THE SECOND-ORDER FACTORABLE CORE OF POLYNOMIALS OVER FINITE FIELDS

MARIA T. ACOSTA AND JAVIER GOMEZ-CALDERON

ABSTRACT. Let F_q denote the finite field of order q and odd characteristic p. For f(x) in $F_q[x]$, let $f^*(x,y)$ denote the polynomial f(x)-f(y). Assume that the degree of f(x) is relatively prime to q. Let r+s denote the total number of quadratic irreducible factors of $f^*(x,y)$ over the algebraic closure of F_q,r with nonzero xy-term and $s(\geq 1)$ with no xy-term. We show that $f(x-c)=h((x^2+b)^{s+1})$ for some h(x) in $F_q[x]$ and that either $f(x-c)=g(D_{2r+1,a}(x))$ or $f(x-c)=g(D_{2r+2,a}(x))$ for some g(x) in $F_q[x]$ where $D_{m,a}(x)\in F_q[x]$ denotes a Dickson polynomial of degree m and parameter a.

1. Introduction. Let F_q denote the finite field of order q and characteristic p. For f(x) in $F_q[x]$, let $f^*(x,y)$ denote the substitution polynomial f(x) - f(y). The polynomial $f^*(x,y)$ has frequently been used in questions on the value set of f(x), see, for example, Wan [7], Dickson [3], Hayes [5] and Gomez-Calderon and Madden [4]. Recently in [1], Cohen showed that if f(x) is separable (not in $F_q[x^p]$) then $f^*(x,y)$ is factorable, a product of linear factors in $F_q[x,y]$, if and only if $f(x) = L^{r}(x) + b$ where $b \in F_q$ and L is an affine p^s -polynomial over F_q , with $r|(p^s-1)$ if L is actually an affine p-polynomial of degree exceeding 1. Also in [1], Cohen proved that if f(x) is separable and monic, then f(x) = g(h(x)) for some factorable polynomial h(x), in $F_q[x]$, of degree L, where L denotes the total number of linear factors of $f^*(x,y)$. Now in [2], Cohen showed that if f(x) is indecomposable in $F_q[x]$ and $f^*(x,y)$ has an irreducible quadratic, then f(x) = aD(x+b) + c, where $a(\neq 0), b, c$ belong to F_q and either D(x) is a Dickson polynomial of odd prime degree $(\neq 0)$ or p is odd and D(x) is a (p,2)-polynomial in C_4 , a special class of polynomials introduced in [1].

In this paper we will use an elementary approach to show that if f(x) has degree d relatively prime to q (odd) and $f^*(x, y)$ has a total of r + s quadratic irreducible factors over \overline{F}_q , the algebraic closure of F_q , r with nonzero xy-terms and $s \geq 1$ with no xy-terms, then

Received by the editors on March 30, 1995, and in revised form on May 5, 1997.

Copyright ©1999 Rocky Mountain Mathematics Consortium

- (i) $f(x-c) = h((x^2+b)^{s+1})$ for some $h(x) \in F_q[x]$.
- (ii) The product of all the quadratic irreducible factors with nonzero xy-term of $f^*(x, y)$ can be written as

$$\prod_{i=1}^{r} (x^2 - (\mu_i + \mu_i^{-1})xy + y^2 + e(\mu_i - \mu_i^{-1})^2)$$

for some dth roots of unity $\mu_1, \mu_2, \ldots, \mu_r$.

(iii)

$$f(x-b) = \begin{cases} g(D_{2r+1,a}(x)) & \text{for some } g(x) \text{ in } F_q[x] \\ & \text{if } \mu_i \mu_k^{-1} \neq -1 \text{ for all } 1 \leq i, k \leq r \\ g(D_{2r+2,a}(x)) & \text{for some } g(x) \text{ in } F_q[x], \text{ otherwise} \end{cases}$$

where $D_{t,a}(x)$ denotes a Dickson polynomial of degree t defined by

$$D_{t,a}(x) = \sum_{i=0}^{[t/2]} \frac{t}{t-i} {t-i \choose i} (-a)^i x^{t-2i}, \quad a \in F_q.$$

Hence, $D_{t,a}(x)$ and $Q_{s,b}(x) = (x^2 + b)^{s+1}$ can be seen as the second-order factorable part of f(x) in $F_q[x]$.

2. Theorem and proof. The following lemmas will be needed to prove our main result.

Lemma 1. Let $f(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_1x + a_0$ denote a monic polynomial with coefficients in F_q and degree d relatively prime to q. Assume $a_{d-1} = 0$. Let the prime factorization of $f^*(x, y) = f(x) - f(y)$ be given by

$$f^*(x,y) = (x-y) \prod_{i=1}^r f_i(x,y).$$

Let

$$f_i(x,y) = \sum_{i=1}^{n_i} h_{ij}(x,y)$$

be the homogeneous decomposition of $f_i(x,y)$ so that $h_{ij}(x,y)$ is homogeneous of degree j and $\deg(h_{in_i}(x,y)) = n_i = \deg(f_i)$. Then $h_{in_i-1}(x,y) = 0$ for $i = 1, 2, \ldots, r$.

Proof. First we consider the homogeneous decomposition

$$(x-y)\prod_{i=1}^{r} f_i(x,y) = f^*(x,y) = x^d - y^d + a_{d-1}(x^{d-1} - y^{d-1}) + \dots + a_1(x-y).$$

Simply by multiplying, we can interpret the first two terms as

(1)
$$x^{d} - y^{d} = (x - y) \prod_{i=1}^{r} h_{in_{i}}(x, y)$$

(2)
$$a_{d-1}(x^{d-1} - y^{d-1}) = (x - y) \sum_{i=1}^{r} \left(\prod_{j \neq i} h_{jn_j}(x, y) \right) h_{in_i - 1}(x, y).$$

Dividing (2) by (1), we find

$$\frac{a_{d-1}(x^{d-1} - y^{d-1})}{x^d - y^d} = \sum_{i=1}^r \frac{h_{in_i-1}(x, y)}{h_{in_i}(x, y)}$$

which is a partial decomposition, since (d,q)=1, and therefore unique. Thus $a_{d-1}=0$ implies $h_{in_i-1}(x,y)=0$ for all i.

Lemma 2. Let $f(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_1x + a_0$ denote a monic polynomial with coefficients in F_q and degree d relatively prime to q. Assume $a_{d-1} = 0$. Let L(x,y) denote the product of all the linear factors of $f^*(x,y)$ in $\overline{F}_q[x,y]$ where \overline{F}_q denotes the algebraic closure of F_q . Then

- i) $L(x,y) = \prod_{i=1}^{r} (x \mu^{i}y) = x^{r} y^{r}$ for some rth primitive root of unity μ .
- ii) $f(x) = h(x^r)$ for some h(x) in $F_q[x]$.

Proof. By Lemma 1 every linear factor of $f^*(x, y)$ is homogeneous. Thus,

$$L(x,y) = \prod_{i=1}^{r} (x - b_i y)$$

for some b_1, b_2, \ldots, b_r in F_q . Hence, $f(b_i x) = f(x)$ for $1 \le i \le r$ and so $f(b_i b_k x) = f(b_k x) = f(x)$ for all i and k. Therefore, b_1, b_2, \ldots, b_r form a multiplicative cyclic group of order r, r|d and

(3)
$$f^*(x,y) = (x^r - y^r) \prod_{i=1}^s f_i(x,y)$$

where $f_1(x, y), f_2(x, y), \ldots, f_s(x, y)$ are irreducible polynomials. Now write

$$f(x) = f_0(x) + f_1(x)x^r + f_2(x)x^{2r} + \dots + f_m(x)x^{rm}$$

with $\deg(f_i(x)) < r$. This decomposition is clearly unique. So, $f(x) = f(b_i x)$ for $1 \le i \le r$ implies

$$f(x) = f_0(x) + f_1(x)x^r + \dots + f_m(x)x^{mr}$$

= $f_0(b_i x) + f_1(b_i x)x^r + \dots + f_m(b_i x)x^{mr}$

for i = 1, 2, ..., r. Therefore, $f_i(x) = c_i \in F_q$ and $f(x) = c_0 + c_1 x^r + ... + c_m x^{mr} = h(x^r)$ where $h(x) = c_0 + c_1 x + ... + c_m x^m \in F_q[x]$.

Lemma 3. Let $f(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_1x + a_0$ denote a monic polynomial with coefficients in F_q and degree d relatively prime to q. Assume $a_{d-1} = 0$. Assume $x^2 + bxy + cy^2 + e$ is an irreducible factor of $f^*(x, y)$ over \overline{F}_q . Then

- (i) $a_{d-2} \neq 0$
- (ii) b(c-1) = 0
- (iii) If c = 1, then $ed = -a_{d-2}(\mu_1 \mu_1^{-1})^2$.
- (iv) If b=0, then $ed=2a_{d-2}(1-\mu_1^2)$ where $(x-\mu_1 y)(x-\mu_2 y)=x^2+bxy+cy^2$ and $\mu_1^d=\mu_2^d=1$.

Proof. Let the prime factorization of $f^*(x,y)$ be given by

$$f^*(x,y) = \prod_{i=1}^s f_i(x,y),$$

where $f_1(x,y) = x^2 + bxy + cy^2 + e$. Then, comparing the highest degree terms $x^2 + bxy + cy^2 = (x - \mu_1 y)(x - \mu_2 y)$ for two distinct dth roots of

unity μ_1 and μ_2 . Now, with notation as in Lemma 1, we consider the ratio of the highest two homogeneous components to find

$$\frac{(x^{d-2} - y^{d-2})a_{d-2}}{x^d - y^d} = \sum_{i=1}^s \frac{h_{in_i-2}(x,y)}{h_{in_i}(x,y)}
= \frac{e}{(x - \mu_1 y)(x - \mu_2 y)} + \sum_{i=2}^s \frac{h_{in_i-2}(x,y)}{h_{in_i}(x,y)}
= \frac{e}{y(\mu_1 - \mu_2)} \left(\frac{1}{(x - \mu_1 y)} + \frac{-1}{(x - \mu_2 y)}\right)
+ \sum_{i=2}^s \frac{h_{in_i-2}(x,y)}{h_{in_i}(x,y)}.$$

On the other hand,

$$\frac{x^{d-2} - y^{d-2}}{x^d - y^d} = \sum_{i=0}^{d-1} \frac{A_i}{x - \mu^i y}$$

for a dth primitive root of unity μ and some constants $A_0, A_1, \ldots, A_{d-1}$ in the algebraic closure of the rational function field $F_q(y)$. So, solving for the A_i in the usual way,

(5)
$$\frac{x^{d-2} - y^{d-2}}{x^d - y^d} = \sum_{i=0}^{d-1} \frac{\mu^{-i} - \mu^i}{dy(x - \mu^i y)}.$$

Hence, combining (4) and (5),

$$\frac{e}{y(\mu_1 - \mu_2)} = \frac{(\mu_1^{-1} - \mu_1)a_{d-2}}{dy}$$
$$\frac{e}{y(\mu_2 - \mu_1)} = \frac{(\mu_2^{-1} - \mu_2)a_{d-2}}{dy}.$$

Therefore,

$$a_{d-2}(\mu_1^{-1} - \mu_1) = -(\mu_2^{-1} - \mu_2)a_{d-2}$$

and

$$a_{d-2}(\mu_1 + \mu_2)(1 - \mu_1\mu_2) = -a_{d-2}b(1 - c) = 0.$$

Thus, if $c = \mu_1 \mu_2 = 1$, then

$$de = a_{d-2}(\mu_1 - \mu_2)(\mu_1^{-1} - \mu_1) = -a_{d-2}(\mu_1 - \mu_1^{-1})^2$$

while if $b = \mu_1 + \mu_2 = 0$, we have

$$de = a_{d-2}(\mu_1 - \mu_2)(\mu_1^{-1} - \mu_1) = 2a_{d-2}(1 - \mu_1^2).$$

Lemma 4. Let d be a positive integer and assume that F_q contains a primitive dth root of unity μ . Put

$$A_i = \mu^i + \mu^{-i}$$
 and $B_i = \mu^i - \mu^{-i}$.

Then, for each a in F_q , we have

(i) If d is odd,

$$D_{d,a}(x) - D_{d,a}(y) = (x - y) \prod_{i=1}^{(d-1)/2} (x^2 - A_i xy + y^2 + B_i^2 a).$$

(ii) If d is even,

$$D_{d,a}(x) - D_{d,a}(y) = (x^2 - y^2) \prod_{i=1}^{(d-2)/2} (x^2 - A_i xy + y^2 + B_i^2 a).$$

Moreover, for $a \neq 0$, the quadratic factors are different from each other and are irreducible in $F_q[x,y]$.

Proof. See [6, Theorem 3.12].

Lemma 5. Let $f(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_1x + a_0$ denote a monic polynomial with coefficients in F_q and degree d relatively prime to q (odd). Assume $a_{d-1} = 0$. Let

$$Q_{xy}(x,y) = \prod_{i=1}^r (x^2 - (\mu_i + \mu_i^{-1})xy + y^2 + e(\mu_i - \mu_i^{-1})^2)$$

denote the product of all quadratic irreducible factors with nonzero xy-term of $f^*(x,y)$ over \overline{F}_q , the algebraic closure of F_q . Assume $\deg_x(Q_{xy})=2r>1$. Then

(i) If $\mu_i \mu_k \neq -1$ for all $1 \leq i, k \leq r$, then (2r+1)|d, $(x-y)Q_{xy}(x,y) = D_{2r+1,a}(x) - D_{2r+1,a}(y)$, and $f(x) = g(D_{2r+1,a}(x))$ for some $a \in F_q$ and $g(x) \in F_q[x]$.

(ii) If $\mu_i \mu_k = -1$ for some $1 \le i, k \le r$, then (2r+2)|d, f(x) is an even function, $(x^2 - y^2)Q_{xy}(x, y) = D_{2r+2,a}(x) - D_{2r+2,a}(y)$ and $f(x) = g(D_{2r+2,a}(x))$ for some $a \in F_q$ and $g(x) \in F_q[x]$.

Proof. Working formally, i.e., working in the algebraic closure of the rational function field $F_{\sigma}(y)$, we obtain

$$f(y) = f\left(\frac{A_i y \pm B_i \sqrt{y^2 - 4e}}{2}\right)$$

where $A_i = \mu_i + \mu_i^{-1}$ and $B_i = \mu_i - \mu_i^{-1}$ for $1 \le i \le r$. Thus,

$$f(y) = f\left(\frac{A_i A_k y \pm A_i B_k \sqrt{y^2 - 4e} \pm B_i \sqrt{(A_k y \pm B_k \sqrt{y^2 - 4e})^2 - 16e}}{4}\right)$$

for $i = 1, 2, \ldots, r$. Therefore,

$$\phi_{ik}^{(1)} = \left(A_i A_k y + A_i B_k \sqrt{y^2 - 4e} \right) + B_i \sqrt{(A_k y + B_k \sqrt{y^2 - 4e})^2 - 16e} / 4,$$

$$\phi_{ik}^{(2)} = \left(A_i A_k y + A_i B_k \sqrt{y^2 - 4e} \right) - B_i \sqrt{(A_k y + B_k \sqrt{y^2 - 4e})^2 - 16e} / 4,$$

$$\phi^{(3)} = \left(A_i A_k y - A_i B_k \sqrt{y^2 - 4e} \right) + B_i \sqrt{(A_k y - B_k \sqrt{y^2 - 4e})^2 - 16e} / 4,$$

and

$$\phi_{ik}^{(4)} = \left(A_i A_k y - A_i B_k \sqrt{y^2 - 4e} - B_i \sqrt{(A_k y - B_k \sqrt{y^2 - 4e})^2 - 16e} \right) / 4$$

are roots of $f^*(x,y)$. It is clear that $\phi_{ik}^{(1)} \neq \phi_{ik}^{(2)}$ and $\phi_{ik}^{(3)} \neq \phi_{ik}^{(4)}$. One also sees, by straightforward simplification, that the four roots are distinct if $B_i^2 \neq B_k^2$.

Now we set

$$4x = A_i A_k y \pm A_i B_k \sqrt{y^2 - 4e} \pm B_i \sqrt{(A_k y \pm B_k \sqrt{y^2 - 4e})^2 - 16e}$$

and then remove radicals to obtain

$$F_{ik}(x,y) = x^4 - A_i A_k x^3 y + (A_i^2 - 2 + A_k^2) x^2 y^2 - A_i A_k x y^3$$

$$+ y^4 + (A_i^2 A_k^2 - 2A_i^2 - 2A_k^2) e x^2$$

$$- A_i A_k e (A_i^2 - 8 + A_k^2) x y - (2A_i^2 - A_i^2 A_k^2 + 2A_k^2) e y^2$$

$$+ (A_i^2 - A_k^2)^2 e^2.$$

Factoring $F_{ik}(x, y)$, we get

$$F_{ik}(x,y) = (x^2 - (\mu_i \mu_k + \mu_i^{-1} \mu_k^{-1})xy + y^2 + (\mu_i \mu_k - \mu_i^{-1} \mu_k^{-1})^2 e)$$
$$(x^2 - (\mu_i \mu_k^{-1} + \mu_i^{-1} \mu_k)xy + y^2 + (\mu_i \mu_k^{-1} - \mu_i^{-1} \mu_k)^2 e)$$

where the quadratic factors are reducible and perfect squares if and only if $(\mu_i \mu_k)^2 = 1$ and $(\mu_i \mu_k^{-1})^2 = 1$, respectively. Therefore, $f^*(x, y)$ is divisible by

$$\begin{cases} F_{ik}(x,y) & \text{if } B_i^2 \neq B_k^2, \\ x^2 - (\mu_i \mu_k^{-1} + \mu_i^{-1} \mu_k) xy + y^2 + (\mu_i \mu_k^{-1} - \mu_i^{-1} \mu_k)^2 e & \text{if } (\mu_i \mu_k)^2 = 1, \\ x^2 - (\mu_i \mu_k + \mu_i^{-1} \mu_k^{-1}) xy + y^2 + (\mu_i \mu_k - \mu_i^{-1} \mu_k^{-1})^2 e & \text{if } (\mu_i \mu_k^{-1})^2 = 1. \end{cases}$$

Hence, the set $\{1, \mu_1, \mu_1^{-1}, \mu_2, \mu_2^{-1}, \dots, \mu_r, \mu_r^{-1}\}$ is a cyclic multiplicative group if $\mu_i \mu_k \neq -1$ for all $1 \leq i, k \leq r$.

Now we set $R_0(y) = y$ and write

$$\overline{Q}_{xy}(x,y) = (x-y)Q_{xy}(x,y) = \prod_{i=0}^{2r} (x-R_i(y))$$

where $R_1(y), R_2(y), \ldots, R_{2r}(y)$ denote radical expressions in y over \overline{F}_q . Thus, $R_i(R_k(y)) \in \{-R(y_0), R(y_0), R_1(y), \ldots, R_{2r}(y)\}$ for all

 $0 \le i, k \le 2r$. Assume that $R_i(R_k(y) \ne -R_0(y))$ for all $0 \le i, k \le 2r$ and then write

$$\overline{Q}_{xy}(x,y) = \sum_{i=0}^{2r+1} a_i(y)x^i$$

where $a_i(y) \in F_q[y]$ for $0 \le i \le 2r+1$ and $\deg(a_i(y)) \le 2r$ for $1 \le i \le 2r+1$. So,

$$\sum_{i=0}^{2r+1} a_i(R_j(y))x^i = \overline{Q}_{xy}(x, R_j(y)) = \overline{Q}_{xy}(x, y) = \sum_{i=0}^{2r+1} a_i(y)x^i$$

for all $0 \leq j \leq 2r$. Thus, $a_i(y) = c_i \in F_q$ for $i = 1, 2, \ldots, 2r+1$ and $Q_{xy}(x,y) = H_1(y) + H_2(x)$ for some polynomials $H_1(x)$ and $H_2(y)$ with coefficients in F_q . Further, since $Q_{xy}(x,x) = 0$, $H_1(x) + H_2(x) = 0$ and so $Q_{xy}(x,y) = H_1(x) - H_1(y)$. Hence, comparing only the highest degree terms, $\mu_i^{2r+1} = 1$ for all i. Therefore, if $\mu_i \mu_k = -1$ for some i and k, then $x + R_0(y) = x + y$ is a factor of $f^*(x,y)$. Thus, f(x) is an even function and the set $\{1, -1, \mu_1, \mu_1^{-1}, \mu_2, \mu_2^{-1}, \ldots, \mu_r, \mu_r^{-1}\}$ is a cyclic multiplicative group.

Therefore, combining with Lemma 4,

$$\begin{aligned} &(6) \quad (x-y)Q_{xy}(x,y) = \\ &\begin{cases} D_{2r+1,a}(x) - D_{2r+1,a}(y) & \text{if } \mu_i \mu_k \neq -1 \text{ for all } 1 \leq i,k \leq r, \\ &(D_{2r+2,a}(x) - D_{2r+2,a}(y))/(x+y) & \text{if } \mu_i \mu_k = -1 \text{ for some } 1 \leq i,k \leq r. \end{aligned}$$

Now write

$$f(x) = f_0(x) + f_1(x)D_{t,a}(x) + f_2(x)D_{t,a}^2(x) + \dots + f_m(x)D_{t,a}^m(x),$$

where $D_{t,a}(x)$ denotes the Dickson polynomial in (6) and $\deg(f_i(x)) = t_i < t$ for $0 \le i \le m$.

This decomposition is clearly unique. One also sees that

$$f(x) = \sum_{i=0}^{m} f_i(x) D_{t,a}^i(x) = \sum_{i=0}^{m} f_i(h(x)) D_{t,a}^i(x)$$

for all $h(x) \in \{R_0(x), R_1(x), \dots, R_{2r}(x)\} = W$ if t = 2r + 1 and, for all $h(x) \in W \cup \{-R_0(x)\}$ if t = 2r + 2. Therefore, $f_i(x) = c_i \in F_q$ and

$$f(x) = \sum_{i=0}^{m} c_i D_{t,a}^i(x) = g(D_{t,a}(x))$$

where $g(x) = c_0 + c_1 x + \dots + c_m x^m \in F_q[x]$.

Corollary 6. With assumptions and notation as in Lemma 5, if d is odd, then

$$f(x) = g(D_{2r+1,a}(x))$$

for some g(x) in $F_q[x]$.

Lemma 7. Let $f(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_1x + a_0$ denote a monic polynomial with coefficients in F_q and degree d relatively prime to q (odd). Assume $a_{d-1} = 0$. Let Q(x,y) denote the product of all quadratic irreducible factors with no xy-term of $f^*(x,y)$ over \overline{F}_q , the algebraic closure of F_q . Assume $\deg_x(Q(x,y)) = 2s > 1$. Then,

(i)
$$Q(x,y) = (x^2 + b)^{s+1} - (y^2 + b)^{s+1}$$
 for some b in F_q .

(ii) (s+1)|d and $f(x) = g((x^2+b)^{s+1})$ for some $b \in F_q$ and g(x) in $F_q[x]$.

Proof. By Lemma 3, $Q(x,y) = \prod_{i=1}^{s} (x^2 - \mu_i^2 y^2 + \partial(\mu_i^2 - 1))$ where $\mu_1, \mu_2, \ldots, \mu_s$ denote s distinct dth roots of unity and $\partial = -2a_{d-2}/d \neq 0$. Hence, working formally, we obtain

$$f(y) = f(\pm \sqrt{\mu_i^2 y^2 - \partial(\mu_i^2 - 1)})$$

for all $1 \leq i \leq s$. Therefore,

$$f(y) = f(\pm \sqrt{\mu_i^2 (\mu_k^2 y^2 - \partial(\mu_k^2 - 1)) - \partial(\mu_i^2 - 1)})$$

for $1 \leq i, k \leq s$ and consequently $x^2 - \mu_i^2 \mu_k^2 y^2 + \partial(\mu_i^2 \mu_k^2 - 1)$ is also a factor of $f^*(x,y)$. Thus, the set $\{1, \mu_1^2, \mu_2^2, \dots, \mu_s^2\}$ is a multiplicative cyclic group and

$$(x^{2} - y^{2})Q(x,y) = \prod_{i=0}^{s} (x^{2} - \mu^{i}y^{2} + (\mu^{i} - 1)\partial)$$
$$= (x^{2} - \partial)^{s+1} - (y^{2} - \partial)^{s+1}$$

for some (s+1)th primitive root of unity μ . Therefore,

$$f^*(x,y) = (H(x) - H(y)) \prod_{i=1}^t f_i(x,y)$$

where $H(x) = (x^2 - \partial)^{s+1}$ and $f_1(x, y), f_2(x, y), \dots, f_t(x, y)$ are irreducible over F_q .

Now we write the unique representation

$$f(x) = f_0(x) + f_1(x)H(x) + \dots + f_m(x)H^m(x)$$

where $deg(f_i) - t_i < 2s + 2$. We also write

$$H(x) - H(y) = \prod_{i=1}^{2s+2} (x - R_i(y))$$

where $R_1(y), R_2(y), \ldots, R_{2s+2}(y)$ denotes radical expressions on y over F_q . Hence,

$$f(x) = \sum_{i=0}^{m} f_i(R_j(x))H^i(x)$$

for all $1 \leq j \leq 2s + 2$. Therefore, $f_i(x) = c_i \in F_q$ and f(x) = g(H(x)) where $g(x) = \sum_{i=0}^m c_i x^i \in F_q[x]$.

We are ready for our main result.

Theorem 8. Let f(x) denote a monic polynomial with coefficients in F_q and degree d relatively prime to q (odd). Assume $f^*(x,y) = f(x) - f(y)$ has a total of r + s quadratic irreducible factors over \overline{F}_q , the algebraic closure of F_q , r with nonzero xy-term and s with no xy-term. Then

- (i) If $s \ge 1$, then (s+1)|d and $f(x a_{d-1}/d) = h((x^2 + b)^{s+1})$ for some $b \in F_q$ and $h(x) \in F_q[x]$.
- (ii) If $r \ge 1$, then the product of all quadratic irreducible factors with nonzero xy-term of $f^*(x a_{d-1}/d, y a_{d-1}/d)$ can be written as

$$Q_{xy}(x,y) = \prod_{i=1}^{r} (x^2 - (\mu_i + \mu_i^{-1})xy + y^2 - a_{d-2}(\mu_i - \mu_i^{-1})^2/d)$$

where μ_i denotes a dth root of unity.

(iii) If $\mu_i \mu_k \neq -1$ for all $1 \leq i, k \leq r$, then (2r+1)|d, $(x-y)Q_{xy}(x,y) = D_{2r+1,a}(x) - D_{2r+1,a}(y)$, and $f(x) = g(D_{2r+1,a}(x))$ for some $a \in F_q$ and $g(x) \in F_q[x]$.

(iv) If $\mu_i \mu_k = -1$ for some $1 \le i, k \le r$, then (2r+2)|d, f(x) is an even function, $(x^2 - y^2)Q_{xy}(x, y) = D_{2r+2,a}(x) - D_{2r+2,a}(y)$, and $f(x) = g(D_{2r+2,a}(x))$ for some $a \in F_q$ and $g(x) \in F_q[x]$.

Proof. Since (d,q)=1, $f(x-a_{d-1}/d)=x^d+a_{d-2}x^{d-2}+\cdots+a_1x+a_0$. Therefore, the theorem follows from Lemmas 5 and 7.

Acknowledgment. The authors thank the referee for his suggestions which improved the final version of the paper.

REFERENCES

- 1. S.D. Cohen, The factorable core of polynomials over finite fields, J. Austral. Math. Soc. 49 (1990), 309-318.
- 2. ——, Exceptional polynomials and the reducibility of substitution polynomials, Enseign. Math. (2) **36** (1990), 53–65.
- 3. L.E. Dickson, The analytic representation of substitutions on a power prime number of letters with a discussion of the linear group, Ann. of Math. 11 (1897), 65–120, 161–183.
- 4. J. Gomez-Calderon and D.J. Madden, Polynomials with small value set over finite fields, J. Number Theory 28 (1988), 167–188.
- 5. D.R. Hayes, A geometric approach to permutations polynomials over a finite field, Duke Math. J. 34 (1967), 293–305.
- **6.** R. Lidl, G.L. Mullen and G. Turnwald, *Dickson polynomials*, Longman Scientific and Technical, Essex, England, 1993.
 - 7. D. Wan, On a conjecture of Carlitz, J. Austral. Math. Soc. 43 (1987), 375-384.

DEPARTMENT OF MATHEMATICS, SOUTHWEST TEXAS STATE UNIVERSITY, SAN MARCOS, TEXAS 78666-4603

DEPARTMENT OF MATHEMATICS, THE PENNSYLVANIA STATE UNIVERSITY, NEW KENSINGTON CAMPUS, NEW KENSINGTON, PENNSYLVANIA 15068 E-mail address: JxG11@psuvm.psu.edu