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A GENERALIZATION OF IFS WITH
PROBABILITIES TO INFINITELY MANY MAPS

FRANKLIN MENDIVIL

ABSTRACT. This paper considers the problem of extend-
ing the notion of an IFS with probabilities from the case of
finitely many maps in the IFS to the case of infinitely many
maps. We prove that, under an average contractivity condi-
tion, the IFS is contractive in the Monge-Kantorovich metric.
We also show that the invariant distribution is continuous
with respect to the parameters of the IFS. Furthermore, us-
ing results of Lewellen, we obtain a result relating the support
of the invariant measure to the attractor of the “geometric”
IFS. Finally, we discuss the issue of the convergence of inte-
grals with respect to the invariant measure and estimates on
the error of these integrals.

1. Introduction. In his seminal paper [3], Hutchinson discusses the
notion of self-similarity and introduces some ways to measure or define
self-similarity. One such way is to say that a set A C X is self-similar
if there is come collection of maps w; : X — X so that

A= Uwi(A).

In this way, A is seen to be made up of transformed copies of itself.
Given this set of maps, one can define a set-valued map W by

w(B) =Juwi(B)

and we see that A is self-similar under the w;’s if A is a fixed point
of W. While Hutchinson considered only finitely many maps, later
Lewellen considered the case of infinitely many maps indexed by some
compact metric space [4].
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Given a collection of maps w; on X and a set of probabilities p;, i.e.,
> pi = 1 and p; > 0, we can define an associated Markov operator
M on the set of probability measures on X (a so-called IFS with
probabilities)

M(u)(S) = Zmu(w{l(s))

for all Borel subsets S. If u is a fixed point of M, then px can also
be said to be self-similar. In this paper we generalize the results of
Hutchinson to the case where there are infinitely many maps. Thus,
this work can be seen as a natural complement to Lewellen’s work.

2. Main results. Let X and A be compact metric spaces. The
space A is our parameter space. Let w : A x X — X be continuous
in both z and A. Let p be a probability measure on A. We denote
by PM(X) the set of regular probability measures on X. Define
T:PM(A) x PM(X) = PM(X) by

1,G0(B) = [ s (B)) dp()
for all Borel sets B C X
where p € PM(X) and p € PM(A). When p € PM(A) is fixed, we
leave out the subscript on Tj,.

Note that by the Riesz representation theorem (for continuous linear
functionals on C(X)) an equivalent way of defining 7T'(x) would be

| @@ = [ [ s@)du aw)

for all continuous bounded real-valued functions f on X. Formally, this
definition works exactly the same as the previous definition.

It is a straightforward calculation to show that 7' maps PM(X) to
PM(X), so we leave out the details.

We now recall the definition of the Monge-Kantorovich metric ([3] and
called the Hutchinson metric in [1]). Let p and v be two probability
measures on X. Then

dutur) =swn{ [ 5@ du(o) ~ [ @) dn(a) € Lips ()}
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where we denote by Lips(X) the functions on X with Lipschitz constant
at most k. The Monge-Kantorovich metric induces the topology of weak
convergence of measures on PM(X), see [3, 1].

We prove now that T is a contraction if w is contractive on average.

Definition 1. We say that w is contractive on average if, for all
z,y € X,

/A d(wa(x), wa(y)) dp(\) < sd(z,y)

with s < 1. We call the minimum such s the contraction factor.

Theorem 1. If w is contractive on average, then T is contractive in
the Monge-Kantorovich metric.

Proof. Let f € Lip (X). We calculate for 4 and v in PM(X),

/ I T(v))) da
/ r@a( [ @) - vty @) o)
_ /A /X (@) d(p(wy (z) - v(wy (2))) dp(N)
= [ [ @) tut) - i) dp)
= [ ([ s ann) o) - v1e)
~s [ 6 du(s) ~ v(»)

where ¢(y s™H [ f( )dp(\) € Lip (X) by definition of s.
Taking the supremum, we get

dp (T(p), T(v)) < sdu(p,v)

and the result follows. O

Notice that any probability measure on X is the attractor of an
infinite IFS with probabilities in a trivial way. If we wish to obtain
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the measure u, we simply take A = X and w,(y) = x for each y € X
and p = p. It is easy to see that T'(v) = u for any v € PM(X).

Now we prove a result about continuous dependence of the invariant
measure with respect to the “parameters” of the IFS (the probability
measure p on A). For a fixed probability measure, p, we denote by p,
the invariant measure of the operator T,,.

Theorem 2. Suppose that p(™) is a sequence of probability measures
in PM(A) which converges to p € PM(A) in the Monge-Kantorovich
metric (weak convergence of measures). Then p,m) = pyp in the Monge-
Kantorovich metric.

Proof. Let f be a bounded continuous function on X. We calculate
that

J @ [ utwst@a™ o) = [ [ o) dutur @) oy
- / /X F(wn (@) duu(z) dp™) ().

Let ¢(A) = [ f( du(z). Clearly ¢ is bounded since f is bounded
and p is a probablhty measure. Let € > 0 be given. Now both f and w
are uniformly continuous in X and A. Thus, there is a § > 0 so that if
d(A, N) <6 then |f(wa(x)) — f(wa(z))| < € for all z € X. Therefore,
for A, X € A with d(\,\') < § we have

60 = ) < [ 1f(wa(@)) = f(wn ()] dute)

edu(z) =
</ (z)
so ¢ € C*(A) and

/A BN dp™ (A) — / 6N dp(\)

Since this is true for all f € C*(X), we know that T}, is a continuous
function of p (the distribution on A). To get continuity of p, (the
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fixed point of T},) as a function of p, we need to have a uniform bound
for the contraction factor of the family 7). However, it suffices to
get a bound for sufficiently large n. For fixed x,y € X, we have that
d(wy(z),wx(y)) is a continuous function of A, so we know that

/A d(wa(2), ws () dp™ (A) — / d(wx(2), wa(y)) dp(A)

and thus the contraction factor of T,n converges to the contraction
factor of 7},. This gives us our uniform bound s on the contraction
factors. Now, by the estimate

dH(Tp(#p)a Tq(#p))
1—s

drr (Kps Hg) <

we know that p,m) = p, in the Monge-Kantorovich metric. o

The next result concerns the support of the invariant measure of 1,.
We need to assume that w,y is contractive for all A € A. For a given
p € PM(A), we let Q, C A be the support of the measure p. Then
there exists a compact set A, C X which is invariant with respect to
{wx|A € Q,}, see [4, Theorem 3.2]. Invariant means

A, = | wa(4y).

A€Q,

We call A, the attractor of the (infinite) IFS {wi|X € Q,}.

Theorem 3. If wy is contractive for all A € Qp, the support of u,
is equal to Ap.

Proof. This proof is a modification of the proof of the finite case in
[1]. Let B be the support of y, so that B C X is compact. When we
consider T),|B : PM(B) — PM(B) we get the same fixed point p,,.
Thus the support of u, must lie in A, so B C A,.

For the other inclusion, let a € A, and let O be an open neighbor-
hood of a. Then, by Corollary 2.8 in [4], for any 6 € ¥ = IIQ, (the
space of addresses) which is an address of a, we have

wg, 0wy, 0---owy, (A) C O
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for large enough n. Since w is continuous as a function of A, @w(5)() :=
Wg, OWg, O+ -0W,, () is continuous as a function of & € Q. Thus, there
is a neighborhood U of f = (61,65, ... ,0,) in Q7 so that w(5)(A) C O
forall & € U. Let p be the product measure on ) given by the measure
p on each coordinate. Then

Np(o) > ﬁ(U) >0

p(U) > 0 since €, is the support of u,,). Since this is true for any such
(B( p pp Ip y
O, a is in the support of p,. Thus, A, is the support of y, as claimed.
O

We mention that this theorem combined with Theorem 2 does not
imply that the support of y,) converges to the support of y, in the
Hausdorff metric. The following simple example illustrates this.

Let A = {1,2} and wq(z) = 1/22 and wa(x) = 1/2z + 1/2, and let
p™M({1}) =1 — 1/n and p™({2}) = 1/n so p must be the point mass
at 1. Then the support of i, is all of [0, 1]. However, the support of
Mp is just 0.

By Theorem 5.1 in [4], if supp (p(™) — supp (p) in the Hausdorff
distance on A, then supp (p,n ) — supp (u,) in the Hausdorff distance
on X. Conditions on p(™ to insure the convergence of the supports in
the Hausdorff distance seem to be unknown.

3. Approximation of integrals. We now turn to the question
of calculating integrals with respect to the invariant measure of the
operator T. We start with a discussion of the finite case to make the
analogy clear.

For f a bounded continuous real-valued function on X and g the
invariant measure of M, we have

[ 1@ dute) =1t [ f(a) dbr" 82,0
X X
= m Y pupiy i i, (w3, (- (1, (20)) )

for any x¢g € X, where the sum is over all possible sequences of length
n using the symbols {1,2,... ,N}. Thus we can approximate the
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integral of f with respect to p by enumerating the leaves of an V-
ary tree and calculating the sum. If we let n be large enough, we
have an approximation to the true integral. In the special case that
f is Lipschitz, then we can even have an error bound in terms of the
contraction factor of M on PM(X).

In the infinite case, we have to modify this construction slightly since
the image of a point mass under 7' is not a finite sum of point masses in
general. We approximate p and p simultaneously and take a “diagonal”
sequence to approximate the integrals we wish. In the special case
where w and f are Lipschitz, we get an error bound on the integral.

We assume that wy(-) is contractive for all A € A.

For each n € N, we generate a measure p(™) = Y, a?§), on A with
di(p,p™) < 1/n. To do this, cover A with finitely many disjoint sets
AT, each of diameter < 1/n and choose A € A?. Set

Pt = ZP(A?)%;-

For each f € Lip (A) we have |f(z) — f(A?")| < 1/n for all z € A}, thus
(integrating over X) we get dp (p,p™) < 1/n as claimed. By Theorem 2,
Bp(m) = fhp i the Monge-Kantorovich metric. Notice that if wy(-) were
just contractive on average, then one would have to choose the points

A7 more carefully in order to guarantee that 7),(») would be contractive.

Now, choose any zg € X. Then T;“(n) (02y) = ppem in the Monge-
Kantorovich metric as & — oo, and this convergence is uniform over
n because of the contractivity of wy(+). Thus, considered as a double
sequence, the sequence T:(n) (0z,) converges so the diagonal sequence
converges as well, see [2] for a nice discussion of double sequences. Thus

T;L(n) (0z4) = p so, for all continuous bounded f on X, we have

/X F(2) AT (620)) () — /X 1) dpip ().

For each n, T:(n) (04,) is a finite sum of point masses. Thus, we
approximate the integral in terms of finite sums.

If we wish to have error bounds on these approximations, we need
some further hypothesis on f and w. So, suppose that f € Lipys(X)
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and w(-,z) € Lipg(A) for each x € X. Then, for p,g € PM(A) and
fixed v € PM(X), we have

/X f(2) d(T, (v) — Ty(v))
-/ ( / f(wA(y))dV(y)>d(p(/\) )
- / H(\) d(p(N) — (V)
where (as before) ¢(X) = [ f(wa(y)) dv(y). For \, X' € A, we have
603 — (V)] < /X Fws®) — Flwx @) dv(y)
< KMd(\N).
Thus, ¢ € Lipgp(A). This means that

du (T (v), Ty(v)) < KM d(p, q).

Using this estimate we obtain the estimate

KM
dH(,Upa Nq) < EdH(p’ Q)

where s is the maximum of the contraction factors of 1}, and ¢;. This
gives us our desired estimate on the integrals. We have proved the
following theorem.

Theorem 4. if w(-,z) € Lipg (A) for each x € X and f € Lipp(X),
then

‘/ flx)d(pp — pg) < 1K—_MsdH(p,q)-
X
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