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DIFFERENTIAL FORMS ON MODULAR CURVES H/Γ(k)

YAACOV KOPELIOVICH

ABSTRACT. In this paper we continue the investigation
of the geometric properties of modular curves using θ func-
tions with rational characteristics started in [4] and [2]. In
those papers, θ functions with rational characteristics were
used to construct SL2(Zk) equivariant mapping H/Γ(k) →
CP(k−3)/2. Moreover, quotients of modular curves were also
included in [1]. Recently, Farkas and Kra used the theory de-
veloped in the cited papers to give new proofs of Ramanujan’s
congruences and discover some new ones, see [5] for details.
In the present paper we construct differentials on holomorphic
curves H2/Γ(k) for various k using the functions from [2]. We
use these to obtain partial information about gap sequences
that we believe wasn’t known before. In some cases we will
also construct half-canonical classes, i.e., forms of weight 1
that correspond to half-canonical class.

The structure of the paper is as follows. In the first section we
will briefly review the theory from [2] and we will prove an explicit
transformation formula for the relevant functions. Then we will give
a general way of constructing differential forms using this formula. In
the second paragraph we will look at particular examples of k and will
show what kind of information one can get about modular curves using
the theorem in Section 1.

1. Preliminaries. We assume that the reader is familiar with the
basic notion and structure of modular curves. Here we will review the
basics of θ functions and main results of [2].

Definition. Given
[ ε

ε′
] ∈ R2, τ ∈ H, z ∈ C, we define

Θ
[

ε
ε′

]
(z, τ ) =

∑
n∈Z

exp 2πi

{
1
2

(
n +

ε

2

)2

τ +
(

n +
ε

2

)(
z +

ε′

2

)}
.

The series are uniformly and absolutely convergent on compact subsets
of C × H. The main property we need is the transformation formula
for θ functions.
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Transformation formula. (For the proof, see [3].) For any
[ ε

ε′
] ∈ R2

and any element

γ =
[

a b
c d

]
of SL2(Z),

we have

(∗) expπi{−cz2/(cτ + d)}Θ [ ε

ε′
]
(z/(cτ + d), (aτ + b)/(cτ + d))

Θ
[

aε + cε′ − ac
bε + dε′ − bd

]
(z, τ )

= K

( [
ε
ε′

]
, γ

)
(cτ + d)1/2.

K(
[ ε

ε′
]
, γ) is a proportionality factor depending on

[ ε

ε′
]

and γ. (We
will write it explicitly for our special case later.)

When ε = m/k and ε′ = m′/k′, k is an odd prime and m, m′ are odd
integers. Farkas and Kra [3] showed that Θ

[ ε

ε′
]
(z, τ ) is invariant under

the action of γ provided γ ∈ Γ(k), i.e., γ ≡ I mod k. This observation
leads to the construction of modular form in [4]. In [2] the functions
of the form

Θ
[

m/k
1

]
(0, kτ)

were considered, k is any odd number and m is an odd number and
1 ≤ m ≤ k − 1. The following theorem was shown in [2].

Theorem 2. The mapping

τ −→
(

Θ
[

1/k
1

]
(0, kτ), Θ

[
3/k
1

]
(0, kτ) . . .Θ

[
(k − 2)/k

1

]
(0, kτ)

)

from H → C(k−1)/2 induces a mapping H/Γ(k) → CP(k−3)/2 that is
SL2(Z)/Γ(k) = PSL2(Zk) equivariant.

The proof was based on the following “cheap trick.”

Θ
[

m/k
1

](
0, k · aτ + b

cτ + d

)
= Θ

[
m/k

1

] (
0,

akτ + kb

(c/k)kτ + d

)

= Θ
[

m/k
1

] (
0,

(
a b
c d

)
◦ kτ

)
.
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Then the formula (∗) was used to show that

Θ
[

m/k

1

]
(0, kτ)

Θ
[

m′/k

1

]
(0, kτ)

is a function on the surface H/Γ(k) and we are done. In order to use
Θ

[
m/k

1

]
(0, kτ) to construct holomorphic differentials on the surface

H/Γ(k), we must have more precise information about the factor of
transformation; i.e., we must give an explicit formula for uk[γ], uk[γ]
satisfies

Θ
[

m/k
1

]
(0, kγτ) = uk[γ](cτ + d)1/2Θ

[
m/k

1

]
(0, kτ)

for γ ∈ Γ(k). We use the η(τ ) that is invariant under the entire group
SL2(Z). (In our notation Θ

[
1/3

1

]
(0, 3τ ), see [2] for more details.)

This formula is written and proved in [8], and we will bring it here
for the convenience of the reader.

Let vη(γ) denote the multiplier system for the η(τ ); i.e., η(γτ ) =

vη(γ) · (cτ + d)1/2η(τ ) for γ =
(

a b

c d

)
, vη is given by the following

formula

vη(γ) =

⎧⎨
⎩

(d/c)∗ exp{(πi/12)[(a + d)c − bd(c2 − 1) − 3c]} c odd,
(c/d)∗ exp{(πi/12)[(a + d)c − bd(c2 − 1)

+3d − 3 − 3cd]} c even,

and (−)∗ and (−)∗ are defined as follows
(

c

d

)∗
=

(
c

|d|
)

and
(

c

d

)
∗

=
(

c

|d|
)

(−1)(sign (c−1)/2)·(sign (d−1)/2)

when (c, d) = 1 and d is odd and (−) is the usual Jacobi symbol. Also
the definition is completed by putting (0/ ± 1)∗ = 1 and (0/1)∗ = 1
and (0/− 1)∗ = 1. This formula is proved in [6, pp. 51 62] and we will
not repeat the proof here.

As a corollary for this theorem, we state the transformation formula
for the function Θ

[
m/k

1

]
(0, kτ) and m = 2l − 1.
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Theorem 3. Let uk[γ] represent the factor of proportionality in
the formula for Θ

[
(2l−1)/k

1

]
(0, kτ); i.e., Θ

[
(2l−1)/k

1

]
(0, kγ(τ )) =

uk[γ](cτ + d)1/2Θ
[

m/k

1

]
(0, kτ). Then, for γ =

(
a b

c d

)
and γ ≡

I mod k,

uk[γ] =

⎧⎪⎪⎨
⎪⎪⎩

(d/(c/k))∗ exp{(πi/4)[(a + d)(c/k)
−kbd(c2/k2 − 1) − 3c/k]} c odd,

(c/(k/d))∗ exp{(πi/4)[(a + d)(c/k)
−kbd(c2/k2 − 1) − 3d − 3 − (3c/k)d]} c even.

Proof. The proof consists of the following steps.

Step 1. We can look at the functions Θ
[

(2l−1)/k

1

]
(kz, kτ), l =

0, 1, . . . , k. From the Fourier expansion is easily seen that these
functions are linearly independent. See [7] for details. Let γ =

(
a b

c d

)
and γ ∈ Γ(k), then we can write

Θ
[

(2l − 1)/k
1

] (
k

z

cτ + d
, k

aτ + b

cτ + d

)

= Θ
[

(2l − 1)/k
1

] (
kz

(c/k)kτ + d
,

akτ + kb

(c/k)kτ + d

)

or else

Θ
[

(2l − 1)/k
1

](
(kz) ◦

(
a kb

c/k d

)
,

(
a kb

c/k d

)
◦ (kτ)

)
.

However, by the theory developed in [4] we can rewrite the last
expression as

K

( [
(2l−1)/k

1

]
, γk

)
(cτ+d)1/2 expπi

(
− kcz2

cτ+d

)
Θ

[
(2l−1)/1

1

]
(kz, kτ)

γk =
(

a kb
c/k d

)
and K

([
(2l − 1)/k

1

]
, γk

)
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is the proportionality factor from the beginning. We see that uk[γ] is
equal to K

( [
(2l−1)/k

1

]
, γk

)
, 1 ≤ l ≤ (k − 1)/2, (set z = 0 in the last

formulas). We conclude that

K

( [
(2l − 1)/k

1

]
, γk

)
= uk[γ]

also for l = 1, . . . , 2k. Thus, we can write

Θ
[

(2l − 1)/k
1

]
(0, kγ(τ ))

= K

( [
1
1

]
, γk

)
(cτ + d)1/2Θ

[
(2l − 1)/k

1

]
(0, kτ).

Therefore, all that is left to compute is K
( [

1

1

]
, γk

)
. We now use the

fact that

cη3(τ ) = Θ′
[

1
1

]
(0, τ ).

Thus, it is easily seen, derive (∗) and plug z = 0 in it, that
K

( [
1

1

]
, γk

)
= vη(γk)3, from which the result is immediate (using the

formula for vη(γ)).

The main benefit of the explicit formula is that it gives us a tool to
construct holomorphic differentials on H/Γ(k). More precisely, we will
have the following theorem

Theorem 4. Let k = pq, p, q are odd primes, and suppose the
following condition is satisfied. We can find r, m such that r + m = 4
and mq + r = 0 mod 8. Then

(∗∗)
m∏

i≡1

Θ
[

(2li − 1)/p
1

]
(0, pτ )

r∏
j≡1

Θ
[

(2mj − 1)/k
1

]
(0, kτ)

are holomorphic differentials on H/Γ(k).

Proof. First we show that the character is trivial. When we are
looking for γ ∈ Γ(k) we remember that Γ(k) ⊂ Θ(p). Applying
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Theorem 3 we get the result by straightforward calculation (left to
the reader). Using the condition on r, m, we now check that the series
are indeed definite holomorphic differentials. Since

m∏
i≡1

Θ
[

(2li − 1)/p
1

]
(0, pτ )

r∏
j≡1

Θ
[

(2mj − 1)/k
1

]
(0, kτ)

are nowhere vanishing inside H, we just need to verify the assertion at
the cusps. But

Span
〈 m∏

i≡1

Θ
[

(2li − 1)/p
1

]
(0, pτ )

r∏
j≡1

Θ
[

(2mj − 1)/k
1

]
(0, kτ)

〉

is SL2(Z) invariant from the theory developed in [2], so we can consider
the order of these series at ∞ (since the group SL2(Z) is transitive on
the cusps). Computing the orders of the series at ∞ we are using
coordinate e(2πiτ)/(pq); thus, ord∞Θ

[
(2li−1)/p

1

]
(0, pτ ) = (2li − 1)2q/8

and ord∞Θ
[

(2mj−1)/k

1

]
= (2mj − 1)2/8. Thus the order of the series

evaluated at ∞ is
m∑

i=1

(2li − 1)2

8
q +

r∑
j=1

(2mj − 1)2

8
.

But
m∑

i=1

(2li − 1)2q +
r∑

j=1

(2mj − 1)2 ≡ mq + r mod 8,

since mq + r ≡ 0 mod 8 we have holomorphic differentials on H2/Γ(k).

In the next section we are going to look at specific cases in order
to see whether the kind of information the series above can provide is
within the surface H2/Γ(k).

2. Examples. Let us look at the most elementary case where we
can apply our θ series, namely, we look at the case where k = 7 mod 8,
k prime. In this case we conclude that

Θ′
[

1
1

]
(0, τ )Θ

[
(2l − 1)/k

1

]
(0, kτ)
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are differentials on H2/Γ(k). (Although the case isn’t covered by the
main theorem from Section 1, the proof is the same.) The mapping
H/Γ(k) → CP(k−3)/2 which is induced by

τ 	−→
(

Θ′
[

1
1

]
(0, τ )Θ

[
1/k
1

]
(0, kτ),

. . . , Θ′
[

1
1

]
(0, τ )Θ

[
(k − 2)/k

1

]
(0, kτ)

)

is projectively the same mapping defined in [2]. Since SL2(Zk) acts on

Span
(

Θ
[

1/k
1

]
(0, kτ, . . . ,Θ)

[
(k − 2)/k

1

]
(0, kτ)

)
.

We immediately obtain that we have an SL2(Zk) equivalent embedding
of subspace of the space of differentials into CP(k−3)/2. Also SL2(Zk)
clearly acts linearly on

Θ′
[

1
1

]
(0, τ )Θ

[
(2l − 1)/k

1

]
(0, kτ).

We thus summarize in the following.

Proposition 2.1. For k = 7 mod 8 the mapping defined in [2] can
be regarded as a part of the canonical embedding of the curve H2/Γ(k).
Further, SL2(Zk) acts linearly on the space

Θ′
[

1
1

]
(0, τ )Θ

[
(2l − 1)/k

1

]
(0, kτ),

thus we obtain a (k − 1)/2 irreducible representation of SL2(Zk) as a
subspace of the space of the differentials.

We can also produce an explicit canonical divisor for this curve: note
that, for each characteristic

[
(2l−1)/k

1

]
we can associate a cusp, see

[4]. Choose the cusp ∞ to be associated with
[

1/k

1

]
and then send the

characteristic
[

(2l−1)/k

1

]
to the cusp represented by the rational number
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(2l − 1)/k. Now if
(

a b

c d

)
∈ Γ0(k) such that

(
a b

c d

)
∞ = (2l − 1)/k,

then the action on the function Θ
[

(2l−1)/k

1

]
(0, kτ) of such matrix

will take Θ
[

1/k

1

]
(0, kτ) to Θ

[
(2l−1)/k

1

]
(0, kτ). Thus we conclude

ordk(2l−1)/k
Θ

[
1/k

1

]
(0, kτ) = (2l − 1)2/8 by [2]. Since the order of

Θ′
[

1/k

1

]
(0, kτ) is k/8 at all the cusps, we conclude that

ord∞Θ
[

1
1

]
(0, τ )Θ

[
(2l − 1)/k

1

]
(0, kτ) =

k + (2l − 1)2 − 8
8

.

The same calculation will give that in the other cusps the divisor is
(k + 1 − 8)/8. We can now state the following proposition.

Proposition 2.3. The divisor
∑
l �=1

P
((2l−1)2+k−8)/8
(2l−1)/k

∑
P

(k+1−8)/8
i

is a canonical divisor. (Pi are the cusps that aren’t equal to the cusps
corresponding to (2l − 1)/k.)

Example. Suppose that k = 7; then we recover the fact that
P 3

5/7P3/7 is a divisor of a differential on H/Γ(7).

Remark. It is verified that degree of the divisor in the proposition is
precisely 2g − 2 where g is the genus of H/Γ(k).

We can construct also a differential for the curve X0(k2) using the
following observation. Let

Γ(k, k) =
{(

a b
c d

)
∈ SL2(Z) | b ≡ c ≡ 0 mod k

}
.

We will have a natural mapping Γ0(k2) into Γ(k, k) given by
(

a b
c d

)
	→

(
a kb

c/k d

)
where

(
a b
c d

)
∈ Γ0(k2),
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and thus we have a natural isomorphism H/Γ(k, k) ∼= H/Γ0(k2).
But Γ(k, k)/Γ(k) � Z(k−1)/2 (a cyclic Abelian group with (k − 1)/2

elements). Moreover, Γ(k, k) acts on the functions Θ′
[

1

1

]
(0, τ )

Θ
[

(2l−1)/k

1

]
(0, kτ) by a cyclic permutation of order (k − 1)/2. (This

follows from the fact that Θ′
[

1

1

]
(0, τ ) is invariant under SL2(Z) and

the general theory of the action of SL2(Zk) on Θ
[

(2l−1)/k

1

]
(0, kτ) de-

veloped in [2].) Thus there exists ci ∈ C such that
∑

clΘ′
[

1

1

]
(0, τ )

Θ
[

(2l−1)/k

1

]
(0, kτ) is an eigenfunction of eigenvalue 1 for Γ(k, k). It

thus will be clearly a differential for Γ(k, k) and thus for Γ0(k2). Set
X0(k, k) = H0/Γ(k, k).

Example. The curve X0(7, 7) = H/Γ(7, 7) is of genus 1. The linear
combination in this case (1/3)(Θ′

[
1

1

]
(Θ

[
1/7

1

]
(0, 7τ )+Θ

[
3/7

1

]
(0, 7τ )+

Θ
[

5/7

1

]
(0, 7τ )) is going to give the unique nonvanishing differential on

this curve (up to a constant).

Example 2.1. We consider now the next case when k = p2 and
p ≡ 3 mod 8, p an odd prime number. Then the series

Θ
[

(2lj − 1)/p
1

]
(0, pτ )Θ

[
(2li − 1)/p

1

]
(0, pτ )

Θ
[

(2mj − 1)/p2

1

]
(0, p2τ )Θ

[
(2mj − 1)/p2

1

]
(0, p2τ ),

1 ≤ li ≤ p and 1 ≤ mj ≤ p2

are holomorphic differential forms for the group H/Γ(p2). (We use the
theorem from Section 1 where q = p.) The total number of such a
series is

(
(p2 − 1)/2

2

) (
(p − 1)/2

2

)
+

(
(p2 − 1)/2

2

)
p − 1

2

+
(

(p − 1)/2
2

)
p2 − 1

2
+

p2 − 1
2

p − 1
2

.
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The genus of X(p2) is, on the other hand, given by

1
24

p4(p2 − 1) − 1
4
p2(p2 − 1).

Therefore, at least asymptotically, the number of holomorphic differ-
entials constructed by us is C · g where C is a certain constant.

Let us compute the order of

Θ
[

(2li − 1)/p
1

]
(0, pτ )Θ

[
(2lj − 1)/p

1

]
(0, pτ )Θ

[
(2mh − 1)/p2

1

]

· (0, p2τ )Θ
[

(2mn − 1)/p2

1

]
(0, p2τ )

at ∞. Thus

ord∞

(
Θ

[
(2li − 1)/p

1

]
(0, pτ )Θ

[
(2lj − 1)/p

1

]
(0, pτ )

· Θ
[

(2mh − 1)/p2

1

]
(0, p2τ )Θ

[
(2mn − 1)/p2

1

]
(0, p2τ )

)

is:

(2li − 1)2p
8

+
(2lj − 1)2p

8
+

(2mn − 1)2

8
+

(2mh − 1)2

8
− 1

= p

[
(2li − 1)2 + (2lj − 1)2

8

]
+

(2mh − 1)2 + (2mh − 1)2

8
− 1.

By [3, p. 81] we conclude that the numbers

p

[
(2li − 1)2 + (2lj − 1)2

8

]
+

(2mh − 1)2 + (2mh − 1)2

8

are “gaps” in the Weierstrass gap sequence for ∞, hence the following
proposition.

Proposition 2.5. There is no function of degree

k

[
(2li − 1)2 + (2lj − 1)2

8

]
+

(2mh − 1)2 + (2mn − 1)2

8
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that has the only pole at ∞ on X(p2).

We can also look on forms of weight 1 for our curves X0(p2). Thus, the
modular forms Θ

[
(2li−1)/p

1

]
(0, pτ )Θ

[
(2lj−1)/p2

1

]
(0, p2τ ) is a weight 1

for the group Γ(p2) such that its square is a differential. We obtain the
following lemma.

Lemma. For k ≡ 3 mod 8 there exist a half canonical class κ invari-
ant under the action of SL2(p2) on the curve H/Γ(p2). Furthermore,
dimH0(κ) ≥ ((p−1)/2)((p2−1)/2), so there exists a multidimensional
θ function that vanishes at least to the order ((p− 1)/2)((p2− 1)/2) on
the curve.

Proof. The statement about SL2(p2) follows from the fact that

Span
〈

Θ
[

(2li − 1)/p
1

]
(0, pτ )Θ

[
(2lj − 1)/p2

1

]
(0, p2τ )

〉

is SL2(p2) invariant. The second statement follows from the fact
that there are no square relations between theta functions. The last
statement follows from Riemann’s θ divisor theorem [5, p. 298].

This theorem also enables us to construct modular forms of weight 1
on some other curves. Let us look first at the curve X0(p4). Then
the curve X0(p4) ∼= X0(p2, p2) because we can replace Γ0(p4) by the
subgroup {

(
a b

c d

)
∈ SL2(Z) |

(
a b

c d

)
=

(
a 0

0 d

)
mod p2}. The group

Γ(p2, p2)/Γ(p2) acts on the series

Θ
[

(2l − 1)/p
1

]
(0, pτ )Θ

[
(2mh − 1)/p2

1

]
(0, p2τ ).

On the first factor it acts through the fact that Γ(p2, p2) ⊂ Γ(p, p) and
on the second one we have an action with two orbits: the first comes
from the characteristics Θ

[
(2mh−1)/k2

1

]
(0, p2τ ) and (2mh − 1, p) = 1

and the other orbit is Θ
[

(2li−1)/p

1

]
(0, p2τ ). At any rate, diagonalizing

we will get modular forms of weight 1 for the curves X0(p4).
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Example. For k = 9, it was shown [8] that

η2Θ
[

(2l − 1)/9
1

]
(0, 9τ )Θ

[
(2m − 1)/9

1

]
(0, 9τ )

is a basis for differential forms for H/Γ(9). Then we will have that
ηΘ

[
(2l−1)/9

1

]
(0, 9τ ) is a θ characteristic moreover by [8]

dimH0(H/Γ(9), κ) = 4

so this is an even characteristic. (In fact, the characteristic is naturally
associated with the mapping X(9)/〈τ → τ + 3〉 since the mapping
ϕ : X(9) → X(9)/τ → τ + 3 is a 3:1 Galois map. Taking the√

dϕ will give us a half canonical class that will correspond to θ
characteristics κ.) The group Γ(9, 9)/Γ(9) is a cyclic group of order 3.
It preserves the function Θ

[
1/3

1

]
(0, 3τ ) and permutes the functions

Θ
[

1/9

1

]
(0, 9τ ), Θ

[
5/9

1

]
(0, 9τ ) and Θ

[
7/9

1

]
(0, 9τ ). Thus we have two

modular forms we can construct on X0(9, 9) of weight 1. A calculation
yields that (1/3)(Θ

[
1/9

1

]
(0, 9τ ) + Θ

[
5/9

1

]
(0, 9τ ) + Θ

[
7/9

1

]
(0, 9τ )) is

a θ characteristic for the curve of X0(81) � X0(9, 9) that is a curve of
genus 4. We see that dim H0(X0(81), κ′) = 2, k′ is a θ characteristic
on X0(81).

Remark. It will be of interest to find the corresponding Galois
representations for the half canonical class on X0(81).

Conclusion. In the first section we constructed differential forms for
H/Γ(pq), p, q are prime odd numbers. We gave two examples of how
we can apply these objects to study differential forms on the curves
above and also on the curves X0(kr).

We hope that these series will open some new routes to obtain
information on these curves that play so important a role in number
theory.
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