o(«,y) has degree
> 1 in y and h(a,z2) has degree > 1 in x2.) But this leads to a
contradiction; hence, we have found that (z; — @)™*™ divides g, and
g3.

Conclusion. Both g3(a) and g3 (a,y) are defined.

(i) Since g5(c) and gj(c, *) are defined, substituting z; — « will
annihilate (g5 + og3) - p. It remains to be shown that the polynomial
959 + g5(r + oq) will not become constant upon substituting z; — «,
unless it becomes identically zero.

The substitution results in the polynomial

g2 (a)q(a; z2) + g3(e, r(@)zy — (@, —h(e, 22)))
- (r(@) + o(a, —h(a, 22)) - g(@, 22)).

Now if ¢5(a,y) is not identically zero, then the second summand is
nonzero and has higher degree in x, than the first, as the argument
in part (i) shows. Therefore, we have a nonconstant polynomial in z
in this case. If gi(a,y) = 0 and g3(a) # 0, then the first term is
a nonconstant polynomial in zo. The remaining case yields the zero
polynomial. As a result, G always has a stationary point. ]

It remains to clarify that the hypothesis of Theorem 4.1 describes
a “generic” situation. The collection of all quadruples (p,q,r, o) of
polynomials p, ¢, and o, whose degree does not exceed a given integer
d, can be identified with an affine space of a certain dimension. It is
easily verified that the subcollection of those quadruples satisfying the
hypothesis of Theorem 4.1 contain a nonempty Zariski open subset of
this affine space.
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It is natural to ask whether there is a similar criterion involving
the roots of r. The answer is as follows, with the proof completely
analogous to that of Theorem 4.1.

Remark 4.2. Let 8 be a root of r such that o (3, y) is nonconstant and
q(B,y) is nonzero. Then both g3(3) and g3(8,y) are defined, and in
case g5(B,y) # 0 there is a stationary point of G with first coordinate

3.

Note that triangulability cannot be excluded in this case. For the
remainder of this section, a few more triangulable examples will be
exhibited. The following observation turns out to be useful for this
purpose.

Lemma 4.3. If y is a stationary point of G that is not a common
zero of g5(z1) and g5(z1,72), then p(y1) - r(y1) = 0.

Proof. We know that each prg; is a polynomial. If g5 or g3 is not
defined at y, then pr must have a zero at y. Otherwise, the vectors

0 0
p(y1) and o(y1, #2(y))p(y1)
q(y1,92) m(y1) + o (y1, 2(y))a(y1, y2)

are linearly dependent in C3.

The following two examples satisfy the hypothesis of Theorem 3.2,
but are triangulable. Thus, there are triangulable vector fields which do
not belong to the class discussed in Proposition 3.5 and Example 3.6.

Example 4.4. The vector field

0 0
0 + 2371(,252 . I = F(J))
Ir] — 1 T2
is triangulable.
Here we have ¢o(z) = zizs — 22/2 and ya(z) = (z1 — 1)z —

r1¢3. (Note that F does have stationary points!) Since o(1,x) is
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not constant, Theorem 3.2 shows that every centralizer element with
strictly polynomial flow is of the type

0 0
g5(z1) - | 1 | +95(z1,72) - 2z3 ¢y ;
z2 (r1 — 1) + 2212002

with g; := x1 (21 — 1)g; polynomials.

A consequence is that go(z1) + gs(z1,72) - 22162 = (z1 — 1) -
(some polynomial).

The substitution ;1 — 1, 3 — 0 implies ¢ — —a:%/? and vy —
—x3/4, and therefore go(1) + g3(1, —x5/4) - (—x2) = 0.

Since this is possible only for g»(1) = 0 and g3(1,*) = 0, it follows
that the §; := z1g; are already polynomials. Now the third entry of the
centralizer element above shows that ga(z1)z2 + g3(x1,72) - ((x1 — 1) +
221T2¢2) = 1 - (some polynomial), and z; — 0 yields ¢o — —x2/2,
Y2 — —2, hence §2(0)z2 + §3(0, —22) - (—1) = 0.

With go = —1 and g3 = x2, we obtain the centralizer element
1 (0 72
Qz)=—— a1 | + -F(z)
T T
Z2
0
= —1+2z1¢272 ;

1T — 2x2 — (l’l — 1)(1)% + 2x2¢272
and another centralizer element

0

Q —72F = | =14 2z1¢272 — 223272
*

with strictly polynomial flow. Now Lemma 4.3 implies that every
stationary point y of this latter vector field satisfies y; = 0 or y; = 1.
But both choices yield —1 in the second entry, showing that Q — vy F
has no stationary point. It follows from Lemmas 2.1 and 2.2 that F' is
triangulable.
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Example 4.5. The vector field

0 0
0]+ 2(.1‘1 - 1)(]52 . ml(xl - 1) = F(Z)
1 1+ zi122

is triangulable.

In this example ¢o = x1(z; — 1)z3 — (22 + z173/2) and vy, =
wy— (w1 —1)¢3. The strictly polynomial flow elements in the centralizer
of F' are the

0
g5(z1) - | z1(w1 — 1) | +g3(21,72) - F(x),
1+ zi20

according to Theorem 3.2, with ¢(0,%) not constant. Again, the
gi := z1(x1 — 1)g} are polynomials. One such centralizer element is

0
Qz) == @-1) ((1 +72(x)) - F(z) — wll(j_ﬁlml—xi) )
0
= -1+ 23;1(:51 — 1)(1 + ’YQ)¢2
—Ty — (f)g =+ 2¢2(1 + ’72)(]. + CElIQ)

It is not hard to verify that every strictly polynomial flow element in
the centralizer of F' can be written as

0
G(x) = p-Qz) + go(z1) - | 121 — 1) | + Gs(z1,72) - F(a),
1 + 122

with p € C and polynomials ;. Set 4 = 1 in the following. Then G has
no stationary point y with y; = 1, since the second entry of G always
yields —1. The search for stationary points with first entry 0 yields 0
in the second entry and the polynomial 1 — (1 + 2z2) - (1 + @3 + x3) +
G2(0) + g3(0, 22 + 3) - (1 + 2x2) in the last entry.

The choice go = 0 and g3(z1,22) = 1 4 z5 yields the constant
polynomial 1, and therefore,

Q(z) + (1 +12(z)) - F(x)
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has no stationary point with first component 0. Lemma 4.3 shows that
this vector field has no stationary point, and we can conclude that F
is triangulable.

It should be emphasized that it is actually possible to systematically
investigate the polynomial centralizer of any given F', thus it is not
a matter of trial and error to find strictly polynomial flow centralizer
elements with no stationary points. We will sketch the strategy in the
following.

In general, one uses Lemma 4.3 and exploits the arguments in the
proof of (4.1) in greater detail. Suppose that p(a) = 0 and that the
hypothesis of (4.1) does not hold for . One first has to obtain more
precise information about the polynomial elements G in the centralizer.
(The notation is as in the proof of (4.1).) If ¢(a,y) is constant (and
necessarily nonzero), then part (i) still shows that g3 («) and ¢3(a,y)
are defined.

Now suppose that o(a,y) = op is constant, so 7(z1,z2) = opx2,
while ¢(a,y) is nonconstant. Assume that d < n + m in part (i) of
the proof. If oy = 0, then r(a) # 0 (thanks to reducedness), and we
have ga(a)q(a, z2) + g3(a, r(a)z2)r(a) = 0. This determines §s(a,y)
for every given g ().

If 69 # 0 then §3(a, y) is constant (as h(a,z2) has degree > 2) and
nonzero. This is possible only for 7(«) = 0, and then again gs(a,y) is
uniquely determined by §a(a).

Finally, assume that g(a,z2) = 1y is constant. Then reducedness
implies that r(a) 4+ ogno # 0, and one has ga(a)no + J3(e, (r(e) +
oono)z2)(r(a) + oono) = 0. Once more, this shows that §2(c) deter-
mines §3(a,y) (which is constant).

In case d < n+m — 1, set go(x1) = go(@) + (21 — @) - §2(1), and

similarly for g3, and obtain conditions for g,(«) and so on. Eventually,
this yields a representation

G=p1- Qi+ + pim Qum + G (z1)
0 0
P |+ g3(x1,72) - op )
q r+oq

where the p; are complex numbers, and g2(a) and §3(a, y) are defined.
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In the next step, one has to determine the conditions under which
there is no stationary point (a, %, %)’ for G. We will discuss this only
for the case that ¢(«,y) is nonconstant and o(e,y) = 0. (The other
cases can be handled similarly.)

Upon setting #1 — «, the third entry of G becomes s(a, z2) +
g2(a)g(a, x2) + gs(a, r(a)z2)r(a), where s comes from the sum of the
i Qi

Now, for any given py, ... , tm (which determine s), and for any given
g2(@), one can determine all 3 such that the above polynomial is a
nonzero constant. (It is clear how to choose §3(«, y), and then one may
add an arbitrary multiple of z; — «.) Moreover, there may be certain
combinations of the p; such that the second entry of G is a nonzero
constant.

In this way one obtains all strictly polynomial flow elements in the
centralizer of F' that have no stationary point with first coordinate a.
Going through all the roots of p, and similarly through all the roots of
r, one ends up with centralizer elements having no stationary points,
provided that such elements exist at all.

We were not able to find nontriangulable vector fields that violate
the hypothesis of Theorem 4.1. Thus, it may very well be the case that
the condition of Theorem 4.1 is also necessary for nontriangulability.

5. A nonreduced example, and final remarks. One class of
nonreduced vector fields F' consists of those where r and o have a
nontrivial common factor. A more interesting example is given by

0 0
F(:l?) = 0 +(1+2x1¢2) . $1($1+1)
-1 1-— 2$1I2

Note that F is indeed not reduced, as one has F(z) = z; - F(z), where

0
F(z)=| (1+2x16)(z1+1)
2¢72 — 2332(1 + 2:171¢72)

With the usual definitions we have ¢ = z1(z; +1)x3 — 3 + 2123 and
Yo = —T2— 2 — 2103 = (—x1)-p(x), with u(x) := (z1+1)x3 + 5+ 63.
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Since a birational straightening function for F' is known from Sec-
tion 2, one easily gets the birational straightening function

I'(z) = Y2(7)
—z1x3 + (22 + 23) /(21 +1)

Furthermore, the same proof as in Lemma 2.3 yields that Clzy, p] is
the algebra of polynomial invariants of the corresponding group action.

Using these ingredients, a straightforward imitation of the proofs of
Theorem 3.2 and Proposition 3.4 yields that every strictly polynomial
flow vector field in the centralizer of F' has the form

0
g5(x1) - | zi(zr +1) | +g3(z1,p) - F(z),
1—2.1‘1372

and the g} actually turn out to be polynomials. All these vector fields,
however, have a stationary point gwith first component —1) as is readily
verified. The conclusion is that F' (and F) is not triangulable.

As this example indicates, there is no principal difficulty in the
investigation of any given nonreduced vector field.

Finally it is worth noting that, in the reduced case, the centralizer
elements of F' described in Corollary 3.3 and Proposition 3.4 have a re-
markable property. The reduced ones among these can be transformed
over C(z1) to (0/0z3) by a product of three triangular automorphisms,
and conversely it can be shown that every reduced vector field G with
this latter property occurs in the centralizer of some vector field F' of
the type under consideration here. Moreover, the process does not end
at this stage. It can be shown that iterated computations of central-
izer elements, i.e., centralizers of G, centralizers of centralizers of G, ...,
will eventually produce every vector field on C? that corresponds to a
locally nilpotent derivation killing a variable. It is clear that, for any
given locally nilpotent derivation, the question of triangulability can be
decided using the strategy employed in this paper. Whether a general
picture can be obtained remains to be seen.
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