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ON THE K-THEORY OF C∗-ALGEBRAS
OF PRINCIPAL GROUPOIDS

IAN F. PUTNAM

ABSTRACT. We consider the K-theory of C∗-algebras
of principal r-discrete groupoids. We describe two basic
situations in which three groupoids are related; they can
very loosely be described as “factor groupoids” and “sub-
groupoids.” For each, we show that there is a six-term exact
sequence of associated K-groups. We present examples which
arise from dynamical systems and from problems in the study
of the orbit structure of topological systems. We also obtain
the usual Mayer-Vietoris sequence in topological K-theory as
a corollary.

1. Introduction. This paper is concerned with principal topological
groupoids, their C∗-algebras and the K-theory of such C∗-algebras.
For those not familiar with the terminology, principal groupoid is just a
fancy way of saying equivalence relation; our objects of study are certain
topological equivalence relations. We view these as objects in the
theory of topological dynamics. Indeed, most important examples arise
from well-known situations in topological dynamics, e.g., equivalence
classes are the orbits of a free action of a countable group acting as
homeomorphisms of a topological space or tail equivalence for a one-
sided shift of finite type [18].

To an equivalence relation, G (satisfying certain conditions), one can
construct a C∗-algebra, C∗

r (G), the reduced groupoid C∗-algebra, as
in [16]. An important tool in the study of C∗-algebras is K-theory.
To any C∗-algebra, A, one may associate a pair of abelian groups,
K0(A) and K1(A) [1]. The former also carries additional structure
in the form of a pre-order. Combining these two constructions, we
have a way of assigning to a topological equivalence relation, G, a pair
of abelian groups, K0(C∗

r (G)) and K1(C∗
r (G)). One can view this as

a kind of dynamical homology theory. It extends the usual notion
of topological K-theory in that, if one restricts to the case that the

Received by the editors on May 10, 1996, and in revised form on December 7,
1996.

Supported in part by an NSERC operating grant.

Copyright c©1998 Rocky Mountain Mathematics Consortium

1483



1484 I.F. PUTNAM

equivalence relation is equality, the result is the usual topological K-
theory of the underlying space. Of course, in specific situations, it is
desirable to have a purely dynamical interpretation of these invariants.

In the case that the equivalence classes are the orbits of a single
transformation, the K-theory was computed by Pimsner-Voiculescu
[13, 1]. In the particular case of a minimal homeomorphism of the
Cantor set, the K-theoretic invariants (including the order structure)
have been useful in classifying the system up to orbit equivalence [7].
The case of more general homeomorphisms of the Cantor set has also
been considered in [2, 3].

The present paper is concerned with some basic properties of this
dynamical homology theory. We describe two situations where a trio
of groupoids G, G′ and H are related in some specific way and then
describe the relation between their K-theories. These results are
given in Theorem 2.1 and Theorem 2.4, although the hypotheses are
described before the statements.

In spirit, these are much like the long exact sequence in homotopy
theory related to a fibration.

Let us describe the first situation which we refer to as factor
groupoids. Suppose X and Y are locally compact Hausdorff spaces
and we have two inclusions of Y in X with disjoint images. We can
then form the quotient space X ′ by identifying the two images. We sup-
pose that X ′ is again Hausdorff and that the quotient map is proper.
If we also suppose that X and Y carry equivalence relations G and H
and that the inclusions map each H-equivalence class bijectively to a
G-equivalence class, then X ′ naturally obtains an equivalence G′ which
we describe as a factor groupoid. In the case G, H and hence G′ are
equality, Theorem 2.1 (which relates the K-theories of X, Y and X ′)
can be obtained by standard topological methods. Our Theorem 2.1
can be viewed as an equivariant extension of this result.

The second situation is more essentially an equivalence relation phe-
nomenon (and hence probably more interesting). We refer to it as
the subgroupoid situation. We have two equivalence relations G′ ⊆ G
on the same space X. There are some strict conditions on the set-up
which imply, in particular, that each G-equivalence class is either equal
to a G′-equivalence class or is the union of two G′-equivalence classes.
(Moreover, in most interesting situations, the former will happen on
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a dense Gδ-set in X.) The third equivalence relation H is basically
that part of G where G and G′ differ. (This statement sweeps a lot
of topological difficulties under the rug for the moment.) Theorem 2.4
relates the K-theoretic invariants of G, G′ and H. In Example 2.5, we
show that the usual Mayer-Vietoris sequence for topological K-theory
can be obtained from Theorem 2.4 and a result of Kumjian. Another
motivation in the study of subgroupoids was [14] and [7] where vari-
ous AF -relations (see Appendix) were obtained as subequivalences of
relations associated with minimal homeomorphisms of the Cantor set.
This is described in Example 2.6.

There appears to be a duality between the factor groupoid situation
and the subgroupoid situation. In particular, Examples 2.3 and 2.7 look
reminiscent of the beginning of a Jones tower construction [8, 20].

In order to make our results as accessible as possible to readers in
dynamical systems, we try to describe the set-ups in the language of
equivalence relations as well as groupoids. Also we present examples
from familiar dynamical situations and an appendix which discusses
AF -equivalence relations. The remainder of this section describes basic
notions and notation. In Section 2 we present the statements of the
two main theorems and several examples of each. Finally, Section 3
contains the proofs of the main results. In both cases, the proof relies
critically on a result, a kind of excision theorem for C∗-algebra K-
theory, in [15]. In the proofs, it is of course necessary to use a lot
of C∗-algebra machinery including the theory of groupoid C∗-algebras,
K-theory and even the Kasparov KK-theory (which manages to creep
into the statements of the main results in Section 2, though in a minor
role).

If G ⊆ X × X is an equivalence relation, then G has the algebraic
structure of a groupoid [16]: a partially defined product

(x, y)(y′, z) = (x, z) if y = y′,

and an inverse (x, y)−1 = (y, x). The space of units [16], denoted G0,
is equal to {(x, x) | x ∈ X} which we denote by ∆ and which may
be identified with X in the obvious way. The range and source maps,
r, s : G→ G0 can then be identified with the two canonical projections
onto X. Such a groupoid is principal [16] and every principal groupoid
occurs in this way.
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Henceforth, we adopt the notation of [16]. The elements of G will be
denoted x and y, and their product is xy. As in [16], G2 denotes the
set of all composable pairs in G. Note that (x, y) is in G2 if and only
if r(y) = s(x). For sets A, B ⊆ G, we let

AB = {xy | x ∈ A, y ∈ B, (x, y) ∈ G2}.

All of our groupoids will have a topology as described in [16]. First,
we assume that G is locally compact, Hausdorff and second countable.
Secondly, we assume that G is r-discrete, i.e., G0 is open in G. Finally
we assume that counting measure is a Haar system for G. It follows
that the maps r, s : G→ G0 are local homeomorphisms. Conversely, for
an r-discrete groupoid it is easy to see that this condition implies that
counting measure is a Haar system. From a dynamical point of view,
this means that the equivalence relation G is made up of the graphs
of local homeomorphisms γ from X = G0 to itself; explicitly, γ =
r ◦s−1. Let us also mention that, for such groupoids, a straightforward
compactness argument shows that, for fixed x in G0 and K ⊆ G
compact, r−1{x} ∩K is finite. Hence, r−1{x} is countable.

We state for emphasis: throughout this paper, our groupoids will all
be second countable, locally compact, Hausdorff, principal r-discrete
groupoids with counting measure as Haar system.

Also note that locally compact and second countable imply σ-
compact.

Let us give a specific example. Let X be a locally compact Hausdorff
space and Γ be a countable (discrete) group acting freely on X by
homeomorphisms. Let G = X × Γ with the product and inverse

(x, γ)(x′, γ′) = (x, γγ′) if x′ = γ(x)
(x, γ)−1 = (γ(x), γ−1),

for x in X, γ in Γ. We give G the product topology. As an equivalence
relation, the equivalence classes are just the Γ-orbits.

For any locally compact, Hausdorff space X, we use Cc(X) and C0(X)
to denote the spaces of continuous complex-valued functions which
are compactly supported and vanish at infinity respectively. If X is
compact, we denote both by C(X).
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If G is a groupoid satisfying our conditions above, we regard Cc(G)
as a linear space and define a product and involution by

(fg)(x) =
∑
z∈G

r(z)=r(x)

f(z)g(z−1x)

(f∗)(x) = f(x−1),

for f, g in Cc(G) and x in G. We describe the regular representation
of Cc(G) as follows. Let l2(G) denote the (usually inseparable) Hilbert
space of square summable functions on G. For each f in Cc(G) we
define an operator λ(f) on l2(G) by

[λ(f)ξ](x) =
∑
z∈G

r(z)=r(x)

f(z)ξ(z−1x)

for ξ in l2(G) and x in X. The completion of λ(Cc(G)) in the operator
norm in B(l2(G)), the bounded linear operators on l2(G), is the reduced
C∗-algebra of G and is denoted C∗

r (G).

We refer the reader to [1] for a treatment of K-theory for C∗-algebras
and also KK-theory. We use [ , ] to denote the commutator; for a, b in
an algebra A, [a, b] = ab−ba. We use K(H) to denote the C∗-algebra of
compact operators on the Hilbert space H and Mn to denote the n×n
complex matrices. If A is any C∗-algebra and A′ is any C∗-subalgebra,
we let C(A′; A) denote the mapping cone of the inclusion A′ ⊆ A, that
is,

C(A′; A) = {f : [0, 1] −→ A | f continuous, f(0) = 0, f(1) ∈ A′}.
It is a C∗-algebra with pointwise product and ‖f‖ = sup ‖f(t)‖. For a
full discussion we refer the reader to [19, 15].

2. Statements of the results and examples. Here we state our
two main results and provide some examples of each. In each case we
begin with an account of the hypotheses in the language of equivalence
relations. The proofs of both results will be left until Section 3.

Situation 1. Factor groupoids. Suppose X and Y are spaces with
equivalence relations G and H, respectively. Suppose i0, i1 : Y → X
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are two continuous, injective maps with disjoint images. We assume
that, for j = 0, 1, ij maps each H-equivalence class in Y in a bijective
way to a G-equivalence class in X. (This is hypothesis (1) and the
statement that ij is a groupoid morphism which follow.)

We define X ′ to be the set X identifying i0(y) and i1(y) for all y in Y .
More precisely, let X ′ = (X − i0(Y )− i1(Y ))∪ Y . There is a canonical
projection map π : X → X ′, π(ij(y)) = y, y ∈ Y , j = 0, 1, and we
endow X ′ with the quotient topology. We must make the hypothesis
that X ′ is Hausdorff and that the map π is proper. Then X ′ is locally
compact and metrizable.

Now X ′ has a natural equivalence relation G′ because of our hypothe-
ses on i0, i1, i.e., G′ = π× π(G). To simplify notation, we let π denote
the natural map from G to G′. We give G′ the quotient topology. We
must verify that this makes G′ into a groupoid in the sense described
in Section 1 and that π : G→ G′ is proper.

Since π : G → G′ is continuous and proper, it induces an inclusion
of Cc(G′) in Cc(G). It is easy to verify that this is actually a ∗-
homomorphism between these algebras using the basic properties of
i0 and i1. We will show that it extends to a ∗-homomorphism α :
C∗

r (G′)→ C∗
r (G) which is also injective.

Let us give our hypotheses in a more precise way using the language
of groupoids. Suppose G and H are two groupoids satisfying the
conditions of Section 1 and i0, i1 are two continuous injective groupoid
morphisms from H to G with disjoint images. We also assume that

(1) for any x in G and j = 0, 1, the following are equivalent:

(i) x is in ij(H),

(ii) r(x) is in ij(H0)

(iii) s(x) is in ij(H0).

(2) The space,

G0
/
{i0(x) ∼ i1(x) | x ∈ H0}

with the quotient topology, is Hausdorff and the natural quotient map
from G0 is proper.
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Given this, we define

G′ = G
/
{i0(x) ∼ i1(x) | x ∈ H},

and let π : G→ G′ be the natural quotient map. In a natural way, G′

is a groupoid in the purely algebraic sense.

The main result for this situation is the following.

Theorem 2.1. For r-discrete principal groupoids H, G, G′ satisfying
the conditions of Section 1 and maps i0, i1 as in the “factor groupoid”
situation described above, there is a six-term exact sequence

K1(C∗
r (H)) � K0(C∗

r (G′)) �

α∗ K0(C∗
r (G))

�

[i0,i1]∗

K1(C∗
r (G))

�

[i0,i1]∗

K1(C∗
r (G′))� α∗ K0(C∗

r (H))�

where the maps [i0, i1]∗ are induced by a natural element [i0, i1] in
KK(C∗

r (G), C∗
r (H)) described in the proof.

Example 2.2. Let (X, d) be a compact metric space, and let Γ be a
countable group acting freely on X. Suppose x0 and x1 are points of
X such that, for any ε > 0, the set {γ ∈ Γ | d(γx0, γx1) ≥ ε} is finite.
Then the space X ′ obtained by identifying γx0 and γx1 for all γ in Γ,
is Hausdorff. Moreover, Γ acts on X ′ in a natural way.

To apply Theorem 2.1, let G = X × Γ as in Section 1. Let H0 = Γ
and H = Γ × Γ be the trivial equivalence relation. (Here Γ is given
the discrete topology.) The maps i0, i1 are given by ij(γ1, γ2) =
(γ1(xj), γ2γ

−1
1 ) from H to G, j = 0, 1. In this case C∗

r (H) ∼= K(l2(Γ)).
Hence, we have K0(C∗

r (H)) ∼= Z and K1(C∗
r (H)) = 0. In this situation

G′ = X ′ × Γ.

Example 2.3. This example refers to the following three Bratteli
diagrams.
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. . .

FIGURE B1.

1 5

5 1

5 1

1 2 3 4

1 2 3 4

2 3 4 5

2 3 4 5

FIGURE B2.
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. . .

. . .

FIGURE B3.

The number of sources in Vn, the nth vertex set in B3, is 2 ·5n−1 and
so the edges from sources in Vn are indexed by {1, 5}×{1, 2, 3, 4, 5}n−1,
for n ≥ 1.

Let G be the groupoid associated with B2, see Appendix. The
process of reading the edge labels defines a homeomorphism between
the unit space of G = X, i.e., the infinite path space of B2, and
the set {1, 5} × {1, 2, 3, 4, 5}n−1 with its usual product topology. For
convenience, we identify these two.

Let H be the groupoid associated with B3. The maps i0, i1 are
described as follows. If (en+1, en+2, . . . ) is a path in B3 starting at
some source in Vn, n ≥ 2, then to the edge en+1 we associate an el-
ement of {1, 5} × {1, 2, 3, 4, 5}n−1, say (f1, f2, . . . , fn). To the path
(en+2, en+3, . . . ), we read edge labels to associate to it a sequence
(fn+2, fn+3, . . . ) in

∏∞
n+2{2, 3, 4}. We define i0(en+1, en+2, . . . ) to be

(f1, f2, . . . , fn, 1, fn+2, fn+3, . . . ) in X. We also define i1(en+1, en+2, . . . )
to be (f1, f2, . . . , fn, 5, fn+2, fn+3, . . . ). To identify the quotient X/i0 ∼
i1 with the path space of B1, we proceed as follows. First we identify
the path space of B1 with {1, 2, 3, 4, 5}N. For x in {1, 5}×{1, 2, 3, 4, 5}N
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(= X) we define α(x) in {1, 2, 3, 4, 5}N by

α(x)n = xn+1 if xn+1 ∈ {2, 3, 4}
α(x)n = xk if xn+1 ∈ {1, 5},

where k is the largest integer less than or equal to n with xk ∈ {1, 5},
for n ≥ 1. That is, α leaves fixed the entries of x which are 2, 3 or 4
and shifts the 1 and 5 entries to the right. We leave it to the reader to
verify that α is a homeomorphism from X/i0 ∼ i1 to the path space of
B1 and identifies the two equivalence relations. That is, G′is identified
with the groupoid of diagram B1. In this case we have

K0(C∗
r (H)) ∼= Z

[
1
3

]

K0(C∗
r (G′)) ∼= Z

[
1
5

]

with usual orderings from R and

K1(C∗
r (H)) ≡ K1(C∗

r (G)) ∼= K1(C∗
r (G′)) ∼= 0.

Situation 2. Subgroupoids. We begin our discussion in a very heuristic
fashion. Let X be a space with an equivalence relation G. Our
second equivalence relation G′ will again be on the space X (unlike
Situation 1). In fact, it will be a subequivalence relation, i.e., G′ ⊆ G.
This should be so that each G-equivalence class is a G′-equivalence
class or is the union of two distinct G′-equivalence classes. In order
for this to happen in some sort of “topologically regular” fashion, we
proceed more precisely as follows.

Suppose we have L contained in G such that

(1) L is closed,

(2) r(L) ∩ s(L) is empty,

(3) G′ = G− L− L−1 is such that G′G′ ⊆ G′,

(4) LG′, G′L ⊆ L.

That is, G′ is obtained by removing L and L−1 from G so that for x in
L, r(x) and s(x) are in the same G-equivalence classes but distinct
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G′-equivalence classes. The simplest example is the following: let
X = {1, . . . , n}, G = X ×X and L = {(i, j) | 1 ≤ i ≤ k, k < j ≤ n}
for some fixed 1 ≤ k < n.

We then define
H0 = L−1L

H1 = LL−1

H ′ = H0 ∪H1

H = H ′ ∪ L ∪ L−1

which are all groupoids in the purely algebraic sense. In fact, H0, H1

and H are the reductions of G onto the sets s(L), r(L) and s(L)∪r(L),
respectively. It is important to note, however, at a topological level,
s(L) and r(L) may not be closed in G0 even though L is closed in G.

As suggested by the last remark, the relative topologies on H0, etc.,
are not necessarily so nice. However, we introduce a new topology on
each which is better. We give three (equivalent) descriptions of the
topology on H0.

(A) Regard the product in the groupoid as a map from G2∩(L−1×L)
onto H0. The domain is given the relative topology of G2, i.e., G×G,
and then H0 receives the quotient topology.

(B) Let {xn}∞1 be a sequence in H0. The sequence converges to x in
H0 if and only if there are sequences {yn} and {zn} in L converging to
y and z in G (and hence in L since it is closed) such that xn = y−1

n zn

for all n, and hence x = y−1z.

(C) Choose a sequence {Un} of open subsets of G whose union is G
and, for each n, Un is compact and contained in Un+1. For each n, let
H0,n = (Un ∩ L−1)(Un ∩ L) with the relative topology of G. Then H0,
which is the union of the H0,n, is given the inductive limit topology.

The set H1 is treated in a similar way, while H ′ is given the disjoint
union topology. Using the usual topology on L and L−1, H is given the
disjoint union topology. In Section 3, we will show that all of H0, H1, H

′

and H are groupoids with these topologies. It is also easy to see that
the inclusions of these in G are continuous.

Since G′ is an open subset of G, we have Cc(G′) included in Cc(G).
This is actually a ∗-homomorphism of algebras and the inclusion
extends to a ∗-homomorphism α : C∗

r (G′) → C∗
r (G). The main result

is then the following.
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Theorem 2.4. For r-discrete principal groupoids, H, G, G′ satisfying
the conditions of Section 1 and L as in the “subgroupoid” situation
described above, there is a six-term exact sequence

K0(C∗
r (H)) � K0(C∗

r (G′)) �

α∗ K0(C∗
r (G))

�

[L]∗

K1(C∗
r (G))

�

[L]∗

K1(C∗
r (G′))� α∗ K1(C∗

r (H))�

where the maps [L]∗ are induced by a natural element [L] in KK1(C∗
r (G),

C∗
r (H)) described in the proof.

Example 2.5. Let M be a compact metrizable space, and let U1

and U2 be two open subsets of M which cover M . For emphasis, we
let i1 and i2 denote the two inclusion maps of U1 and U2 in M . Also,
U1 .∪U2 = X denotes the disjoint union of U1 and U2. We define an
equivalence relation on U1 .∪U2 by

G ={(x, x) | x ∈ U1 .∪U2}
∪ {(x, y), (y, x) | x ∈ U1, y ∈ U2, i1(x) = i2(y)}

which is endowed with the relative topology of (U1
.∪U2) × (U1

.∪U2).
This groupoid was considered by Kumjian [9] who showed that C∗

r (G)
is strongly Morita equivalent to C(M) [17].

Let
L = {(x, y) | x ∈ U1, y ∈ U2, i1(x) = i2(y)}.

It is easy to verify that H0
∼= U1 ∩ U2

∼= H1, both with the cotrivial
groupoid structure, i.e., equivalence is equality. Moreover, we have

H ∼= (U1 ∩ U2)× ({1, 2} × {1, 2})

and G′ ∼= U1 .∪U2.

Therefore, we have

C∗
r (H) ∼= M2(C0(U1 ∩ U2))

C∗
r (G′) ∼= C0(U1 .∪U2)

∼= C0(U1)⊕ C0(U2),
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and
Ki(C∗

r (G)) ∼= Ki(C(M)),

by using Kumjian’s result for the last part. Then the sequence of
Theorem 2.4 becomes the Mayer-Vietoris sequence in K-theory for the
cover {U1, U2} of X.

Example 2.6. Let X be a compact metric space, and let φ be a
homeomorphism of X with no periodic orbits. Let G = X × Z be
the associated groupoid as in Section 1. Suppose that Y is a closed,
nonempty subset of X which meets each φ-orbit at most once. That
is, φn(Y ) ∩ Y is empty for n �= 0. Let Z+ and Z− denote {1, 2, 3, . . . }
and {0,−1,−2, . . . }, respectively. Define

L = {(φl(y), k) | y ∈ Y, l ∈ Z+, k + l ∈ Z−}.
In this example, the G-equivalence classes are the orbits of φ and such
a class is also a G′-equivalence class if it does not meet Y . For a φ-
orbit which meets Y , say at y, it is the union of two G′-equivalence
classes; namely, the forward φ-orbit of φ(y) and the backward φ-orbit
of y. The C∗-algebra of G is the crossed-product C(X) ×φ Z while
the C∗-algebra of G′ may also be described as the C∗-subalgebra of
C(X) ×φ Z generated by C(X) and uC0(X − Y ), see [14] for details.
The main result of [14] is that, when X is totally disconnected and φ
is minimal, G′ is an AF -equivalence relation.

In the general situation above, one can show that

H0
∼= Y × Z− × Z−

H1
∼= Y × Z+ × Z+

H ∼= Y × Z× Z,

i.e., cotrivial equivalence on Y , trivial equivalence on Z−,Z+ and Z,
respectively, so that we have

C∗
r (H) ∼= C(Y )⊗K(l2(Z)).

The exact sequence of Theorem 2.4, in the case of X totally discon-
nected and φ minimal, is then the same as that appearing in [14, 4.1].
Note that we have

K1(C∗
r (G′)) = 0
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since G′ is AF while

K0(C∗
r (H)) ∼= K0(C(Y )) ∼= C(Y,Z),

K1(C∗
r (H)) ∼= K1(C(Y )) = 0,

since Y is also totally disconnected in this case.

The result of Theorem 2.4, in conjunction with the Pimsner-Voiculescu
sequence [13, 1] will also give the exact sequence of [6]. (The results of
[6] are more general since the partial homeomorphism need not extend
to a homeomorphism.)

Example 2.7. We refer to the Bratteli diagrams B1, B2 and B3 of
Example 2.2. We let B4 be the diagram shown below:

FIGURE B4.

The C∗-algebra associated with B4 is ∗-isomorphic with the 2 × 2
matrices over the C∗-algebra associated with B1. Here we let G be the
groupoid associated with B4. As in Example 2.2, we identify the path
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space with {1, 5} × {1, 2, 3, 4, 5}N. Define

L = {(x, y) ∈ G | there exist K, M, N such that
xK = 1, xi ∈ {2, 3, 4}, i > K,

yM = 5, yi ∈ {2, 3, 4}, i > M,

and xi = yi for i > N}.
It is an easy exercise to see that L satisfies the appropriate hypotheses.
One can also identify G′ with the groupoid associated with B2 and H
with the groupoid of B3. We leave the details of this to the reader.

3. Proofs of the results. In both cases the proofs of the main
theorem follow from an application of the main result of [15]. However,
it still requires some work to see that hypotheses of [15] hold.

Before getting into the two specific situations, we will need the
following technical result.

Lemma 3.1. Let G and H be r-discrete principal groupoids satisfying
the conditions of Section 1, and let i be a groupoid morphism from H
to G which satisfies

(1) for x in G, the following are equivalent:

(i) x is in i(H),

(ii) r(x) is in i(H0),

(iii) s(x) is in i(H0);

(2) i is injective;

(3) i is continuous.

Let K be any compact set in H0. If {xn}n≥1 is a sequence and x is
any point in r−1(K), or s−1(K), then xn converges to x if and only if
i(xn) converges to i(x) in G. That is,

i : r−1(K) −→ i(r−1(K)) = r−1(i(K))

is a homeomorphism.

Proof. The “only if” statement follows from continuity of i. For the
“if” part, choose a compact neighborhood U of i(x) such that r is a
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homeomorphism from U to r(U), a neighborhood of r(i(x)) = i(r(x))
in G0. Choose a compact neighborhood V of x in H such that i(V ) ⊆ U
using the continuity of i and such that r | V is a homeomorphism. The
sequence r(xn) is in K and, since K is compact, it has an accumulation
point. Now if r(xn) converges to z in H, i(r(xn)) = r(i(xn)) converges
to i(z). Since i is injective, z = r(x). We conclude that r(xn) has at
most one accumulation point r(x) and r(xn) converges to r(x). So,
for sufficiently large n, r(xn) is in r(V ) so we may find yn in Y such
that r(xn) = r(yn). Since r|V is a homeomorphism and yn, x are
all in V , yn converges to x. Now consider i(y−1

n xn) = i(yn)−1i(xn)
which converges to i(x)−1i(x) which is in G0. Since G is r-discrete, we
must have i(y−1

n xn) in G0, for n large. Thus, i(yn) = i(xn) and hence
xn = yn for n large, since i is injective. Since yn converges to x in H,
we are done.

Situation 1. Factor groupoids. The first step is to check that
G′ satisfies the conditions of Section 1. That is, we must see that
G′ is Hausdorff and the natural maps r, s : G′ → X ′ are local
homeomorphisms. Both of these facts follow almost at once from the
facts that the quotient X ′ is Hausdorff and that in G and H the r, s
maps are local homeomorphisms. One also needs the first property of
i0, i1; that they map equivalence classes onto equivalence classes. We
leave the details to the reader.

For technical reasons we will need the following description of G. Fix
a sequence of open sets in H, H1, H2, H3, . . . , whose union is H and so
that, for each k, Hk is compact and contained in Hk+1. For each k, we
define

Gk = G/{i0(x) ∼ i1(x) | x ∈ H −Hk},
and we let πk : G → Gk, π′

k : Gk → G′ be the obvious quotient maps.
Then each Gk is locally compact and Hausdorff and G is the inverse
limit (in the category of locally compact spaces with proper, continuous
maps) of the system

G′ ←− G1 ←− G2 ←− · · · .

At the level of functions, we have

Cc(G′) ⊆ Cc(Gk) ⊆ Cc(G),
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and the union of the Cc(Gk) is dense in Cc(G) (in the inductive limit
topology: a sequence fn in Cc(G) converges to f if there is a compact
set K ⊆ G with supp (fn) ⊆ K for all n and fn → f uniformly.)

We now define representations of our groupoids and their C∗-algebras.
Let λ denote the regular representation of Cc(G) on l2(G). The
completion of λ(Cc(G)) is C∗

r (G). If we restrict λ to Cc(G′), we
obtain the regular representation of G′ except some irreducible factors
(corresponding to points of G′ where π is two-to-one) appear twice
as many times. We conclude that the λ(Cc(G′))− is ∗-isomorphic to
C∗

r (G′). (We will simply identify the two.)

We define a self-adjoint unitary z on l2(G) by

(zξ)(x) =

⎧⎨
⎩

ξ(i1(y)) if x = i0(y) for some y in H

ξ(i0(y)) if x = i1(y) for some y in H

ξ(x) otherwise,

for ξ in l2(G), x in X. Let us remark that every element of C∗
r (G′)

commutes with z (see Lemma 3.2), and later we will show that C∗
r (G′)

is exactly the commutant of z in C∗
r (G).

We define a representation of C∗
r (H) ⊕ C∗

r (H) on l2(G) as follows.
For h0, h1 in Cc(H), define, for ξ in l2(G)

(µ(h0 ⊕ h1)ξ)(ij(x)) =
∑

s(y)=s(x)
y∈H

hj(xy−1)ξ(ij(y))

for j = 0, 1, x in H,
(µ(h0 ⊕ h1)ξ)(x) = 0,

for x in G−i0(H)−i1(H). That is, µ is just the direct sum of the regular
representation of C∗

r (H) with itself and with the zero representation.
The closure, then, of µ(Cc(H)⊕ Cc(H)) is C∗

r (H)⊕ C∗
r (H).

Lemma 3.2. Suppose k ≥ 1, and let f be in Cc(Gk). Define
f̃ : H → C by

f̃(x) = f(πk ◦ i0(x))− f(πk ◦ i1(x)), x ∈ H.

Then f̃ is in Cc(H) and

zλ(f)z − λ(f) = µ(f̃ ⊕−f̃).



1500 I.F. PUTNAM

Proof. It is clear that f̃ is continuous. Moreover, the support
of f̃ is contained in Hk, which is compact. The final formula is a
straightforward computation which we omit.

Next we want to show that C∗
r (G) lies in the multiplier algebra of

C∗
r (H)⊕ C∗

r (H) [12]. This fact follows easily from the following.

Lemma 3.3. Let f be in Cc(G) and g0, g1 be in Cc(H). Define
h0, h1 : H → C by

hj(k) =
∑
y∈H

s(y)=s(x)

f(ij(xy−1))gj(y),

j = 0, 1, x in H. Then h0 and h1 are in Cc(H) and

λ(f)µ(g0 ⊕ g1) = µ(h0 ⊕ h1).

Proof. As noted in Section 1, the set {y | s(y) = s(x), gj(y) �= 0}
is finite for any x in H, so hj is well-defined, j = 0, 1. By observing
that the formula for hj is bilinear in f and g0⊕ g1, we may restrict our
attention to the case where supp (f) ⊆ K, supp (gj) ⊆ Kj , j = 0, 1,
where K, K0 and K1 are compact sets in G and H, respectively, where
r, s : K → G0, r, s : K0 → H0, r, s : K1 → H0 are all homeomorphisms
onto their images. In this case, the support of hj is contained in
i−1
0 (K)K0∪ i−1

1 (K)K1 in H. We must show that i−1
0 (K)K0 is compact

in H; the argument for the other set is the same. Suppose {xn} and
{yn} are sequences in i−1

0 (K) and K0, respectively, such that xnyn

is defined for all n. By compactness of K and K0, we may pass to
subsequences such that i0(xnk

) converges to z in K and ynk
converges

to y in K0. Since G2 is closed in G×G, zi0(y) is defined. By the first
hypothesis on i0, z is in the image of i0; say z = i0(x). By Lemma 3.1,
we conclude that xnk

converges to x in H. Therefore, xnk
ynk

converges
to xy in H and xy is in i−1

0 (K)K0. Hence, i−1
0 (K)K0 is compact and

so h0 is in Cc(H). (The continuity of h0 is clear.) The final formula is
an easy computation.

Let E = C∗
r (H) ⊕ C∗

r (H) be considered as a graded right Hilbert
module over C∗

r (H) in the usual way [1]. Lemma 2.3 asserts that
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the products defined there extend to define a ∗-homomorphism λ̄ :
C∗

r (G) → B(E). Let F be the natural grading operator on E.
Lemma 2.2 then implies that (E, λ̄, F ) determines an element of the
Kasparov group KK(C∗

r (G), C∗
r (H)) [1] which we denote by [i0, i1].

As described in [1, 23.1], this induces group homomorphisms

[i0, i1]∗ : Ki(C∗
r (G))→ Ki(C∗

r (H)).

To prove Theorem 2.1, we will use the main result of [15] which we
state now. We suppose that A and B are separable C∗-algebras acting
on the Hilbert space H. We suppose that z is a self-adjoint unitary
operator on H. We assume:

(1) for a in A, b in B, ab is in A; that is, B acts as multipliers of A,

(2) zAz = A,

(3) for b in B, zbz − b is in A.

We also assume that there is a continuous path {et}t≥1 in A satisfy-
ing:

(4) (i) 0 ≤ et ≤ es ≤ 1, for all t ≤ s,

(ii) eset = et, for all s ≥ t + 2,

(iii) for all a in A,

‖eta− a‖, ‖aet − a‖ −→ 0, t→∞,

(iv) [et, z] = 0, for all t ≥ 1.

We then define the C∗-algebras A′, B′ by

A′ = {a ∈ A | [a, z] = 0}
B′ = {b ∈ B | [b, z] = 0}.

We further assume that

(5) for all b in B, there is a b′ in B′ such that ‖b − b′‖ ≤ 2‖[b, z]‖;
that is, almost commuting with z implies nearly commuting with z.

(6) There is a dense ∗-subalgebra A in A such that, for any a in A
and t0 ≥ 1, there is a t ≥ t0 such that

(i) aes = a = esa, for s ≥ t,
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and, for any such t, there is a b in B such that

(ii) bes = a = esb, for t + 2 ≥ s ≥ t,

(iii) [b− a, z] = 0,

(iv) ‖b‖ ≤ ‖a‖.
Under these hypotheses, we have

Ki(C(B′; B)) ∼= Ki(C(A′; A)),

for i = 0, 1. We let

A = µ(Cc(H)⊕ Cc(H))− ∼= C∗
r (H)⊕ C∗

r (H),
B = λ(Cc(G))− ∼= C∗

r (G),
H = l2(G)

and z be as above. To define our approximate unit for A, we choose a
sequence of functions χn in Cc(H) such that

(i) supp (χn) ⊆ H0,

(ii) 0 ≤ χn ≤ χn+1 ≤ 1,

(iii) limn→∞ χn = 1 on H0 (pointwise).

For each n, we let en = µ(χn ⊕ χn) and, for n ≤ t ≤ n + 1, we let

et = (t− n)en+1 + (n + 1− t)en.

In hypothesis (6), we let A be µ(Cc(H) ⊕ Cc(H)). It is easy to see
that (1) follows from Lemma 3.3, (3) from Lemma 3.2 and (4) from the
construction of et. Also, for g0 and g1 in Cc(H), it is easily seen that

zµ(g0 ⊕ g1)z = µ(g1 ⊕ g0)

from which (2) follows.

Lemma 3.4. Let h0 and h1 be in Cc(H). There are positive integers
k and g in Cc(G) such that

(i) elµ(h0 ⊕ h1) = µ(h0 ⊕ h1) = µ(h0 ⊕ h1)el, for all l ≥ k
and, for all k ≤ l ≤ k + 2,
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(ii) λ(g)el = µ(h0 ⊕ h1),

(iii) [λ(g), el] = 0,

(iv) λ(g)(el − e2
l ) = 0,

(v) [λ(g)(1− el), z] = 0.

Proof. Since the supports of h0 and h1 are compact, they are
contained in some Hk. Also, choose k sufficiently large so that χk = 1
on the ranges and sources of the supports of h0 and h1. Property (i)
then follows by an easy computation. Let

K = r(Hk+3) ∪ s(Hk+3)

which is compact in H0. Then, as r and s are continuous,

X = i0(r−1(K) ∪ s−1(K)) ∪ i1(r−1(K) ∪ s−1(K))
= r−1(i0(K) ∪ i1(K)) ∪ s−1(i0(K) ∪ i1(K))

is closed in G and, by Lemma 3.1, the relative topology on X is the
same as that on r−1(K) ∪ s−1(K) in H. Let X ′ = πk(X) which is a
closed set in Gk. If we define g′ : X ′ → C by

g′(πk(ij(x))) = hj(x)

we see that g′ is well-defined since, if πk(i0(x)) = πk(i1(x)), then x is in
H−Hk and h0 and h1 are both supported in Hk. Also, the support of g′

is contained in πk(i0(Hk)∪ i1(Hk)) which is compact in X. Moreover,
since the relative topology of X is the same as that of r−1(K)∪s−1(K),
g′ is continuous. Let g be any element of Cc(Gk) such that g|X ′ = g′.
The proof that g satisfies (i) (v) is similar to the proof of Lemma 3.11.
We omit the details.

Lemma 3.5. Let h0 and h1 be in Cc(H). There is a positive integer
k and a b in C∗

r (G) such that

(i) elµ(h0 ⊕ h1) = µ(h0 ⊕ h1) = µ(h0 ⊕ h1)el, for all l ≥ k and, for
all k ≤ l ≤ k + 2,

(ii) bel = µ(h0 ⊕ h1)

(iii) [b, el] = 0
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(iv) b(el − e2
l ) = 0

(v) [b(1− el), z] = 0

(vi) ‖b‖ ≤ ‖µ(h0 ⊕ h1)‖.

Proof. Apply Lemma 3.4 to obtain k and g. Let δ = ‖µ(h0 ⊕ h1)‖
and define

ζ(t) =
{

1 0 ≤ t ≤ δ2

t−1/2δ δ2 ≤ t,

for t in [0,∞). Define b = λ(g)ζ(λ(g∗g)). Since, for k ≤ l ≤ k + 2, el

commutes with λ(g) and so does b. Moreover, we have

λ(g)ζ(λ(g∗g))el = λ(g)el = µ(h0 ⊕ h1).

The other properties are easily verified.

Lemma 3.6. For A and B as above, hypotheses (5) and (6) of [15]
hold.

Proof. First we consider (5). Let b be in B. If [b, z] = 0, then we let
b′ = b and we are done. Otherwise, find a positive integer n and f in
Cc(Gn) so that

‖λ(f)− b‖ ≤ 1
2
‖[b, z]‖.

Let f̃ be as in Lemma 3.2, and let h0 = f̃ and h1 = −f̃ be in Cc(H).
That is,

zλ(f)z − λ(f) = µ(h0 ⊕ h1).

Now let k and b0 be as in Lemma 3.5 for h0, h1. Let b′ = σ(f) + b0/2.
It is then routine to verify b′ satisfies the conclusion of (5). (See the
proof of Lemma 3.13.)

Hypothesis (6) follows immediately from Lemma 3.5.

There is one more issue; recall from [15] that

B′ = {b ∈ B | [b, z] = 0}.

We must check that B′ coincides with C∗
r (G′).
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Proposition 3.7. C∗
r (G′) ∼= B′.

Proof. As noted earlier, the map sending f in Cc(G′) to α(f) = π ◦ f
in Cc(G) is a ∗-homomorphism. Moreover, λ ◦ α is just the regular
representation of Cc(G′), with some summands appearing with doubled
multiplicity. By Lemma 3.2, λ ◦ α(Cc(G′)), and hence C∗

r (G′) is
contained in B′. We must show the reverse inclusion.

Let C denote the C∗-algebra generated by A and B. This contains
B′ and C∗

r (G′). Suppose there exists b0 in B′, not in C∗
r (G′). As in

Lemma 3.9 of [11], we may find a representation ρ of C on a Hilbert
space H and vectors ξ0, η0 in H such that

〈ρ(b0)ξ0, η0〉 �= 0
〈ρ(b′)ξ0, η0〉 = 0,

for all b′ in C∗
r (G′).

We apply the disintegration theorem, [16, Theorem 1.21], to the
restrictions of ρ to B and to A, the latter viewed as the groupoid
C∗-algebra of the disjoint union of two copies of H. Some caution is
needed since ρ|A may be degenerate. Let H0 denote the subspace of
H on which ρ(A) acts nondegenerately. Using the fact that B acts as
multipliers of A, it can easily be seen that H0 is ρ(B)-invariant. As
in [16], let (µ, K, L) and (µ0, K0, L0) be the representations of G and
H .∪H obtained from ρ|B and ρ|A onH0 via the disintegration theorem.
Define another representation of G by decomposing

G = (i0(H) .∪ i1(H)) ∪ (G− i0(H)− i1(H))

as Borel groupoids, using (µ0, K0, L0) on i0(H)∪ i1(H) and zero on its
complement. Denote the representation of B by (ρ′,H′); notice that
we may identify H′ with H0 in an obvious way. It is easy to check that,
for any b in B and a in A, we have

ρ(b)ρ(a) = ρ′(b)ρ(a),

from which we conclude ρ′ = ρ|B on H0. Therefore, we conclude
that the measures µ0 and µ|i0(H0) ∪ i1(H0) are equivalent and the
Hilbert bundles K0 and K|i0(H0)∪ i1(H0) are isomorphic by a bundle
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map intertwining the representations L0 and L | i0(H) ∪ i1(H). For
simplicity of notation, we assume that they are equal.

Returning to b0 in B′, let δ = |〈ρ(b0)ξ0, η0〉|. There exists an f in
Cc(G) such that ‖λ(f)− b0‖ < δ/4. In fact, we may assume that f in
Cc(Gk) for some k. Let f̃ be as in Lemma 3.2, so we have

‖µ(f̃ ⊕−f̃)‖ = ‖zλ(f)z − λ(f)‖ = ‖[z, λ(f)]‖ < δ/4

since [b0, z] = 0. Let Y denote the closure of i0(supp (f̃))∪ i1(supp (f̃))
which is compact in G. Define f0 on G by

f0(i0(x)) = f̃(x)

f0(i1(x)) = −f̃(x)
f0(y) = 0, y /∈ Y.

Note that f0 is a compactly supported Borel function on G. Choose a
continuous compactly supported function g on G such that g | Y = f0 |
Y . Now choose a sequence {hn}∞1 of continuous compactly supported
functions of G such that

(i) 0 ≤ hn ≤ hn−1 ≤ 1, for all n,

(ii) hn | Y = 1

(iii) hn → χY pointwise.

The pointwise product ghn is in Cc(G) and(
f − 1

2
ghn

)
(i0(x)) =

(
f − 1

2
g

)
(i0(x))

= f(i0(x))− 1
2
f̃(x)

=
1
2
f(i0(x)) +

1
2
f(i1(x))

=
(

f − 1
2
ghn

)
(i1(x))

so that f − ghn/2 is in α(Cc(G′)). We conclude that, for every n,

0 =
〈

ρ

(
f − 1

2
ghn

)
ξ0, ηn

〉

= 〈ρ(f)ξ0, η0〉 − 1
2
〈ρ(ghn)ξ0, η0〉.
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For the first term, we have

|〈ρ(f)ξ0, η0〉| ≥ ‖〈ρ(b0)ξ0, η0〉‖ − ‖b0 − λ(f)‖
≥ 3δ/4.

On the other hand, we compute

〈ρ(ghn)ξ0, η0〉 =
∫

G

g(x)hn(x)〈L(x)ξ0(s), (x), η0(r(x))〉 dµ(x)

since ρ is the integrated form of (µ, K, L). The integrand above is
in L1(G, µ), and we may apply the dominated convergence theorem
(|ghn| ≤ |gh1|) to conclude that

lim
n→∞ |〈ρ(ghn)ξ0, η0〉|

=
∣∣∣∣
∫

g

f0(x)〈L(x)ξ0(s(x)), η0(r(x))〉 dµ(x)
∣∣∣∣

=
∣∣∣∣
∫

i0(H)∪i1(H)

f0(x)〈L(x)ξ0(s(x)), η0(r(x))〉 dµ(x)
∣∣∣∣

= |〈ρ(f̃ ⊕−f̃))ξ0, η0〉|
≤ ‖µ(f̃ ⊕−f̃)‖ < δ/4.

Thus, we arrive at a contradiction and so we conclude B′ ⊆ C∗
r (G′) as

desired.

Proof of Theorem 2.1. We begin with the short exact sequence [19,
15],

0 −→ C0(0, 1)⊗B −→ C(B′; B) −→ B′ −→ 0

and obtain from it an associated six-term exact sequence of K-groups.
By Proposition 3.7, we have Ki(B′) ∼= Ki(C∗

r (G′)) and, more generally,
Ki(C0(0, 1) ⊗ B) ∼= Ki+1(B) ∼= Ki+1(C∗

r (G)). By the main result of
[15] (the excision theorem), we also have Ki(C(B′; B)) ∼= Ki(C(A′; A))
where

A ∼= C∗
r (H)⊕ C∗

r (H)

as before and
A′ = {a ∈ A | [a, z] = 0}

= {(a, a) | a ∈ C∗
r (H)}

∼= C∗
r (H).
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Now, using the short exact sequence for C(A′; A) analogous to the one
above for C(B′; B), its associated six-term sequence for K-groups and
the computation of A′ above, it can easily be shown that

Ki(C(A′; A)) ∼= Ki+1(C∗
r (H)).

This yields the exact sequence of Theorem 2.1; that the maps are as
claimed there follows from results in [19] and [1]. We leave the details
to the reader.

Situation 2. Subgroupoids. We begin by establishing some basic
properties of H0, H1, H

′, H.

Lemma 3.8. (i) L, L−1, H0 and H1 are pairwise disjoint.

(ii) H0, H1, H ′ and H are all groupoids and satisfy the conditions
of Section 1.

(iii) C∗
r (H ′) ∼= C∗

r (H0)⊕ C∗
r (H1).

(iv) Cc(L) may be completed to be a C∗
r (H0) − C∗

r (H1) equivalence
bimodule [17, 10].

(v) C∗
r (H0), C∗

r (H1) and C∗
r (H) are all strongly Morita equivalent

[17, 10].

Proof. (i) If w, x, y, z are all in L and w−1x = yz−1, then s(x) =
s(w−1x) = s(yz−1) = r(z) which contradicts hypothesis (1). By
definition, then, we have H0 ∩H1 = ∅. The other cases are similar.

(ii) An argument similar to that in part (i) shows that H0 = L−1L
is disjoint from L and L−1. Then

H1H1 = LL−1LL−1 ⊆ LG′L−1 ⊆ LL−1 = H1

and, in a similar way, H0H0 ⊆ H0 and so H0 and H1 are groupoids in
a purely algebraic sense. Similar arguments apply to H ′ and H.

It is easy to check that the products and inverse operations are
continuous. It is also easy to see each of these groupoids is r-discrete.
The product map π(x, y) = xy from G2 to G is a local homeomorphism
since G is r-discrete [16]. Therefore, by definition, the restriction of π
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to L−1×L∩G2 (which is closed in G2) to H0 is a local homeomorphism.
From this, it follows that H0 is locally compact and Hausdorff. Also,
the map φ(x, y) = (x, x−1) is a local homeomorphism from G2 to G2

and maps L−1 × L ∩G2 to itself. Moreover, the diagram,

G2

�

π

�

φ
G2

�

π

G �r G

commutes and so we conclude that the restriction of r to H0 is also
a local homeomorphism. Similarly, s is a local homeomorphism and
so H0 is a groupoid. The groupoids H1 and H ′ are treated similarly.
Since L is closed, H is locally compact, and since the map taking x in
L to (x, x−1) in G2 ∩L×L−1 is a local homeomorphism, r : L→ H is
again a local homeomorphism. Thus, H is a groupoid in the sense of
Section 1.

(iii) This is a direct result of the definition of H ′.

(iv), (v). These both follow easily from the results and techniques of
[10] and [17]. In fact, one can see that C∗

r (H0) and C∗
r (H1) are both

full corners in C∗
r (H).

We represent the algebra Cc(G) on the Hilbert space l2(G) via the
regular representation, which we denote by λ. We regard l2(H) as a
subspace of l2(G) and define a degenerate representation µ of Cc(H) on
l2(G) by setting µ to be the regular representation on l2(H) and zero
on the orthogonal complement. We also define the self-adjoint unitary
operator z on l2(G) by

(zξ)(x) =
{−ξ(x) if s(x) ∈ H1,

ξ(x) otherwise,

for ξ in l2(G), x in G. The completions of λ(Cc(G)) and µ(Cc(H)) are
C∗

r (G) and C∗
r (H), respectively.

Lemma 3.9. Let f be in Cc(G). Define f̃ : H → C by

f̃(x) =
{

0 if x is in H ′,
−f(x) if x is in L ∪ L−1.
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Then f̃ is in Cc(H) and

zλ(f)z − λ(f) = 2µ(f̃).

Proof. From the definitions of the topology on H, it is clear that f̃ is
in Cc(H). The last part follows by direct computation, which we leave
to the reader.

Lemma 3.10. Let f be in Cc(G), and let g be in Cc(H). Define
h : H → C by

h(x) =
∑
y∈H

s(y)=s(x)

f(xy−1)g(y), x ∈ H.

Then h is in Cc(H) and we have

λ(f)µ(g) = µ(h).

Proof. We first observe that h is well-defined; for a fixed x, the set

{y ∈ H | s(y) = s(x), g(y) �= 0}

is finite. It is clear that the formula above is bilinear in f and g and
therefore we may, using a partition of the supports of f and g, restrict to
the case supp (f) ⊆ K1, supp (g) ⊆ K2 where K1 and K2 are compact
and r, s : K1 → G0 and f, r : K2 → H0 are injective. Then we have
h(x) = 0 unless x is in K1K2. We claim that this set is compact in H.
Let {xn} and {yn} be sequences in K1 and K2, respectively, such that
r(yn) = s(xn), i.e., xnyn is a sequence in K1K2. Since K1 and K2 are
compact, we may pass to convergent subsequences {xnk

} and {ynk
}.

Now xnk
converges to x in G and ynk

converges to y in H (hence also
in G). Of course, x is in K1 and y is in K2 and r(y) = s(x) so xy is in
K1K2. Since s(xnk

) and s(x) are in H0, xnk
and x are in H. We apply

Lemma 3.1 with K = r(K2) to assert that xnk
also converges to x in

the topology of H. Then xnk
ynk

converges to xy in H. This establishes
the claim. Thus, the support of h is compact in H. Since the inclusion
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of H in G is continuous, and since f and g are continuous, h is also
continuous. The final formula is a straightforward computation which
we leave to the reader.

Let E = C∗
r (H) be considered as a trivially graded right C∗

r (H)-
module. It follows from Lemma 3.10 that the product defined there
extends to a ∗-homomorphism λ̄ : C∗

r (G) → B(E). Then Lemmas
3.9 and 3.10 and [1, 17.5.2] show that (E, λ̄, z) determines an element
of the Kasparov group KK1(C∗

r (G), C∗
r (H)), which we denote by [L].

This induces homomorphism

[L]∗ : Ki(C∗
r (G)) −→ Ki+1(C∗

r (H)),

see [1, 23.1].

To prove Theorem 2.4, we will again appeal to the main result of
[15]. We let A = µ(Cc(H))− ∼= C∗

r (H), B = λ(Cc(G))− ∼= C∗
r (G),

H = l2(G) and z be as above. Let χn be in Cc(H) as in the factor
groupoid situation; let en = µ(xn) and et = (t−n)en+1 + (n + 1− t)en.
As before, we let A = µ(Cc(H)).

Hypotheses (1) and (3) of [15] follow from Lemmas 3.10 and 3.9,
respectively. For any h in Cc(H), let

h′ =
{

h on H ′,
−h on L ∪ L−1.

It is easy to see that h′ is in Cc(H) and that zµ(h)z = µ(h′) from which
(2) follows. As before, (4) follows easily from the construction of {et}.

Lemma 3.11. Let h be in Cc(H). There is a positive integer k and
g in Cc(G) such that

(i) elµ(h) = µ(h) = µ(h)el for all l ≥ k,

(ii) λ(g)el = µ(h),

(iii) [λ(g), el] = 0,

(iv) λ(g)(el − e2
l ) = 0,

(v) [λ(g)(1− el), z] = 0.
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Proof. Choose k such that χk = 1 on the images of supp (h) under r
and s. Property (i) follows. Let K = supp (χk+3), and let

X = r−1(K) ∪ s−1(K) ∪ L ∪ L−1.

Since K is compact, (in H and hence in G), r and s are continuous
and L is closed, X is a closed set in G. Also note that X ⊇ supp (h).
Moreover, by Lemma 3.1, the relative topologies from G and H agree
on X. Therefore, we may find g in Cc(G) such that g | X = h | X.

Let k ≤ l ≤ k + 2. First we compute

(χlg)(x) = χl(r(x))g(x)
(gχl)(x) = χl(s(x))g(x),

for any X in H. (The second is using the product of Lemma 3.9 since
χl is in Cc(H) and g is in Cc(G). The first is defined analogously.) Note
then that (χlg)(x) = 0, unless r(x) is in supp (χl) ⊆ K, and hence x is
in X. So we have

(χlg)(x) = χl(r(x)) · h(x).

Again, if this is nonzero, then x is in the support of h, hence χl(r(x)) =
1. We have shown that, if (χlg)(x) is nonzero, then it equals h(x). A
similar argument shows that, if (g ·χl)(x) is nonzero, then it also equals
h(x). Moreover, it is clear that, if h(x) is nonzero, it equals (χlg)(x).
We conclude that χlg = gχl = h. Parts (ii), (iii) and (iv) follow at
once. As for (v), we have

z(λ(g)(1− el))z − λ(g)(1− el) = zλ(g)z − λ(g)− zµ(h)z + µ(h)
= µ(g̃)− µ(h′)
= µ(g̃ − h′),

where g̃ is as in Lemma 3.9 and h′ is as above. It is easy to see that
g̃ = h′, since g | L ∪ L−1 = h | L ∪ L−1.

Lemma 3.12. Let h be in Cc(H). There is a positive integer k and
a b in C∗

r (G) such that

(i) elµ(h) = µ(h) = µ(h)el, for all l ≥ k, and, for all k ≤ l ≤ k + 2,

(ii) bel = µ(h)
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(iii) [b, el] = 0

(iv) b(el − e2
l ) = 0

(v) [b(1− el), z] = 0

(vi) ‖b‖ ≤ ‖µ(h)‖.

Proof. The proof uses Lemma 3.11 and the same technique as in
Lemma 3.5. We omit the details.

Lemma 3.13. For A and B as above, hypotheses (5) and (6) of [15]
hold.

Proof. First, we consider (5). Let b be in B. If [b, z] = 0, then let
b′ = b and we are done. If not, find f in Cc(G) such that

‖λ(f)− b‖ ≤ 1
4
‖[b, z]‖.

Let f̃ be as in Lemma 3.9. Letting h = f̃ , apply Lemma 3.12 to obtain
b0 in B. Then we have

z(λ(f) + b0)z − (λ(f) + b0) = zλ(f)z − λ(f) + z[b0, z]
= 2µ(h) + z[µ(h), z]
= 0,

since zµ(h)z = −µ(h). So then we have b′ = λ(f) + b0 is in B′, and

‖b− b′‖ ≤ ‖b− λ(f)‖+ ‖b0‖ ≤ 1
4
‖[b, z‖+ ‖µ(h)‖

=
1
4
‖[b, z]‖+

1
2
‖[λ(f), z]‖

≤ 1
4
‖[b, z]‖+

1
2
‖[b, z]‖+ ‖λ(f)− b‖

≤ ‖[b, z]‖
using Lemmas 3.12 and 3.9.

Hypothesis (6) follows at once from Lemma 3.12.

Again, one issue is left to resolve, which is identifying A′ and B′.
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Proposition 3.14. (i) A′ = {a ∈ C∗
r (H) | [a, z] = 0} ∼= C∗

r (H ′).

(ii) B′ = {b ∈ C∗
r (G) | [b, z] = 0} ∼= C∗

r (G′).

Proof. (i) Consider h in Cc(H). Define

h̃(x) =
{

0 x in H ′

−h(x) x in L.

Then, from the definitions of the topologies on H, h̃ is also in Cc(H).
Moreover, a straightforward computation shows that zµ(h)z − µ(h) =
2µ(h̃). This immediately gives µ(Cc(H ′)) ⊆ A′. Next we claim that
the restriction of µ to Cc(H ′) is unitarily equivalent to the direct sum
of two copies of the regular representation of H ′. For any x in r(L),
say, we have

{y ∈ H | r(y) = x} = {y ∈ H ′ | r(y) = x}
.∪ z{y ∈ H ′ | r(y) = s(z)}

where z is chosen as any element of L with r(z) = x. If one repeats this
for each point x in H0 (suitably modified for x in s(L)), one obtains
a decomposition of H into H ′ ∪ γ(H ′), where γ is a map obtained by
piecing together the different multiplications by z above. This defines a
unitary operator between l2(H) and l2(H ′)⊕ l2(H ′). One then checks
directly that this intertwines µ | Cc(H ′) and the direct sum of the
regular representation of Cc(H ′) with itself. Therefore we conclude

C∗
r (H ′) ∼= µ(Cc(H ′))− ⊆ A′.

As for the reverse inclusion, suppose a is in C∗
r (H) and [a, z] = 0. Then

we may find {hn} a sequence in Cc(H) such that µ(hn) converges to a.
Thus [µ(hn), z] tends to zero. Consider h′

n = hn + h̃n. We have

zµ(h′
n)z − µ(h′

n) = (zµ(hn)z − µ(hn)) + (zµ(h̃n)z − µ(h̃n))

= 2µ(h̃n)− µ(h̃n)− µ(h̃n)
= 0,

so h′
n is in Cc(H ′). Moreover,

‖µ(h̃n)‖ =
1
2
‖[µ(hn), z]‖,
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which tends to zero, so µ(h′
n) converges to a. We conclude that a in

C∗
r (H ′).

(ii) The containment ⊇ follows from Lemma 3.9, and the observation
that λ | Cc(G′), is contained in the direct sum of two copies of the
regular representation of Cc(G′). The argument is similar to that in
(i). As for the reverse containment, we may regard B′ as a C0(G0)-
bimodule contained in C∗

r (G). Theorem 3.10 [11] characterizes such
bimodules. It is straightforward to calculate, in the notation of [11],
Q(B′) = G′ and hence C∗

r (G′) ∼= B′ by [11, 3.10].

Proof of Theorem 2.4. This is exactly the same as the proof of
Theorem 2.1 except in the computation of K∗(C(A′; A)). One again
uses the six-term exact sequence as in the proof of Theorem 2.1. Now
we note that

C∗
r (H ′) ∼= C∗

r (H0)⊕ C∗
r (H1).

By Lemma 3.8(v) and [17 (1,2)], the groups, for i = 0, 1,

Ki(C∗
r (H)), Ki(C∗

r (H0)), Ki(C∗
r (H1))

may be identified. Under these identifications the map induced by the
inclusion A′ in A sends (x, y) to x + y, for x, y in Ki(C∗

r (H)). (Recall
that C∗

r (H0) and C∗
r (H1) are full corners in C∗

r (H). It is then easy to
compute from the six-term exact sequence that

Ki(C(A′; A)) ∼= Ki(C∗
r (H)).

This then yields the exact sequence of Theorem 2.4 except for the mat-
ter that the maps [L]∗ are as claimed. As in the proof of Theorem 2.1,
we leave this calculation to the reader.

APPENDIX

AF -groupoids. A discussion of AF -groupoids (or AF -equivalence
relations) appears in [16]. This includes a description of their K-theory.
We present a version here which is based on the ideal of a Bratteli
diagram [4, 5].

A Bratteli diagram is an infinite graph consisting of a vertex set V
and a set of (directed) edges E. Moreover, both are decomposed as
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V0

V1

V2

E1

E2

DIAGRAM

countable unions
V = V0 ∪ V1 ∪ · · ·
E = E1 ∪ E2 ∪ · · ·

where each Vn and En are finite and nonempty. There are range and
source maps

r : En −→ Vn, s : En −→ Vn−1.

We sketch such a diagram vertically as shown above.

We require that there are no “sinks;” i.e., s−1{v} is nonempty for all
v in V .

Given such a diagram, we define a space X as follows. For each source
v in V , r−1{v} is empty, say v in Vn, we let

Xv = {(en+1, en+2, . . . ) | s(en+1) = v, s(ek+1) = r(ek), k > n}

which is given the relative topology of the product space
∏

k>n Ek and
is therefore compact, metrizable and totally disconnected. Now let X
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be the disjoint union of the Xv with the inductive limit topology. The
equivalence relation on X is tail equivalence or confinal equivalence;
two elements (em+1, em+2, . . . ), (fn+1, fn+2, . . . ) are equivalent if, for
some N , ek = fk for all k ≥ N . Let us be slightly more precise in order
to topologize the relation.

For each N = 1, 2, . . . , let

GN = {((em+1, em+2, . . . ), (fn+1, fn+2, . . . )) ∈ X ×X |
m, n ≤ N and ek = fk for all k > N}.

Give GN the relative topology of X×X. Notice that GN ⊆ GN+1 for all
N , and is an open subset. Let G be the union of the GN , N = 1, 2, . . . ,
and give G the inductive limit topology. Such a G is an AF -groupoid.

The C∗-algebra C∗(G) is an AF -algebra. First of all K1(C∗(G)) = 0.
To compute K0(C∗(G)), we let F(Vn) denote the free abelian group on
the nth vertex set. Let

F(Vn)+ =
{ ∑

v∈Vn

kvv | kn ≥ 0
}

.

For each n, we have a group homomorphism αn : F(Vn) → F(Vn+1)
given by

αn(v) =
∑

e∈En+1
s(e)=v

r(e).

Note that αn(F(Vn)+) ⊆ F(Vn+1)+. Then K0(C∗(G)) is the inductive
limit in the category of ordered abelian groups of the system

F(V0) �α0
F(V1) �α1

F(V2) � · · · .

Acknowledgment. I am grateful to Iain Raeburn for suggesting
Example 2.5 to me.
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