QUOTIENT NEARRINGS OF SEMILINEAR NEARRINGS

K.D. MAGILL, JR.

1. Introduction. All nearrings in this paper will be right nearrings. Let \mathbb{R}^n denote the n-dimensional Euclidean group. In [1], we showed that if λ is a continuous map from \mathbb{R}^n to \mathbb{R} and a multiplication *is defined on \mathbb{R}^n by $v*w=\lambda(w)v$, then $(\mathbb{R}^n,+,*)$ is a topological nearring if and only if $\lambda(av) = a\lambda(v)$ for all $v \in \mathbb{R}^n$ and $a \in \operatorname{Ran}(\lambda)$ where Ran (λ) denotes the range of λ . Any map from \mathbb{R}^n to \mathbb{R} with this property will be referred to as a semilinear map. Such maps are quite abundant. For example, let P be any homogeneous polynomial of degree m. That is, $P(tv_1, tv_2, \ldots, tv_n) = t^m P(v_1, v_2, \ldots, v_n)$ for all $t \in R$ and all $v \in R^n$. Define $\lambda(v) = |P(v)|^{1/m}$. Then λ is a semilinear map. If m is odd, one can also obtain a semilinear map λ by defining $\lambda(v) = (P(v))^{1/n}$. By a semilinear nearring, we mean a topological nearring $(R^n, +, *)$ where the multiplication * is induced by a semilinear map λ , and we will denote such a nearring by $N_{\lambda}(\mathbb{R}^n)$. In [1], we determined all the ideals (here, ideal means two-sided ideal) of a semilinear nearring. In this paper we show that every nonzero quotient nearring of a semilinear nearring is isomorphic to a semilinear nearring, and we determine precisely when two quotient nearrings of $N_{\lambda}(\mathbb{R}^n)$ are isomorphic. Among other things, we will see that, although $N_{\lambda}(\mathbb{R}^n)$ may have infinitely many quotient nearrings, it has, up to isomorphism, only finitely many and, in fact, this number cannot exceed n+1.

2. The results. Let $N_{\lambda}(R^n)$ be a semilinear nearring, and let (2.1) $C(\lambda) = \{w \in R^n : \lambda(v + aw) = \lambda(v) \text{ for all } a \in R \text{ and all } v \in R^n\}.$

 $C(\lambda) = \{w \in R : \lambda(v + aw) = \lambda(v) \text{ for all } a \in R \text{ and all } v \in R$

In [1], we proved the following

Theorem 2.1. Let λ be any nonconstant semilinear map from \mathbb{R}^n to \mathbb{R} . Then $C(\lambda) \subseteq \lambda^{-1}(0)$, $C(\lambda)$ is a linear subspace of \mathbb{R}^n and the

Received by the editors on August 5, 1996, and in revised form on July 1, 1997.

Copyright ©1999 Rocky Mountain Mathematics Consortium

proper ideals of $N_{\lambda}(R^n)$ are precisely the linear subspaces of $C(\lambda)$. In particular, $C(\lambda)$ is the largest proper ideal of $N_{\lambda}(R^n)$.

Let J be an ideal of $N_{\lambda}(\mathbb{R}^n)$. For $v \in N_{\lambda}(\mathbb{R}^n)$, we denote by $\langle v \rangle$ the equivalence class, induced by J, which contains v. The proofs of the next two results are contained in the proofs of Lemmas 3.12 and 3.13 of [2], but the proofs are short so we include them here.

Lemma 2.2. Let J be an ideal of $N_{\lambda}(R^n)$, and define a map λ^* from $N_{\lambda}(R^n)/J$ into R by $\lambda^*(\langle v \rangle) = \lambda(v)$. Then λ^* is a well-defined continuous map from $N_{\lambda}(R^n)/J$ into R which has the following properties:

(2.2)
$$\lambda^*(a\langle v\rangle) = a\lambda^*(\langle v\rangle)$$
 for all $\langle v\rangle \in N_\lambda(R^n)/J$ and all $a \in Ran(\lambda^*)$.

(2.3)
$$\langle v \rangle * \langle w \rangle = (\lambda^*(\langle w \rangle)(\langle v \rangle)$$
 for all $\langle v \rangle, \langle w \rangle \in N_{\lambda}(R^n)/J.$

Proof. Suppose $\langle u \rangle = \langle v \rangle$. Then u = v + w for some $w \in J \subseteq C(\lambda)$ and, from (2.1), we get $\lambda(u) = \lambda(v + w) = \lambda(v)$ which means λ^* is well defined. Note that $\operatorname{Ran}(\lambda^*) = \operatorname{Ran}(\lambda)$. For any $a \in \operatorname{Ran}(\lambda^*)$ and $v \in \mathbb{R}^n$, we have

$$\lambda^*(a\langle v\rangle) = \lambda^*(\langle av\rangle) = \lambda(av) = a\lambda(v) = a\lambda^*(\langle v\rangle)$$

and we see that (2.2) is satisfied. Furthermore, we have

$$\langle v \rangle * \langle w \rangle = \langle v * w \rangle = \langle \lambda(w)v \rangle = \lambda(w)\langle v \rangle = \lambda^*(\langle w \rangle)\langle v \rangle$$

which means (2.3) is satisfied. \square

The dimension of a subspace V of the vector space \mathbb{R}^n will be denoted by $\dim V$. We recall that, according to Theorem 2.1, every ideal J of $N_{\lambda}(\mathbb{R}^n)$ is a linear subspace of the vector space \mathbb{R}^n and, consequently, $N_{\lambda}(\mathbb{R}^n)/J$, in addition to being a nearring, is also a real vector space of

dimension $n - \dim J$. In the next result, we show that every quotient nearring of $N_{\lambda}(\mathbb{R}^n)$ is isomorphic to a semilinear nearring.

Theorem 2.3. Let J be a proper ideal of $N_{\lambda}(R^n)$. Then $N_{\lambda}(R^n)/J$ is isomorphic to a semilinear nearring. Specifically, let dim J=m, let α be any linear isomorphism from R^{n-m} onto $N_{\lambda}(R^n)/J$, and define a map μ from R^{n-m} to R by $\mu=\lambda^*\circ\alpha$. Then μ is a semilinear map and α is a topological isomorphism from $N_{\mu}(R^{n-m})$ onto $N_{\lambda}(R^n)/J$.

Proof. It is immediate from Lemma (2.2) that μ is a semilinear map from R^{n-m} onto R and it is also immediate that α is a continuous additive isomorphism from $N_{\mu}(R^{n-m})$ onto $N_{l}(R^{n})/J$. We need only show that it is a multiplicative homomorphism, so let $v, w \in N_{\mu}(R^{n-m})$, and we get

$$\alpha(v * w) = \alpha(\mu(w)v) = \mu(w)\alpha(v)$$

= $(\lambda^*(\alpha(w)))\alpha(v) = \alpha(v) * \alpha(w).$

This completes our proof.

In our next result, we determine precisely when two quotient nearrings of $N_{\lambda}(\mathbb{R}^n)$ are isomorphic.

Theorem 2.4. Let J_1 and J_2 be two ideals of $N_{\lambda}(R^n)$. Then the quotient nearrings $N_{\lambda}(R^n)/J_1$ and $N_{\lambda}(R^n)/J_2$ are isomorphic if and only if dim $J_1 = \dim J_2$.

Proof. Since the dimensions of the vector spaces $N_{\lambda}(R^n)/J_1$ and $N_{\lambda}(R^n)/J_2$ are $n-\dim J_1$ and $n-\dim J_2$, respectively, it is immediate that dim $J_1=\dim J_2$ whenever $N_{\lambda}(R^n)/J_1$ and $N_{\lambda}(R^n)/J_2$ are isomorphic. Suppose, conversely, that dim $J_1=\dim J_2=m$, and let φ be any linear automorphism of R^n such that $\varphi[J_1]=J_2$ and $\varphi[J_2]=J_1$. For any $v\in R^n$, we denote by $\langle v\rangle_1$ and $\langle v\rangle_2$ the equivalence classes containing v which are induced by the ideals J_1 and J_2 , respectively. Define a map $\hat{\varphi}$ from $N_{\lambda}(R^n)/J_1$ to $N_{\lambda}(R^n)/J_2$ by

One verifies, in a straightforward manner, that $\hat{\varphi}$ is a linear isomorphism from the linear space $N_{\lambda}(R^n)/J_1$ onto the linear space

 $N_{\lambda}(R^n)/J_2$. It is appropriate to remark at this point that, if φ would happen to be a nearring automorphism of $N_{\lambda}(R^n)$, then we would be finished because $\hat{\varphi}$ would then be a nearring isomorphism from $N_{\lambda}(R^n)/J_1$ onto $N_{\lambda}(R^n)/J_2$. However, we know only that φ is a linear automorphism of R^n where $\varphi[J_1] = J_2$ and $\varphi[J_2] = J_1$ and $\hat{\varphi}$ is a linear isomorphism from $N_{\lambda}(R^n)/J_1$ onto $N_{\lambda}(R^n)/J_2$ so we must proceed by other means. With this in mind, let α_1 be any linear isomorphism from R^{n-m} onto $N_{\lambda}(R^n)/J_1$, and define

$$\alpha_2 = \hat{\varphi} \circ \alpha_1.$$

Evidently, α_2 is a linear isomorphism from R^{n-m} onto $N_{\lambda}(R^n)/J_2$. Next, define maps λ_1^* and λ_2^* from $N_{\lambda}(R^n)/J_1$ and $N_{\lambda}(R^n)/J_2$, respectively, into R by

(2.6)
$$\lambda_1^*(\langle v \rangle_1) = \lambda(v) \quad \text{and} \quad \lambda_2^*(\langle v \rangle_2) = \lambda(v)$$

and then define

(2.7)
$$\mu_1 = \lambda_1^* \circ \alpha_1 \quad \text{and} \quad \mu_2 = \lambda_2^* \circ \alpha_2.$$

According to Theorem 2.3, μ_1 and μ_2 are semilinear maps from R^{n-m} into R and the semilinear nearring $N_{\mu_1}(R^{n-m})$ and $N_{\mu_2}(R^{n-m})$ are isomorphic to $N_{\lambda}(R^n)/J_1$ and $N_{\lambda}(R^n)/J_2$, respectively. Next define a self-map ψ of R^{n-m} by

(2.8)
$$\psi(v) = \alpha_1^{-1} \langle \varphi(u) \rangle_1 \text{ where } \alpha_1(v) = \langle u \rangle_1.$$

Let $a, b \in R$ and $u, v \in R^{n-m}$. Then there exist $w, z \in R^n$ such that $\alpha_1(u) = \langle w \rangle_1$ and $\alpha_1(v) = \langle z \rangle_1$. Then

$$(2.9) \quad \alpha_1(au+bv) = a\alpha_1(u) + b\alpha_1(v) = a\langle w \rangle_1 + b\langle z \rangle_1 = \langle aw+bz \rangle_1$$

and we have

$$\psi(au + bv) = \alpha_1^{-1} \langle \varphi(aw + bz) \rangle_1$$

$$= \alpha_1^{-1} \langle a\varphi(w) + b\varphi(z) \rangle_1$$

$$= \alpha_1^{-1} (a\langle \varphi(w) \rangle_1 + b\langle \varphi(z) \rangle_1)$$

$$= a\alpha_1^{-1} \langle \varphi(w) \rangle_1 + b\alpha_1^{-1} \langle \varphi(z) \rangle_1$$

$$= a\psi(u) + b\psi(v).$$

This verifies the fact that ψ is a linear endomorphism of R^{n-m} . Suppose $\psi(v)=0$. Then $\alpha_1(v)=\langle u\rangle_1$ for some $u\in R^n$ and $\alpha_1^{-1}\langle \varphi(u)\rangle_1=0$ which means $\langle \varphi(u)\rangle_1=0$. Consequently, $\varphi(u)\in J_1$ which implies $u\in J_2$. From this, we get $\alpha_2(v)=\hat{\varphi}\circ\alpha_1(v)=\hat{\varphi}\langle u\rangle_1=\langle u\rangle_2=0$ which implies v=0 since α_2 is a linear isomorphism. Thus, ψ is a linear automorphism of R^{n-m} .

We next assert that

(2.11)
$$\mu_1 \circ \psi = \mu_2.$$

Let $v \in \mathbb{R}^{n-m}$. Then $\alpha_1(v) = \langle u \rangle_1$ for some $u \in \mathbb{R}^n$ and, from (2.6)-(2.8), we get

$$(2.12) \quad \mu_1 \circ \psi(v) = \lambda_1^* \circ \alpha_1 \circ \alpha_1^{-1} \langle \varphi(u) \rangle_1 = \lambda_1^* (\langle \varphi(u) \rangle_1) = \lambda(\varphi(u)).$$

On the other hand, from (2.4)–(2.8), we get

(2.13)
$$\mu_2(v) = \lambda_2^* \circ \alpha_2(v) = \lambda_2^* \circ \hat{\varphi} \circ \alpha_1(v) \\ = \lambda_2^* \circ \hat{\varphi}(\langle u \rangle_1) = \lambda_2^* (\langle \varphi(u) \rangle_2 = \lambda(\varphi(u))$$

and (2.12) and (2.13) together provide a verification of (2.11). It now follows from Theorem 3.14 of [1] that the semilinear nearrings $N_{\mu_1}(R^{n-m})$ and $N_{\mu_2}(R^{n-m})$ are isomorphic, and we have now shown that the quotient nearrings $N_{\lambda}(R^n)/J_1$ and $N_{\lambda}(R^n)/J_2$ are isomorphic.

Corollary 2.5. Up to isomorphism, the nearring $N_{\lambda}(\mathbb{R}^n)$ has at most n+1 quotient nearrings.

Proof. The nearring $N_{\lambda}(R^n)$ has the maximal number of ideals whenever the map λ is such that dim $C(\lambda) = n - 1$. According to Theorem 2.4, this results in, up to isomorphism, exactly n+1 quotient rings including the one produced by the zero ideal and the one produced by $N_{\lambda}(R^n)$ itself.

Example 2.6. Define a map λ from R^3 into R by $\lambda(v) = |v_3|$ where $v = (v_1, v_2, v_3)$. It is easily checked that λ is a semilinear map. We proceed to determine, up to isomorphism, all the quotient nearrings of the semilinear nearring $N_{\lambda}(R^3)$. Let us begin by determining the

largest proper ideal $C(\lambda)$ of $N_{\lambda}(R^3)$. From (2.1) we see that $w \in C(\lambda)$ if and only if $\lambda(v+aw)=\lambda(v)$ for all $v\in R^e$ and all $a\in R$. Hence, $w\in C(\lambda)$ if and only if $|v_3+aw_3|=|v_3|$ for all $v\in R^3$ and $a\in R$. It readily follows that $C(\lambda)=\{w\in N_{\lambda}(R^3):w_3=0\}$. Therefore, the proper nonzero ideals of $N_{\lambda}(R^3)$ are $C(\lambda)$ together with all its nonzero linear subspaces and, according to the previous theorem this means that, up to isomorphism, $N_{\lambda}(R^3)$ has exactly four different quotient nearrings. Thus, in addition to the zero ring and $N_{\lambda}(R^3)$, there are two other quotient nearrings and, according to Theorem 2.3, each of these is isomorphic to a semilinear nearring. We determine these two semilinear nearrings. Define a semilinear map λ_1 from R into R by $\lambda_1(x)=|x|$, and define a map φ from $N_{\lambda}(R^3)$ to $N_{\lambda_1}(R)$ by $\varphi(v)=v_3$. One readily verifies that φ is an epimorphism from $N_{\lambda}(R^3)$ onto $N_{\lambda_1}(R)$ with kernel $C(\lambda)$. Consequently, $N_{\lambda}(R^3)/C(\lambda)$ is isomorphic to $N_{\lambda_1}(R^2)$.

Now define a semilinear map λ_2 from R^2 into R by $\lambda_2(v) = |v_2|$, and define a map φ from $N_{\lambda}(R^3)$ to $N_{\lambda_2}(R^2)$ by $\varphi(v) = (v_2, v_3)$. In this case, one verifies that φ is an epimorphism from $N_{\lambda}(R^3)$ onto $N_{\lambda_2}(R^2)$ with kernel Ker $\varphi = \{v \in N_{\lambda}(R^3) : v_2 = v_3 = 0\}$ so that $N_{\lambda}(R^3)/\text{Ker }\varphi$ is isomorphic to $N_{\lambda_2}(R^2)$. According to Theorem 2.4, all the other nonzero ideals properly contained in $C(\lambda)$ produce quotient rings which are also isomorphic to $N_{\lambda_2}(R^2)$. Thus, up to isomorphism, the four quotient nearrings of $N_{\lambda}(R^3)$ are the zero ring, $N_{\lambda_1}(R)$, $N_{\lambda_2}(R^2)$ and $N_{\lambda}(R^3)$ itself.

Acknowledgment. I take this opportunity to express my appreciation to the referee whose careful reading of the original manuscript resulted in the correction of some errors.

REFERENCES

- 1. K.D. Magill, Jr., Topological nearrings whose additive groups are Euclidean, Monatsh. Math. 119 (1995), 281-301.
- 2. ——, Nearrings of continuous functions from topological spaces into topological nearrings, Canad. Math. Bull. 39 (1966), 316–329.

106 DIEFIENDORF HALL, SUNY AT BUFFALO, BUFFALO, NY 14214-3096 $E\text{-}mail\ address:$ kdmagill@acsu.buffalo.edu