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THE SECOND-ORDER FACTORABLE CORE
OF POLYNOMIALS OVER FINITE FIELDS
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ABSTRACT. Let F; denote the finite field of order ¢
and odd characteristic p. For f(z) in Fylz], let f*(z,y)
denote the polynomial f(z) — f(y). Assume that the degree
of f(x) is relatively prime to q. Let r + s denote the total
number of quadratic irreducible factors of f*(z,y) over the
algebraic closure of Fy,r with nonzero zy-term and s(> 1)

with no zy-term. We show that f(z —c) = h((z? +b)sT!) for
some h(z) in Fy[z] and that either f(z —c) = g(D2r+1,a(x))
or f(z —c¢) = g(D2r42,a(x)) for some g(z) in Fylz] where
D a(z) € Fglz] denotes a Dickson polynomial of degree m
and parameter a.

1. Introduction. Let F, denote the finite field of order ¢ and
characteristic p. For f(z) in Fy[z], let f*(x,y) denote the substitution
polynomial f(z) — f(y). The polynomial f*(z,y) has frequently been
used in questions on the value set of f(z), see, for example, Wan [7],
Dickson [3], Hayes [5] and Gomez-Calderon and Madden [4]. Recently
in [1], Cohen showed that if f(x) is separable (not in Fj[zP]) then
[*(z,y) is factorable, a product of linear factors in Fy[z, y|, if and only if
f(z) = L"(z) +b where b € F, and L is an affine p*-polynomial over Fy,
with r|(p®—1) if L is actually an affine p-polynomial of degree exceeding
1. Also in [1], Cohen proved that if f(x) is separable and monic,
then f(z) = g(h(x)) for some factorable polynomial h(z), in Fy[z], of
degree L, where L denotes the total number of linear factors of f*(z, y).
Now in [2], Cohen showed that if f(z) is indecomposable in F,[z] and
f*(z,y) has an irreducible quadratic, then f(z) = aD(z+b)+ ¢, where
a(# 0),b,c belong to F, and either D(x) is a Dickson polynomial of
odd prime degree (# 0) or p is odd and D(z) is a (p,2)-polynomial in
C4, a special class of polynomials introduced in [1].

In this paper we will use an elementary approach to show that if f(z)
has degree d relatively prime to g (odd) and f*(z,y) has a total of r +s

quadratic irreducible factors over F'y, the algebraic closure of Fy, r with
nonzero zy-terms and s(> 1) with no zy-terms, then
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(i) f(z —c) = h((x? 4+ b)**!) for some h(z) € F,|z].

(ii) The product of all the quadratic irreducible factors with nonzero
zy-term of f*(z,y) can be written as

r

[ = (i + 7oy + 92 + e(pe — ph)?)
i=1

for some dth roots of unity w1, ps,- .- , oy
(iii)
9(D2y11,4(x)) for some g(z) in Fi[x]
flz—b) = if pipgt # —1forall 1 <i, k<r
9(D2r12.4(z)) for some g(z) in F,[x], otherwise

where D, ,(z) denotes a Dickson polynomial of degree t defined by

S - e
Dy o(z) = Z ron < ; )(a)’wt%, a € F,.
=0

Hence, D; ,(z) and Qs p(z) = (2% + b)*T! can be seen as the second-
order factorable part of f(z) in F,[x].

2. Theorem and proof. The following lemmas will be needed to
prove our main result.

Lemma 1. Let f(z) = 2% +aq_129 1 +-- -+ a1z +ag denote a monic
polynomial with coefficients in Fy and degree d relatively prime to q.
Assume aq—1 = 0. Let the prime factorization of f*(z,y) = f(z)— f(y)
be given by

fH(@,y) = Hflwy
Let

D= hisla.)

be the homogeneous decomposition of fi(x,y) so that hij(x,y) is ho-
mogeneous of degree j and deg( in (T, Y)) = n; deg(f). Then
hin,—1(z,y) =0 fori=1,2,...,r.



SECOND-ORDER FACTORABLE CORE

Proof. First we consider the homogeneous decomposition

Hfz z,y) (z,y) =% — y? + ag_1 (a1 —y* )
+-4ai(z—y).
Simply by multiplying, we can interpret the first two terms as
(1) 2t —yt = (z — y) [ ] hin, ()
i=1
(2) ad_l(xd_l - yd_l) =(z—vy) Z <H Rjn, (z, y)) hin,-1(z,y).
i=1 i
Dividing (2) by (1), we find

d—1 r
ad,1($ _y hznlfl z y

md_y i—1 hznl Z, y

which is a partial decomposition, since (d, q) = 1, and therefore unique.

Thus ag—1 = 0 implies h;,,—1(z,y) = 0 for all 4. o

Lemma 2. Let f(z) = 2% + ag 12?1 + -+ + ayx + ag denote a
monic polynomial with coefficients in Fy, and degree d relatively prime
to q. Assume ag_1 =0. Let L(z,y) denote the product of all the linear
factors of f*(z,y) in F,|x,y] where F, denotes the algebraic closure of

Fy. Then

i) L(z,y) = [1;_,(z — p'y) = a" —y" for some rth primitive root of

unity i,
ii) f(z) = h(z") for some h(z) in F,[z].

Proof. By Lemma 1 every linear factor of f*(z,y) is homogeneous.

Thus,

T

L(z,y) = [J(x — biy)

i=1
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for some by, bo, ..., b, in Fy. Hence, f(b;z) = f(z) for 1 <i < r and so
f(bibrz) = f(brx) = f(x) for all ¢ and k. Therefore, by, bs,... , b, form
a multiplicative cyclic group of order r, r|d and

(3) F(x,y) = (a” —yT)Hfi(x,y)

where f1(z,v), f2(z,y),-.., fs(z,y) are irreducible polynomials. Now
write

f(@) = folz) + fi(@)z” + fo(@)a® + -+ frn(2)z™
with deg(fi(z)) < r. This decomposition is clearly unique. So,
f(z) = f(biz) for 1 < i < r implies
f(@) = fo(x) + fr(e)z" + - + fr(2)2™"
= fo(biz) + f1(bix)x" + - - + fm(biz)z™"

for i = 1,2,...,r. Therefore, fi(z) = ¢; € F; and f(z) = co + 12" +
s F @™ = h(z") where h(z) = co+crz+ -+ epa™ € Fylz]. u]

Lemma 3. Let f(z) = 2%+ ag_12% ' + .-+ + a1z + ag denote a
monic polynomial with coefficients in Fy and degree d relatively prime

to q. Assume aq—1 = 0. Assume x? + by + cy® + e is an irreducible
factor of f*(x,y) over F,. Then

(i) ag—2 # 0
(i) b(c—1)=0
(iit) If c = 1, then ed = —agq_o(puy — puy *)?.
(iv) If b = 0, then ed = 2a4—2(1 — p3) where (z — p1y)(x — pay) =

22 + bry + cy? and péd = pd = 1.
Proof. Let the prime factorization of f*(x,y) be given by

f*(xay) = Hfz(xay)a

where fi(x,y) = 2 +bzy+cy®+e. Then, comparing the highest degree
terms x? + bry + cy? = (z — u1y)(z — p2y) for two distinct dth roots of
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unity pq and pe. Now, with notation as in Lemma 1, we consider the
ratio of the highest two homogeneous components to find

d— 2
(I 7y ad 2 72 : zn,—2

xd — — h’an z y
_ e n > hin,-—2(33a y)
(z —my)(@ —p2y) 4 hin,(z,y)

- (ule—m) ((z —lmw = ;w)

+Z znl—2m :ayy .

zn,

On the other hand,

_ _ d—1
d—2 d—2 Ai

z -y
d_,d — i
z? —y —r -ty
for a dth primitive root of unity u and some constants Ag, Ay,...,Ag_1

in the algebraic closure of the rational function field F,(y). So, solving
for the A; in the usual way,

d—2 2 d-l —i i

(5) A L ey
zd —y? o dy(z — p'y)
Hence, combining (4) and (5),
e (m'—m)aas
y(u — p2) dy
e _ (42" — p2)ada—s
y(p2 — ) dy
Therefore,
ag-o(py ' =) = —(pg ' — p2)ago
and

aq—2(p1 + p2)(1 — prp) = —aqg 2b(1 —¢) = 0.
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Thus, if ¢ = pypue = 1, then

de = ag_a(p1 — p2) (" — p1) = —aa—2(pa — pi*)?

while if b = puq + p2 = 0, we have

de = ag_a(p — p2)(py' — ) = 2a4-2(1 — ). O

Lemma 4. Let d be a positive integer and assume that F, contains
a primitive dth root of unity p. Put
i

Ai=pt+p " and By=p' —pt.

Then, for each a in F,, we have

(i) If d is odd,

(d—1)/2
Dd,a(x) o Dd,a(y) = (:E o y) H (x2 o Azxy + y2 + Bzza)
i=1
(ii) If d is even,
(d—2)/2
Dd,a(x) - Dd,a(y) = ($2 - y2) H ($2 - Aimy + y2 + Bzza‘)
i=1

Moreover, for a # 0, the quadratic factors are different from each other
and are irreducible in Fylz,y].

Proof. See [6, Theorem 3.12]. O

Lemma 5. Let f(z) = 2%+ ag 1291 + -+ + ayx + ag denote a
monic polynomial with coefficients in F, and degree d relatively prime
to q (odd). Assume ag—1 = 0. Let

r

Quy(,y) = [[(@® = (i + 1 Doy +47 + e — 7))
i=1
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denote the product of all quadratic irreducible factors with nonzero
zy-term of f*(x,y) over Fg, the algebraic closure of F,. Assume
deg,(Qzy) = 2r > 1. Then

(i) If pipr # =1 for all 1 < 4,k < r, then (2r + 1)|d, (z —

Y)Quy(2,y) = D2rt1,4(x) — D2r11,a(y), and f(z) = g(Da2r1,4(x)) for
some a € Fy and g(z) € Fylz].

(ii) If pipr = —1 for some 1 < i,k < r, then (2r + 2)|d, f(z) is

(
an even function, (22 — y?)Quy(z, y) D2r+2a(fl7) Dayi2,4(y) and
f(z) = g(Dary2,q(x)) for some a € Fy and g(x) € Fyz].

Proof. Working formally, i.e., working in the algebraic closure of the
rational function field F,(y), we obtain

o) = (A EEYY e

WhereAi:ui—f—ui_l andBi:,uifui_l for 1 <i <r. Thus,

) f<AiAk,y:|:Ain\/y24e + Bi\/(Akyin,\/yZéLe)Zlﬁe)
’y =
4

fori=1,2,...,r. Therefore,

otV = (A Apy + A Bi/y? — de

+ Bi\/(Aky + Bi/y? — de)? — 166)/4,
¢ = (A Ay + ABi/y? — de

— B/ (Agy + Bin/y? — de)? — 16¢) /4,
63 = (AiAk,y ~AiBiy? e

+ By (Agy — Bi/y? — de)? - 16e) /4,

and

6% = (Aidry - AiB/y? — e
— Bi\/(Aky — Br\/y? —4e)? — 166)/4
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are roots of f*(x,y). It is clear that qﬁg,i) # qﬁz(.,zc) and ‘751('13) # q,’)z(.:).
One also sees, by straightforward simplification, that the four roots are
distinct if B? # Bj}.

Now we set

dr = A;Apy + A; Bp\/y? — de + Bi\/(Aky + Brvy? — 4e)? — 16e

and then remove radicals to obtain

Fir(z,y) = a* — A Apxdy + (A? — 2 + A2)z?y? — A Ay
+yt 4 (A2A2 — 2427 — 24%)ex?
— A Age(A? — 8+ Ad)ay — (247 — AZA7 + 243 )ey?
+ (A7 - A7),

Factoring Fix(z,y), we get

Fi(z,y) = (€% = (apn + g D2y +y° + (masw — 1 "y, 1) %e)
(@ = (papy " + g )2y + 92 + (i — 1 tn)’e)
where the quadratic factors are reducible and perfect squares if and
only if (uipk)? = 1 and (p;p;,')? = 1, respectively. Therefore, f*(z,y)
is divisible by
Fi(z,y) if B} # By,
2 -1, -1 2 el e i (u)? = 1
o = (patty, +q b)Y + Y7+ (g —py ) e 3 (pape)” = 1,
2% — (gt i Dy + v% + (i — g )% 3 (pap)? = 1.
Hence, the set {1,p1,uf1,u2,p§1, ooy ey i} is a cyclic multiplica-
tive group if p;ur # —1 forall 1 < ik <r.
Now we set Ry(y) = y and write

2r
i=0
where R;(y), R2(y), ..., R2-(y) denote radical expressions in y over

Fq' Thus, Rz(Rk(y)) € {7R(y0)’R(y0)aR1(y)7" . 7R2r(y)} for all
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0 < i,k < 2r. Assume that R;(Rk(y) # —Ro(y) for all 0 < i,k < 2r

and then write
2r+1

@zy(xay) = Z ai(y)xi
=0
where a;(y) € F,ly] for 0 < ¢ < 2r + 1 and deg(a;(y)) < 2r for
1<i<2r+1. So,

2r+1 2r+1
Z ai(R;(y))2" = Q, (z, Rj(y)) = Quy(x,y) = Z ai(y)z’

for all 0 < j < 2r. Thus, a;(y) = ¢; € Fyfor i = 1,2,...,2r +1
and Qy(z,y) = Hi(y) + Ha(x) for some polynomials Hy(z) and Ha(y)
with coefficients in F,. Further, since Q,y(z, ) = 0, Hy(z)+Hz(z) =0
and so Quy(z,y) = H1(x) — H1(y). Hence, comparing only the highest

degree terms, ,u?“’l =1 for all :. Therefore, if p;ur = —1 for some i
and k, then z 4+ Ry(y) = = + y is a factor of f*(z,y). Thus, f(z) is
an even function and the set {1, —1, 1, p; ", o, pig oo s s '} is @

cyclic multiplicative group.
Therefore, combining with Lemma 4,
(6) (z—y)Quy(z,y) =
D2r+1,a(m) _D2r+1,a(y) if ik # —1forall 1 < ia k < r,
(Dar+2,0()—Dari2.a(y))/(x+y) if pipur =—1 for some 1<i,k<r.
Now write
f(z) = fo(a) + fi(@)Deal@) + fo(2) Dio(@) + - + fin(2) DY (@),

where D, ,(x) denotes the Dickson polynomial in (6) and deg(f;(z)) =
t; <tfor 0 <i<m.

This decomposition is clearly unique. One also sees that
f(z) = fi(@)D; (z) = ) fi(h(2))D} ,(x)
i=0 i=0

for all A(z) € {Ro(z), Ri(z),... ,Ror(x)} = W if ¢t = 2r 4+ 1 and, for
all h(z) € WU {—Ro(z)} if t = 2r 4+ 2. Therefore, f;(z) = ¢; € F, and

f(z) = Z ¢iDj 4(x) = g(D1,a(2))



10 M.T. ACOSTA AND J. GOMEZ-CALDERON

where g(z) = cop+ 1z + -+ + cna™ € Fylz]. mi

Corollary 6. With assumptions and notation as in Lemma 5, if d
is odd, then

f(z) = 9(D2r41,a(2))
for some g(z) in F,lz].

Lemma 7. Let f(z) = 2% + ag_12?"1 + -+ + a1z + ag denote a
montc polynomial with coefficients in Fy, and degree d relatively prime
to q (odd). Assume aq—1 = 0. Let Q(z,y) denote the product of all
quadratic irreducible factors with no xy-term of f*(z,y) over Fq, the
algebraic closure of F,. Assume deg,(Q(z,y)) =2s > 1. Then,

(i) Q(z,y) = (2 +b)*T — (y* + b)*T* for some b in F,.

Eii]) (s+1)|d and f(z) = g((x® +b)*™*) for some b € F, and g(z) in
Fylz].

Proof. By Lemma 3, Q(z,y) = [[]_,(z® — p?y* + 0(u? — 1)) where
W1, M2, - - - s denote s distinct dth roots of unity and 0 = —2a4_2/d #
0. Hence, working formally, we obtain

F(v) = &y u2? — 02 ~ 1)
for all 1 < ¢ < s. Therefore,
1) = FEE 2 y? — 0 — 1) — B(42 — 1)

for 1 < i,k < s and consequently z2 — p2u2y® + O(p2u? — 1) is also a
factor of f*(z,y). Thus, the set {1,u3,u3,...,u2} is a multiplicative
cyclic group and

S

(2* — y*)Q(z,y) = [[(2* — w'y* + (v — 1)9)

i=0
— (LL'Q _ 8)5—',—1 _ (y2 _ a)s—‘,—l
for some (s + 1)th primitive root of unity p. Therefore,

t

f*(@,y) = (H(z) — Hy) [ [ fi(z,9)

i=1
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where H(z) = (z2 — 9)**! and fi(z,v), f2(z,y),..., fi(z,y) are irre-
ducible over Fj.

Now we write the unique representation

f(@) = fo(z) + fi(e)H(z) + - - + frm(x) H" (z)
where deg(f;) —t; < 2s+ 2. We also write

2542
H(z) - H(y) = [] (= — Ri(y))
i=1
where R1(y), R2(y), - - , Ras+2(y) denotes radical expressions on y over

F,. Hence,
flz) = Z fi(R;j(z))H' (z)

for all 1 < j < 2s+ 2. Therefore, f;(z) =¢; € F, and f(z) = g(H(z))
where g(z) = Y 1", c;iz’ € Fylx]. o

We are ready for our main result.

Theorem 8. Let f(z) denote a monic polynomial with coefficients
in F, and degree d relatively prime to q (odd). Assume f*(z,y) =
f(z) — f(y) has a total of r + s quadratic irreducible factors over F,
the algebraic closure of Fy,  with nonzero xy-term and s with no xy-

term. Then

(i) If s > 1, then (s + 1)|d and f(x — ag—1/d) = h((z* + b)**1) for
some b € F, and h(x) € Fy[z].

(ii) If r > 1, then the product of all quadratic irreducible factors with
nonzero xy-term of f*(x — aq—1/d,y — aq—1/d) can be written as

T

Quy(@,y) = [[(@® = (i + m; Dy + v* — ag_a(pi — p; *)*/d)
i=1

where p; denotes a dth root of unity.
(iil) If pipre # =1 for all 1 < i,k < r, then (2r 4+ 1)|d, (xz —

Y)Qay(2,y) = Dari1,a(x) — Dary1,a(y), and f(z) = g(Dary1,a(z)) for
some a € Fy and g(z) € Fylz].
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(iv) If pipx = —1 for some 1 < i,k < r, then (2r + 2)|d, f(x) is
an even function, (¢* — y*)Quy(x,y) = Dari2.4(2) — Dary2,a(y), and
f(x) = g(Dary2,a(z)) for some a € Fy and g(z) € Fylz].

Proof. Since (d,q) = 1, f(z—a4—1/d)) = 2¢+ag_sx? %+ -+a1z+ao.
Therefore, the theorem follows from Lemmas 5 and 7. u]
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REFERENCES

1. S.D. Cohen, The factorable core of polynomials over finite fields, J. Austral.
Math. Soc. 49 (1990), 309-318.

2. , Bxceptional polynomials and the reducibility of substitution polynomi-
als, Enseign. Math. (2) 36 (1990), 53-65.

3. L.E. Dickson, The analytic representation of substitutions on a power prime
number of letters with a discussion of the linear group, Ann. of Math. 11 (1897),
65-120, 161-183.

4. J. Gomez-Calderon and D.J. Madden, Polynomials with small value set over
finite fields, J. Number Theory 28 (1988), 167—188.

5. D.R. Hayes, A geometric approach to permutations polynomials over a finite
field, Duke Math. J. 34 (1967), 293-305.

6. R. Lidl, G.L. Mullen and G. Turnwald, Dickson polynomials, Longman Scien-
tific and Technical, Essex, England, 1993.

7. D. Wan, On a conjecture of Carlitz, J. Austral. Math. Soc. 43 (1987), 375-384.

DEPARTMENT OF MATHEMATICS, SOUTHWEST TEXAS STATE UNIVERSITY, SAN
MARcos, TEXAS 78666-4603

DEPARTMENT OF MATHEMATICS, THE PENNSYLVANIA STATE UNIVERSITY, NEW
KENSINGTON CAamMPUS, NEW KENSINGTON, PENNSYLVANIA 15068
E-mail address: JxG11@psuvm.psu.edu



