SOME REMARKABLE CONGRUENCES ON COMPLETELY REGULAR SEMIGROUPS

MARIO PETRICH

Abstract

We express a completely regular semigroup S as $\left(Y ; S_{\alpha}\right)$, that is, a semilattice of completely simple semigroups. For each pair $\alpha>\beta$, we consider the congruence $\kappa_{\alpha, \beta}$ on S generated by the set of pairs (a, b) where $a \in S_{\alpha}$, $b \in S_{\beta}$ and $a>b$. These congruences play an important role in finding conditions which ensure that the kernel relation K on the congruence lattice of S be a congruence. In particular, the meet and the join of these congruences provide interesting congruences in this context. Another class of congruences, constructed as follows, occurs naturally in this study. Given a congruence ρ on S and ideals $I \subseteq J$ of S, we generalize the Rees congruence relative to I by constructing a congruence which involves ρ, I and J; here ρ must saturate I and I or J may be empty.

1. Introduction and summary. The consideration of necessary and sufficient conditions on a completely regular semigroup S in order that the kernel relation K on the congruence lattice $\mathcal{C}(S)$ be a congruence in [5] gives rise to the following class of congruences. We write $S=\left(Y ; S_{\alpha}\right)$ thereby indicating that S is a semilattice Y of completely simple semigroups S_{α}. For each pair $\alpha, \beta \in Y$ such that $\alpha>\beta$, let $\kappa_{\alpha, \beta}$ be the congruence on S generated by the pairs (a, b) such that $a \in S_{\alpha}, b \in S_{\beta}, a>b$. These congruences play a crucial role in the above evoked study. Besides the conditions on S which ensure that K be a congruence, it is of interest to find some lattices Λ of congruences on an arbitrary completely regular semigroup S with the property that $\left.K\right|_{\Lambda}$ is a congruence.

Section 2 contains the minimum of necessary preliminaries. We establish in Section 3 that K restricted to the filter of $\mathcal{C}(S)$ generated by the join of congruences $\kappa_{\alpha, \beta}$ is a congruence and the corresponding

[^0]quotient is a modular lattice. The main result in Section 4 asserts that, when Y has at least three elements and the restriction of K to the filter generated by the intersection of congruences $\kappa_{\alpha, \beta}$ is a congruence, then K is a congruence on all of $\mathcal{C}(S)$. Several other results in the section supplement this statement. Section 5 has a different flavor. We introduce a generalization of Rees congruences by involving two ideals of S and a congruence on S. For a fixed congruence, this produces a lattice of congruences on S with several interesting properties.
2. Preliminaries. Throughout the paper we fix an arbitrary completely regular semigroup S. When the need arises, we assume implicitly that $S=\left(Y ; S_{\alpha}\right)$, that is, S is a semilattice Y of completely simple semigroups S_{α}. For $a \in S$, we denote by a^{0} the identity of the maximal subgroup of S containing a. The set of idempotents of S is denoted by $E(S)$. The natural partial order on S is given by
$$
a \leq b \quad \Longleftrightarrow \quad a=e b=b f \quad \text { for some } \quad e, f \in E(S)
$$

The lattice of all congruences on S is denoted by $\mathcal{C}(S)$. Its greatest and least elements are denoted by ω and ε, respectively. We shall also use the latter notation for the universal and equality relations on any set. A set A saturates a congruence ρ if A is the union of some ρ-classes. For $\rho \in \mathcal{C}(S)$,

$$
\operatorname{ker} \rho=\{a \in S \mid a \rho e \text { for some } e \in E(S)\}
$$

is the kernel of ρ. The kernel relation K on $\mathcal{C}(S)$ is given by

$$
\lambda K \rho \quad \Longleftrightarrow \quad \operatorname{ker} \lambda=\operatorname{ker} \rho \quad(\lambda, \rho \in \mathcal{C}(S))
$$

In a lattice L, for $\alpha \in L$ let $[\alpha)=\{\beta \in L \mid \beta \geq \alpha\}$, the filter of L generated by α. For any sets A and $B, A \backslash B=\{a \in A \mid a \notin B\}$. The cardinality of a set X is denoted by $|X|$.

If I is an ideal of a semigroup T, then T is an (ideal) extension of I by the quotient semigroup T / I. If also there exists a retraction ψ of T onto I, then T is a retract extension of I determined by the partial homomorphism $\left.\psi\right|_{T \backslash I}$. If T has an identity, we write $T=T^{1}$; otherwise, T^{1} is the semigroup T with an identity adjoined.
3. The join of congruences $\kappa_{\alpha, \beta}$. For $S=\left(Y ; S_{\alpha}\right)$ and $\alpha>\beta$, we define $\kappa_{\alpha, \beta}$ as the congruence generated by the set

$$
\left\{(a, b) \mid a \in S_{\alpha}, b \in S_{\beta}, a>b\right\}
$$

That this set is not empty is guaranteed by [4, Lemma 2.1(ii)].
We establish here some simple properties of the join of all congruences $\kappa_{\alpha, \beta}$; in the next section we shall consider their meet.

Proposition 3.1. The relation $\theta=\vee_{\alpha>\beta} \kappa_{\alpha, \beta}$ is the least completely simple congruence on S. Let $K^{\prime}=\left.K\right|_{[\theta]}$. Then K^{\prime} is a congruence and $[\theta) / K^{\prime}$ is a modular lattice.

Proof. That θ is the least completely simple congruence on S follows from: [6, Lemma 6.4], [2, Notation 4.8] and [3, Lemma 3].

It is well known that the mapping

$$
\rho \longrightarrow \rho / \theta \quad(\rho \in[\theta))
$$

is an isomorphism of $[\theta)$ onto $\mathcal{C}(S / \theta)$. By [5, Lemma $7.5($ ii $)]$, we have

$$
\begin{equation*}
\lambda K \rho \quad \Longleftrightarrow \quad \lambda / \theta K \rho / \theta \quad(\lambda, \rho \in[\theta)) \tag{1}
\end{equation*}
$$

Let $\lambda, \rho, \sigma \in[\theta)$ with $\lambda K \rho$. By (1), we have $\lambda / \theta K \rho / \theta$ which, by [5, Theorem 5.1], yields $\lambda / \theta \vee \sigma / \theta K \rho / \theta \vee \sigma / \theta$ since S / θ is completely simple. Hence $(\lambda \vee \sigma) / \theta K(\rho \vee \sigma) / \theta$ which by (1) gives $\lambda \vee \sigma K \rho \vee \sigma$. Therefore K^{\prime} is a congruence. It also follows from (1) that $[\theta) / K^{\prime} \cong$ $\mathcal{C}(S / \theta) / K$ which, by [5, Corollary 5.2], finally gives that $[\theta) / K^{\prime}$ is a modular lattice.

In order to ensure that the above proposition is not vacuous, that is, that $\theta \neq \omega$ may occur, we prove the following simple statement.

Lemma 3.2. Let S be a retract extension of a completely simple semigroup S_{0} by a completely simple semigroup S_{1} with a zero adjoined determined by a homomorphism $\varphi: S_{1} \rightarrow S_{0}$. Then $\theta=\omega$ for S if and only if S_{0} is trivial.

Proof. First note that $\theta=\kappa_{1,0}$ if we consider S as a semilattice of semigroups S_{0} and S_{1}. The corresponding retraction $\psi: S \rightarrow S_{0}$ is given by: $\psi\left|S_{0}=\iota_{S_{0}}, \psi\right|_{S_{1}}=\varphi$. Let $a, b \in S_{0}$ be such that $a \theta b$. Then there exists a sequence

$$
a=x_{1} u y_{1}, \quad x_{1} v_{1} y_{1}=x_{2} u_{2} y_{2}, \quad \cdots \quad x_{n} v_{n} y_{n}=b
$$

for some $x_{i}, y_{i} \in S^{1}$ and $u_{i}, v_{i} \in S$ such that either $u_{i} \leq v_{i}$ or $v_{i} \leq u_{i}$, $i=1,2, \ldots, n$. Hence

$$
a=x_{1}\left(u_{1} \psi\right) y_{1}, \quad x_{1}\left(v_{1} \psi\right) y_{1}=x_{2}\left(u_{2} \psi\right) y_{2}, \quad \cdots \quad x_{n}\left(v_{n} \psi\right) y_{n}=b
$$

and since $u_{i} \psi=v_{i} \psi$ for $i=1,2, \ldots, n$, we get $a=b$. Therefore $\left.\theta\right|_{S_{0}}=\varepsilon$. It follows that, if $\theta=\omega$, we must have S_{0} trivial.

Conversely, assume that S_{0} is trivial. Then φ is a constant map so that the induced congruence $\bar{\varphi}$ equals ω on S_{1}. By [6, Lemma 5.4], $\left.\theta\right|_{S_{1}}=\bar{\varphi}$ and thus $\left.\theta\right|_{S_{1}}=\omega$. Since then any element of S_{1} is θ-related to the single element in S_{0}, it follows that $\theta=\omega$.
4. The meet of congruences $\kappa_{\alpha \beta}$. Besides the notation $\kappa_{\alpha, \beta}$ introduced in the preceding section, for $\alpha>\beta$ in Y, we let $\zeta_{\alpha, \beta}$ be the congruence on Y generated by the singleton $\{(\alpha, \beta)\}$. We also let

$$
\kappa=\bigwedge_{\alpha>\beta} \kappa_{\alpha, \beta}, \quad \zeta=\bigwedge_{\alpha>\beta} \zeta_{\alpha, \beta}
$$

For the main result of this section, we shall need the following simple statement of independent interest.

Lemma 4.1. Let Y be a semilattice with at least three elements. Then $\zeta=\varepsilon$.

Proof. Let $\alpha, \beta, \gamma \in Y$ be such that $\alpha>\beta, \gamma \neq \alpha$ and $\gamma \neq \beta$. Then exactly one of the following occurs: $\alpha>\gamma, \alpha<\gamma$ or α and γ are incomparable; the same type of situation occurs with β versus γ. Now,
pairing these cases, we arrive at the following possibilities:

Let θ be the congruence on Y with classes $[\alpha)$ and $Y \backslash[\alpha)$. Then α and β are not θ-related. By the cases enunciated above, we have

1. $\zeta_{\beta, \gamma} \subseteq \theta$;
2. $\zeta_{\gamma, \beta} \subseteq \theta$;
3. $\zeta_{\beta, \beta \gamma} \subseteq \theta$;
4. $\zeta_{\gamma, \alpha} \subseteq \theta ;$
5. $\zeta_{\gamma, \beta} \subseteq \theta ;$
6. $\zeta_{\gamma, \beta \gamma} \subseteq \theta$.

Since α and β are not θ-related, this shows that in all cases there exists $\zeta_{\delta, \eta}$ such that α and β are not $\zeta_{\delta, \eta}$-related. It follows that α and β are not ζ-related.

Now let $\alpha, \beta \in Y$ with $\alpha \neq \beta$. If they are comparable, by the above, they are not ζ-related. If they are not comparable, then $\alpha>\alpha \beta$ and thus α and $\alpha \beta$ are not ζ-related. But this obviously implies that also α and β are not ζ-related. Therefore $\zeta=\varepsilon$. \quad व

Theorem 4.2. Let $S=\left(Y ; S_{\alpha}\right)$ be a completely regular semigroup and Y have at least three elements. Assume that K restricted to $[\kappa)$ is a congruence. Then K is a congruence on all of $\mathcal{C}(S)$.

Proof. According to [5, Theorem 5.1], it suffices to show that, for any $\alpha>\beta$ in Y, we have $S_{\alpha} \subseteq \operatorname{ker} \kappa_{\alpha, \beta}$. We represent $\kappa_{\alpha, \beta}$ by means of its congruence aggregate as in [4], to wit $\kappa_{\alpha, b} \sim\left(\zeta_{\alpha, \beta} ; \eta_{\gamma}\right)$ in view of [5, Lemma 4.4] which asserts that $\kappa_{\alpha, \beta}$ induces on Y the congruence $\zeta_{\alpha, \beta}$ for some $\eta_{\gamma} \in \mathcal{C}\left(S_{\gamma}\right)$ for each $\gamma \in Y$. By [4, Corollary 5.5(i)], the mapping $\kappa_{\alpha, \beta} \rightarrow \zeta_{\alpha, \beta}$ is a complete homomorphism. Since κ has its congruence aggregate of the form $\wedge_{\alpha>\beta}\left(\zeta_{\alpha, \beta} ;\right)$, it follows that $\kappa \sim(\zeta ;)$. But Lemma 4.1 gives that $\zeta=\varepsilon$. Therefore $\kappa \subseteq \mathcal{D}$.
Now fix $\alpha>\beta$, and let $\rho=\kappa_{\alpha, \beta} \wedge \mathcal{D}$. Then

$$
\operatorname{ker} \kappa_{\alpha, \beta}=\operatorname{ker} \kappa_{\alpha, \beta} \cap \operatorname{ker} \mathcal{D}=\operatorname{ker}\left(\kappa_{\alpha, \beta} \wedge \mathcal{D}\right)=\operatorname{ker} \rho
$$

and, by the preceding paragraph, we have $\kappa \subseteq \rho$. Define a relation λ on S by

$$
\begin{gathered}
x \lambda y \quad \Longleftrightarrow \quad x, y \in S_{\gamma} \\
\text { for some } \gamma \in Y \quad \text { and } \quad x \kappa_{\alpha, \beta} y \text { if } \gamma \not \leq \beta .
\end{gathered}
$$

Clearly λ is an equivalence relation. Let $x \lambda y$ with $x, y \in S_{\gamma}$ and $a \in S_{\delta}$. If $\gamma \delta \leq \beta$, then $x a \mathcal{D} y a$ implies that $x a \lambda y a$. If $\gamma \delta \not \leq \beta$, then $\gamma \not \leq \beta$, and thus $x \kappa_{\alpha, \beta} y$ which implies that $x a \kappa_{\alpha, \beta} y a$ which, together with $x a \mathcal{D} y a$ yields $x a \lambda y a$. Similarly $a x \lambda a y$ in all cases. Therefore $\lambda \in \mathcal{C}(S)$ and, in fact, $\kappa \subseteq \rho \subseteq \lambda$. Since $\kappa_{\alpha, \beta} K \rho$, the hypothesis implies that $\kappa_{\alpha, \beta} \vee \lambda K \rho \vee \lambda$.

Let $a \in S_{\alpha}$. By [4, Lemma 2.1(ii)], there exists $b \in S_{\beta}$ such that $a>b$. Hence $a \kappa_{\alpha, \beta} b$. Also $b \lambda e$ for any $e \in E\left(S_{\beta}\right)$ and thus $a \kappa_{\alpha, \beta} b \lambda e$ whence $a \in \operatorname{ker}\left(\kappa_{\alpha, \beta} \vee \lambda\right)=\operatorname{ker}(\rho \vee \lambda)$. Hence there exists a sequence

$$
a \rho x_{1} \lambda x_{2} \rho \cdots x_{n} \lambda a^{0}
$$

for some $x_{1}, x_{2}, \ldots, x_{n} \in S$. Since both ρ and λ are under \mathcal{D}, we must have $x_{1}, x_{2}, \cdots x_{n} \in S_{\alpha}$. But then $a \kappa_{\alpha, \beta} x_{1}, x_{1} \kappa_{\alpha, \beta} x_{2}, \ldots$ by the definitions of ρ and λ, which yields $a \kappa_{\alpha, \beta} a^{0}$ so that $a \in \operatorname{ker} \kappa_{\alpha, \beta}$. We have proved that $S_{\alpha} \subseteq \operatorname{ker} \kappa_{\alpha, \beta}$, as required.

Theorem 4.2 does not extend to the case when Y has only two elements.

Example 4.3. Let $S=Y_{2} \times Z_{2}$ where $Y_{2}=\{0,1\}$ and $Z_{2}=Z /(2)$. Then $=\mathcal{C}(Y)$ has the form

where $\sigma=\kappa_{\alpha, \beta}$ with $S_{\alpha}=\{1\} \times Z_{2}, S_{\beta}=\{0\} \times Z_{2}$ and ρ is the Rees congruence. Then $\left[\kappa_{\alpha, \beta}, \omega\right]=\{\sigma, \omega\}$ and $\left.K\right|_{\{\sigma, \omega\}}=\varepsilon$ so it is a congruence. But K is not a congruence.

Theorem 4.2 is vacuous for $|Y|=1$, for $\kappa_{\alpha, \beta}$ is not defined and K is a congruence. In general, $\kappa=\wedge_{\alpha>\beta} \kappa_{\alpha, \beta}$ is different from the equality relation as we shall see below.

A completely regular semigroup which is a chain Y of completely simple semigroups S_{α} in which every element acts as the zero of any element in a higher completely simple component is called the mutually annihilating sum (of semigroups $S_{\alpha}, \alpha \in Y$), see [1].

Lemma 4.4. Let S be a mutually annihilating sum of completely simple semigroups. Then K is a congruence for S.

Proof. Let $a \in S_{\alpha}$ and $b \in S_{\beta}$ where $\alpha>\beta$. We have, by hypothesis, that $b=a b=b a$ whence $b^{0}=a b^{0}=b^{0} a$ so that $a>b^{0}$. It follows, by [4, Lemma 2.1(iv)], that $a \kappa_{\alpha, \beta} b^{0}$ and thus $a \in \operatorname{ker} \kappa_{\alpha, \beta}$. By [5, Theorem 5.1], we conclude that K is a congruence for S.

We exhibit in the following example that, in a completely simple semigroup S for which K is a congruence, $\kappa=\wedge_{\alpha>\beta} \kappa_{\alpha, \beta}$ need not be the equality relation.

Lemma 4.5. Let S be a mutually annihilating sum of the completely simple semigroups S_{α}, S_{β} and S_{γ} where $\alpha>\beta>\gamma$. Then $\kappa \subseteq \mathcal{D}$, $\left.\kappa\right|_{S_{\alpha}}=\varepsilon,\left.\kappa\right|_{S_{\beta}}$ is a group congruence and $\left.\kappa\right|_{S_{\gamma}}=\varepsilon$.

Proof. We have seen in the proof of Theorem 4.2 that $\kappa \subseteq \mathcal{D}$. The following verification will take care of the remaining assertions of the lemma.

1. For any $a \in S_{\alpha}$ and $e \in E\left(S_{\beta}\right)$, we have $e<a$ which, by [4, Lemma 2.1(iv)], implies that $e \kappa_{\alpha, \beta} a$ so that $a \in \operatorname{ker} \kappa_{\alpha, \beta}$. Therefore $\left.\kappa_{\alpha, \beta}\right|_{S_{\alpha}}=\omega$. The same type of argument shows that $e \kappa_{\alpha, \beta} f$ for any $e, f \in E\left(S_{\beta}\right)$ so that $\left.\kappa_{\alpha, \beta}\right|_{S_{\beta}}$ is a group congruence. Next let $a, b \in S_{\gamma}$
be such that $a \kappa_{\alpha, \beta} b$. Then there exists a sequence

$$
\begin{equation*}
a=x_{1} u_{1} y_{1}, \quad x_{1} v_{1} y_{1}=x_{2} u_{2} y_{2}, \quad \cdots \quad x_{n} v_{n} y_{n}=b \tag{2}
\end{equation*}
$$

for some $x_{i}, y_{i} \in S^{1}, u_{i}, v_{i} \in S$ such that either $u_{i} \in S_{\alpha}, v_{i} \in S_{\beta}$ or $u_{i} \in S_{\beta}, v_{i} \in S_{\alpha}$ for $i=1,2, \ldots, n$. Since $a \in S_{\gamma}$ and $u_{1} \in S_{\alpha} \cup S_{\beta}$, we must have either $x_{1} \in S_{\gamma}$ or $y_{1} \in S_{\gamma}$. This implies that $x_{1} v_{1} y_{1} \in S_{\gamma}$ and thus, either $x_{2} \in S_{\gamma}$ or $y_{2} \in S_{\gamma}$. Continuing this reasoning, we conclude, from the peculiarity of the multiplication in S, that

$$
a=x_{1} y_{1}, \quad x_{1} y_{1}=x_{2} y_{2}, \quad \cdots \quad x_{n} y_{n}=b
$$

so that $a=b$. Therefore $\left.\kappa_{\alpha, \beta}\right|_{S_{\gamma}}=\varepsilon$.
2. Next $\left.\kappa_{\beta, \gamma}\right|_{S_{\alpha}}=\varepsilon$ since the system of equations (2) with $x_{i}, y_{i} \in S^{1}$ and $u_{i}, v_{i} \in S_{\alpha} \cup S_{\beta}$ cannot hold if $a, b \in S_{\gamma}$. Similar reasoning as the one above shows that $\left.\kappa_{\beta, \gamma}\right|_{S_{\beta}}=\omega$ and that $\left.\kappa_{\beta, \gamma}\right|_{S_{\gamma}}$ is a group congruence.
3. Again $\left.\kappa_{\alpha, \gamma}\right|_{S_{\alpha}}=\omega$ and $\left.\kappa_{\alpha, \gamma}\right|_{S_{\gamma}}$ is a group congruence similarly as above. Let $a, b \in S_{\beta}$. For any $u \in S_{\alpha}$ and $v \in S_{\gamma}$, we have $u>v$, $a=a u, a v=b v, b u=b$ so that $a \kappa_{\alpha, \gamma} b$. Therefore $\left.\kappa_{\alpha, \gamma}\right|_{S_{\beta}}=\omega$.
The desired conclusions now follow from the definition of κ, namely, $\kappa=\kappa_{\alpha, \beta} \wedge \kappa_{\beta, \gamma} \wedge \kappa_{\alpha, \gamma}$.
5. A generalization of Rees congruence. Again S denotes an arbitrary completely regular semigroup. Let \mathcal{I} be the set of all ideals of S together with the empty set ordered by inclusion.

Let $\rho \in \mathcal{C}(S)$. For $I \in \mathcal{I}$, let

$$
I_{\rho}=\{a \in S \mid a \rho b \text { for some } b \in I\}
$$

be the saturation of I by ρ. For $I, J \in \mathcal{I}$ such that $I \rho=I \subseteq J$, define a relation $\rho_{I, J}$ on S by

$$
a \rho_{I, J} b \Longleftrightarrow \begin{cases}\text { either } & a=b \notin J \\ \text { or } & a, b \in J \backslash I, a \rho b \\ \text { or } & a, b \in I .\end{cases}
$$

It follows without difficulty that $\rho_{I, J} \in \mathcal{C}(S)$. In particular, for any ideal I of S which saturates ρ, we have that $\rho_{I, I}$ is the Rees congruence on S relative to I.

In the representation $\rho_{I, J}$ none of the ingredients ρ, I and J need be unique. We are interested in all congruences of this form for a fixed ρ. For $\rho \in \mathcal{C}(S)$, let

$$
\Gamma_{\rho}=\left\{\rho_{I, J} \mid I, J \in \mathcal{I}, I=I \rho \subseteq J\right\}
$$

The next proposition and its corollary determine the level of uniqueness of the parameters I and J in $\rho_{I, J}$.

Proposition 5.1. For $\rho_{I, J}, \rho_{K, L} \in \Gamma_{\rho}$, we have

$$
\begin{aligned}
\rho_{I, J} & \left.\subseteq \rho_{K, L} \quad \Longleftrightarrow \quad \rho\right|_{J \backslash L}=\varepsilon, \quad(J \backslash L) \rho \cap J=J \backslash L \\
& I \subseteq L \quad \text { if }|I|>1, \quad I=x \rho \quad \text { for some } x \in S \\
I & \subseteq K \quad \text { if }|I|>1, \quad I \neq x \rho \quad \text { for all } x \in S
\end{aligned}
$$

Proof. Necessity. Let $a, b \in J \backslash L$ be such that $a \rho b$. If $a \in I$, then $b \in I$ since $a \rho b$ and $I=I \rho$. If $a \notin I$, then also $b \notin I$ so that $a, b \in J \backslash I$. Thus $a \rho_{I, J} b$ whence $a \rho_{K, L} b$. Since $a, b \notin L$, we get $a=b$. Therefore $\left.\rho\right|_{J \backslash L}=\varepsilon$.

Next let $a \in(J \backslash L) \rho \cap J$, say $a \rho b$ and $b \in J \backslash L$. Hence $a, b \in J$ and $a \rho b$ which implies that either $a, b \in I$ or $a, b \in J \backslash L$ since $I \rho=I$ whence $a \rho_{I, J} b$. It follows that $a \rho_{K, L} b$. Since $b \notin L$, also $a \notin L$ and $a=b$ so that $a \in J \backslash L$. Therefore $(J \backslash L) \rho \cap J \subseteq J \backslash L$ and the opposite inclusion is trivial.

Assume that $|I|>1$ and $I=x \rho$ for some $x \in S$, and let $a \in I$. There exists $b \in I$ such that $a \neq b$. Hence $a \rho_{I, J} b$ so that $a \rho_{K, L} b$. Since $a \neq b$, we get $a, b \in L$. Therefore $I \subseteq L$. Assume that $|I|>1$ and $I \neq x \rho$ for all $x \in S$, and let $a \in I$. There exists $b \in I$ such that a and b are not ρ-related. Hence $a \rho_{I, J} b$ whence $a_{\rho_{K, L}} b$. Since a and b are not ρ-related, it follows that $a, b \in K$. Therefore $I \subseteq K$.

Sufficiency. It suffices to consider $a, b \in S$ such that $a \neq b$ and $a \rho_{I, J} b$. Then either $a, b \in I$ or $a, b \in J \backslash I, a \rho b$.

Consider the case $a, b \in I$. Since $a \neq b$, we must have $|I|>1$. If $I=x \rho$ for some $x \in S$, then $I \subseteq L$ so that $a, b \in L$ and $a \rho b$ whence
either $a, b \in K$ or $a, b \in L \backslash K, a \rho b$ and in either case $a \rho_{K, L} b$. If $I \neq x \rho$ for all $x \in S$, then $I \subseteq K$ so that $a, b \in K$ whence $a \rho_{K, L} b$.

Finally consider the case $a, b \in J \backslash I, a \rho b$. By the hypothesis $\left.\rho\right|_{J \backslash L}=\varepsilon$, we cannot have $a, b \in J \backslash L$. Thus, either $a, b \in L$, in which case $a, b \in K$ or $a, b \in L \backslash K$ so that $a \rho_{K, L} b$, or $a \in J \backslash L, b \in J \cap L$ or $b \in J \backslash L, a \in J \cap L$. The last two cases being symmetric, we assume that $a \in J \backslash L$ and $b \in J \cap L$. Since $a \rho b$, we get $b \in(J \backslash L) \rho \cap J$ which, by hypothesis, yields $b \in J \backslash L$. Hence $a, b \in J \backslash L$ which, as we have seen, is impossible. Therefore, this case cannot occur.

Corollary 5.2. For $\rho_{I, j}, \rho_{K, L} \in \Gamma_{\rho}$, we have

$$
\begin{gathered}
\rho_{I, J}=\left.\rho_{K, L} \quad \Longleftrightarrow \quad \rho\right|_{(J \backslash L) \cup(L \backslash J)}=\varepsilon, \\
(J \backslash L) \rho \cap J=J \backslash L, \quad(L \backslash J) \rho \cap L=L \backslash J, \\
\text { if }|I|>1, \quad I=x \rho \text { for some } s \in S, \quad \text { then } I \subseteq L, \\
\text { if }|K|>1, \quad K=x \rho \text { for some } x \in S, \quad \text { then } K \subseteq J, \\
\text { if }|I|>1, \quad I \neq x \rho \text { for some } x \in S \text { or }|K|>1, \\
\quad K \neq x \rho \text { for all } x \in S, \quad \text { then } I=K .
\end{gathered}
$$

Proof. Comparing this with the result in Proposition 5.1, it suffices to consider the case $|I|>1, I \neq x \rho$ for all $x \in S$. With the condition in that proposition, $I \subseteq K$ so $|K|>1$ and $K \neq x \rho$ for all $x \in S$ and thus also $K \subseteq I$ and therefore $I=K$.

For the proof of the main result of this section we need some preparation.

Lemma 5.3. Let $\rho \in \mathcal{C}(S), \rho_{I_{\alpha}, J_{\alpha}} \in \Gamma_{\rho}$ for $\alpha \in A, I=\cup_{\alpha \in A} I_{\alpha}$ and $J=\cup_{\alpha \in A} J_{\alpha}$. Then $\vee_{\alpha \in A} \rho_{J_{\alpha}, I_{\alpha}}=\rho_{I, J}$.

Proof. Let $\lambda=\vee_{\alpha \in A} \rho_{I_{\alpha}, J_{\alpha}}$. First note that

$$
\begin{aligned}
I \rho & =\{x \in S \mid x \rho y \text { for some } y \in I\} \\
& =\left\{x \in S \mid x \rho y \text { for some } y \in I_{\gamma} \text { for some } \gamma \in A\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\bigcup_{\alpha \in A}\left\{x \in S \mid x \rho y \text { for some } y \in I_{\alpha}\right\} \\
& =\bigcup_{\alpha \in A} I_{\alpha}=I
\end{aligned}
$$

Now let $\beta \in A, a \rho_{I_{\beta}, J_{\beta}} b$ and $a \neq b$. First assume that $a \rho b$. Then $a, b \in J_{\beta}$ so that $a, b \in J$. Since $a \rho b$, by the above we have either $a, b \in I$ or $a, b \notin I$. In the first case $a \rho_{I, J} b$ and in the second case $a, b \in J \backslash I$ and $a \rho b$ so that again $a \rho_{I, J} b$. Next assume that a and b are not ρ-related. Then $a, b \in I_{\beta}$ and thus $a, b \in I$ and $a \rho_{I, J} b$. Therefore $\rho_{I_{\beta}, J_{\beta}} \subseteq \rho_{I, J}$ and $\lambda \subseteq \rho_{I, J}$.

Conversely let $a \rho_{I, J} b$ and $a \neq b$. First let $a \rho b$. Then $a, b \in J$, say $a \in J_{\alpha}$ and $b \in J_{\beta}$. Hence $a \rho a^{0} b \rho b^{0} a \rho b$, where

$$
\begin{aligned}
& \text { either } a, a^{0} b \in I_{\alpha} \quad \text { or } \quad a, a^{0} b \in J_{\alpha} \backslash I_{\alpha} \\
& \text { either } a^{0} b, b^{0} a \in I_{\alpha} \quad \text { or } \quad a^{0} b, b^{0} a \in J_{\alpha} \backslash I_{\alpha} \\
& \text { either } b^{0} a, b \in I_{\beta} \quad \text { or } \quad b^{0} a, b \in J_{\beta} \backslash I_{\beta}
\end{aligned}
$$

since both I_{α} and I_{β} are ρ-saturated. Therefore

$$
a \rho_{I_{\alpha}, J_{\alpha}} a^{0} b \rho_{I_{\alpha}, J_{\alpha}} b^{0} a \rho_{I_{\beta}, J_{\beta}} b
$$

so that $a \lambda b$. Finally let a and b not be ρ-related. Then $a, b \in I$, say $a \in I_{\alpha}$ and $b \in I_{\beta}$. Hence $a, a b \in I_{\alpha}$ and $a b, b \in I_{\beta}$ which implies that $a \rho_{I_{\alpha}, J_{\alpha}} a b \rho_{I_{\beta}, J_{\beta}} b$. Consequently $a \lambda b$ which completes the proof that $\rho_{I, J} \subseteq \lambda$ and equality prevails.

Lemma 5.4. Let $\rho \in \mathcal{C}(S), \rho_{I_{\alpha}, J_{\alpha}} \in \Gamma_{\rho}$ for $\alpha \in A, I=\cap_{\alpha \in A} I_{\alpha}$ and $J=\cap_{\alpha \in A} J_{\alpha}$. Then $\wedge_{\alpha \in A} \rho_{I_{\alpha}, J_{\alpha}}=\rho_{I, J}$.

Proof. Let $\lambda=\wedge_{\alpha \in A} \rho_{I_{\alpha}, J_{\alpha}}$ and $a \in I \rho$. Then $a \rho b$ for some $b \in I$. Hence $b \in I_{\alpha}$ and thus $a \in I_{\alpha} \rho=I_{\alpha}$ for every $\alpha \in A$ so that $a \in I$.

Therefore $I \rho=I$. Let $a, b \in S$. Then

$$
\begin{aligned}
a \lambda b & \Longleftrightarrow a \rho_{I_{\alpha}, J_{\alpha}} b \text { for all } \alpha \in A \\
& \Longleftrightarrow\left\{\begin{array}{l}
\text { either } a=b \notin J_{\alpha} \\
\text { or } a, b \in J_{\alpha} \backslash I_{\alpha}, a \rho b \\
\text { or } a, b \in I_{\alpha}
\end{array}\right\} \quad \text { for all } \alpha \in A, \\
a \rho_{I, J} b & \Longleftrightarrow\left\{\begin{array}{l}
\text { either } a=b \notin J \\
\text { or } a, b \in J \backslash I, a \rho b, \\
\text { or } a, b \in I .
\end{array}\right.
\end{aligned}
$$

It suffices to consider the case $a \neq b$. If $a \rho b$, then

$$
\begin{aligned}
a \lambda b & \Longleftrightarrow a, b \in J_{\alpha} \\
\text { for all } \alpha \in A & \Longleftrightarrow a, b \in J
\end{aligned} \Longleftrightarrow a \rho_{I, J} b .
$$

If a and b are not ρ-related, then

$$
\begin{aligned}
a \lambda b & \Longleftrightarrow a, b \in I_{\alpha} \\
\text { for all } \alpha \in A & \Longleftrightarrow a, b \in I \quad \Longleftrightarrow a \rho_{I, J} b .
\end{aligned}
$$

Therefore $\lambda=\rho_{I, J}$, as required.

For any set X, denote by $\mathcal{P}(X)$ the lattice of all subsets of X.

Theorem 5.5. Let $\rho \in \mathcal{C}(S)$ and

$$
\Gamma_{\rho}=\left\{\rho_{I, J} \mid I, J \in \mathcal{I}, I=I \rho \subseteq J\right\}
$$

Then Γ_{ρ} is a distributive complete sublattice of $\mathcal{C}(S)$ containing ρ with greatest element ω and least element ε. The mapping

$$
\chi: \lambda \longrightarrow \operatorname{ker} \lambda \quad\left(\lambda \in \Gamma_{\rho}\right)
$$

is a complete homomorphism of Γ_{ρ} into $\mathcal{P}(S)$. Hence $\left.K\right|_{\Gamma_{\rho}}$ is a complete congruence.

Proof. Lemmas 5.3 and 5.4 show that Γ_{ρ} is a complete sublattice of $\mathcal{C}(S)$. Clearly $\omega=\rho_{S, S}, \rho=\rho_{\varnothing, S}$ and $\varepsilon=\rho_{\varnothing, \varnothing}$ so that $\omega, \rho, \varepsilon \in \Gamma_{\rho}$.

Next let

$$
\Sigma=\{(I, J) \in \mathcal{I} \times \mathcal{I} \mid I=I \rho \subseteq J\}
$$

under the operations of coordinatewise union and intersection. Now Lemmas 5.3 and 5.4 show that the mapping

$$
\varphi:(I, J) \longrightarrow \rho_{I, J} \quad((I, J) \in \Sigma)
$$

is a homomorphism of σ onto Γ_{ρ}. Observing that the operations in \mathcal{I} are set-theoretical union and intersection, we deduce that \mathcal{I} is a distributive lattice and thus so is $\mathcal{I} \times \mathcal{I}$. Since Σ is a sublattice of $\mathcal{I} \times \mathcal{I}$, it also is distributive and therefore its homomorphic image Γ_{ρ} is distributive as well.

Now let $\left\{\rho_{I_{\alpha}, J_{\alpha}} \mid \alpha \in A\right\}$ be a subfamily of Γ_{ρ}. Letting $I=\cup_{\alpha \in A} I_{\alpha}$ and $J=\cup_{\alpha \in A} J_{\alpha}$, by Lemma 5.3 we obtain

$$
\begin{aligned}
\operatorname{ker}\left(\bigvee_{\alpha \in A} \rho_{I_{\alpha}, J_{\alpha}}\right) & =\operatorname{ker} \rho_{I, J}=I \bigcup(\operatorname{ker} \rho \cap J) \bigcup E(S) \\
\bigcup_{\alpha \in A} \operatorname{ker} \rho_{I_{\alpha}, J_{\alpha}} & =\bigcup_{\alpha \in A}\left(I_{\alpha} \cup\left(\operatorname{ker} \rho \cap J_{\alpha}\right) \cup E(S)\right) \\
& =I \cup\left(\bigcup_{\alpha \in A}\left(\operatorname{ker} \rho \cap J_{\alpha}\right)\right) \cup E(S) \\
& =I \cup(\operatorname{ker} \rho \cap J) \cup E(S) .
\end{aligned}
$$

Since φ is always a complete \wedge-homomorphism, the above evidently shows that φ is a complete homomorphism of Γ_{ρ} into $\mathcal{P}(S)$. As a consequence, $\left.K\right|_{\Gamma_{\rho}}$ is a complete congruence.

REFERENCES

1. E.S. Ljapin, Semigroups, Fizmatgiz, Moscow, 1960 (in Russian); American Math. Soc., 1968 (second edition), in English.
2. F. Pastijn and M. Petrich, The congruence lattice of a regular semigroup, J. Pure Appl. Algebra 53 (1988), 93-123.
3. - Congruence lattices on a regular semigroup associated with certain operators, Acta Sci. Math. (Szeged) 35 (1991), 229-247.
4. M. Petrich, Congruences on completely regular semigroups, Canad. J. Math. 41 (1989), 439-461.
5. - The kernel relation for a completely regular semigroup, J. Algebra 172 (1995), 90-112.
6. - Certain relations on the congruence lattice of a completely regular semigroup, preprint.

Departamento de Matemática Pura, Faculdade de Ciências, Universidade do Porto, 4050 Porto, Portugal

[^0]: Received by the editors on November 17, 1995, and in revised form on November 12, 1996.

 1980 AMS Mathematics Subject Classification. Primary 20M10.
 Key words and phrases. Completely regular semigroups, congruences, congruence generated by a set, lattice of congruences, join and meet, K-relation, Rees congruence.

