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DIRECT SUMS AND SUMMANDS OF WEAK
CS-MODULES AND CONTINUOUS MODULES

NOYAN ER

Introduction. In [5] it is left as a question whether direct sums and
summands of weak CS-modules are weak CS or not. Some particular
answers are given to the former question in [5, Lemma 1.10, Lemma
1.11, Theorem 1.12], and in the first part of this note we give a general
result, Theorem 1.9, of which those assertions are corollaries, as well
as the assertion that a finite direct sum of relatively injective weak
CS-modules is weak CS, Corollary 1.10, the dual of which is proved
for CS-modules by Harmanci and Smith in [2]. As for the latter
one we give an affirmative answer for a module with C5 property
and a UC [6], in particular, nonsingular, module. Finally, in this
section, we give a sufficient condition for a nonsingular module to
be CESS. In the second part some properties of weak CS-modules in
common with modules satisfying C1; [8] are investigated and a class of
modules, direct summands of which are direct sums of uniform modules,
Proposition 2.6, is introduced. In the third part a generalization of
continuous modules is given, namely F-modules. Continuous modules
are characterized in terms of F-modules satisfying the Cy;-property.
We eventually prove that a direct sum M of C41, hence CS/continuous,
modules is continuous if and only if M is an F-module.

In this paper R will denote a ring with identity and M a unitary right
R-module. For any submodule K of M, the family of submodules N
satisfying K N N = 0 has a maximal member by Zorn’s lemma, which
is called a complement of K in M. A submodule N of M is called a
complement in M if N is a complement of a submodule of M. It is
easy to see that a submodule is a complement in M if and only if it has
no proper essential extensions in M. For m € M, the right annihilator
of m is the set of elements r of R such that mr = 0, and is denoted
ann(m). A module M is called nonsingular if no element of M except
0 has annihilator which is essential in Rr. A module M is said to be
a CS-module if every complement in M is a direct summand of M,
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equivalently, if every submodule of M is essential in a direct summand
of M. M is said to satisfy the C; condition if any submodule of M which
is isomorphic to a direct summand of M is itself a direct summand of
M. M is said to satisfy the C's condition if the sum of any two direct
summands of M with zero intersection is a direct summand of M. M
is said to be a UC-module if, for any submodule K of M, there is a
unique complement N of M such that K is essential in N. M is said
to be a CESS-module if complements in M with essential socle are
direct summands. A weak CS-module is a module, every semi-simple
submodule of which is essential in a direct summand of M. A module
M is said to satisfy the Ci; property if every submodule of M has a
complement which is a direct summand of M. M is said to satisfy
the Cj3 condition if every submodule can be essentially embedded in
a direct summand of M. For further details about modules satisfying
C11, and those satisfying C2, see [8]. For weak CS-modules and CESS
modules, see [5], and for UC modules, see [6]. M is said to have the
property (A) if the ACC holds for annihilators of elements of M. In
a module with (A) local summands are complements in M, see [8,
Lemma 4.5].

1. Weak CS-modules. In this section we first attempt to offer some
sufficient conditions for the direct summands of a weak CS-module to
be weak CS. To this end we make the following definition. First recall
the conditions C and C3 on a module M, and that Cy implies Cj3, see
[4, Proposition 2.2 and Proposition 2.7].

Proposition 1.1. Any direct summand of a module which is both
weak CS and UC is weak CS. Note also that such a module is a CESS
module.

Proof. Let M be weak CS and UC and K be a direct summand of
M and A, a semi-simple submodule of K. A is essential in a direct
summand 1" of M, and A is essential in a complement Y of K. Y and
T are complements in M, thus Y =T and T is also a direct summand
of K. So the proof is complete. O

By the above proposition any direct summand of a nonsingular
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module which is weak CS is weak CS.

Definition 1.2. (i) A module is called weak quasi-continuous if it is
a weak CS-module satisfying C'.

(ii) A module is called weak continuous if it is a weak CS-module
satisfying Cj.

There exist examples of weak continuous modules which are not
continuous.

Example 1.3. Let M be the Z-module Z/pZ & Q. Then by [8,
Example 4.2], M satisfies C; but not C;. M is easily seen to be weak
CS; thus, M is weak continuous but not continuous.

Theorem 1.4. If a module M is weak quasi-continuous, then any
direct summand is weak CS.

Proof. Let K @ K' = M, and let A be a semi-simple submodule of
K. By assumption there exists a direct summand L of M such that A
is essential in L. Then L N K’ = 0 obviously. Let m : M — K be the
canonical projection. Therefore, we have (L) @ K' = L @ K'. Also,
since L @ K’ is a direct summand of M by the C3 assumption, then so
is (L), whence (L) is a direct summand of K, too. Since A = w(A),
A is in w(L). Now since A is essential in L, A @ K’ is essential in
Lo K'=n(L)® K' by [3, Corollary 5.1.7]. Thus A=n(L)N(A® K')
is essential in w(L) N (7(L) @ K') = w(L). Thus the result follows.

Corollary 1.5. (i) Any direct summand of a weak quasi-continuous
module is weak quasi-continuous.

(ii) Any direct summand of a weak continuous module is weak con-
tinuous.

Proof. By [4, Proposition 2.2 and Proposition 2.7] and Theorem 1.4.

Definition 1.6. Let M be a module and A any submodule of M.
If K is a direct summand of M such that A is essential in K, then we
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call K a direct e-closure of A.

Proposition 1.7. In a weak quasi-continuous module, the direct
e-closure of a semi-simple submodule is unique up to isomorphism.

Proof. Let M be a weak quasi-continuous module and A a semi-
simple submodule of M with direct e-closures K and L with K &
K' = L& L = M for some submodules K’ and L'. LNK' =0
obviously. Let m : M — K be the canonical projection. Thus
Lo K' = n(L) ® K', and also since L & K’ is a direct summand
of M by the C3 assumption, then so is (L) of M, hence of K. We
remark that w(L) is isomorphic to L and A = SocL = Soc K. Thus
Soc (L& K') = A® Soc K' = Socw(L) ® Soc K’ and Socw(L) is in A,
thus A = AN(Soc7(L)®Soc K') = Socw(L)® (ANSoc K') = Soc(L).
Thus A is in 7(L), whence (L) is essential in K. Also, since m(L) is a
direct summand of K, then 7(L) = K = L. Therefore, the conclusion
follows.

It is a question when a direct sum of weak CS modules is weak
CS [5, Lemma 1.10, Lemma 1.11 and Theorem 1.12] provide some
particular answers to this question. Here we give a theorem of which
those assertions are corollaries.

Theorem 1.8. Suppose M = My & My is a direct sum of weak CS
modules My and M where My is Ms-injective. Then M is weak CS.

Proof. Let A be a semi-simple submodule of M. Then there exists a
submodule B of M such that B® (AN M;) = A. Since M is weak CS,
there exists a direct summand K of M; such that A N M; is essential
in K and, by [1, Lemma 7.5], there exists a submodule M’ of M such
that M' ® My = M and B C M'. Then M' = M,, thus M’ is weak
CS, so there exists a direct summand T of M’ such that B is essential
in T. Now we infer that A = B® (AN M) is essential in T'® K, which
is a direct summand of M’ @ M;. Therefore, the conclusion follows.

Theorem 1.9. If M = M, & --- ® M, where M; are weak CS and
for each i, M; is My-injective, k > i, then M is weak CS.
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Proof. By induction and Theorem 1.8.

Corollary 1.10. A finite direct sum of relatively injective weak CS
modules is weak CS.

Proof. By Theorem 1.9.

Proposition 1.11. Let M be a nonsingular module such that for
any semi-simple submodule A of M there exists a complement K of A
for which every homomorphism f : A® K — M lifts to M. Then M
is a CESS-module.

Proof. Let L be a complement in M with essential socle A. By
hypothesis there exists a complement K of A, hence of L, with the
stated property. Now we claim first that every homomorphism f :
L& K — M lifts to M, then we will conclude by [6, Lemma 2] that L
is a direct summand.

Let f: L ® K — M be a homomorphism. By hypothesis f|agx lifts
to some homomorphism g : M — M, i.e., glagrx = flagx. We claim
that g|r = f|r; then we can conclude at once that g|pgx = f. Suppose
m € L — A and f(m) # g(m); then z = f(m) — g(m) # 0. Consider
the homomorphism ® : Rg — mR for which ®(m) = mr. Now since
mR N A is essential in mR, then so is I = ®~!(mRN A) in Rg. Now
for any r in I, xr = (f(m) — g(m))r = f(mr) — g(mr) = 0 since mr is
in A. Then [ is in the right annihilator of z; thus ann(z) is essential in
Rpg, which is a contradiction since  # 0 and M is nonsingular. Thus,
the result follows.

2. Weak (; and weak (12 modules. First recall the conditions
C11 and (9, see introduction.

A module M is said to be a weak Ci1-module if every semi-simple
submodule has a complement in M which is a direct summand of M,
and will be denoted W(Cq;.

A module M is said to be a weak Ci3-module if every semi-simple
submodule can be imbedded in a direct summand of M by an essential
monomorphism, and will be denoted WC1,.
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We have been unable to find an example of a W15 module which
does not satisfy the C5 property.

Note that there exist weak C7; modules which fail to satisfy the Cy
property. To demonstrate this fact, we give the following example. For
further details, see [7, Example 11]:

Example 2.1. There exists a commutative valuation domain .S such
that every homomorphic image of S is a self-injective ring. There exists
an ideal A of S such that the ring S/A has zero socle. Let T' = S/A
and J be the unique maximal ideal of T'. Let R be the subring of T T
defined by R = {(¢,¢')|t —t' € J}. Now Rpg fails to satisfy the Cjy
property by [8, Proposition 3.2 and Theorems 3.10]. However, it is
weak CS. Thus, by Proposition 2.7 Rg is weak C1;.

Now we will first give a lemma and then characterize W11 modules:

Lemma 2.2. Let K be a complement in M and N be a submodule
of M with KNN = 0. Then K is a complement of N in M if and only
if K® N is essential in M.

Proof. Necessity is obvious. Conversely, by Zorn’s lemma, there exists
a complement L of N containing K. Thus N & L is essential in M. By
hypothesis K @ N is essential in L @ N. Therefore, K = LN (K & N)
is essential in LN (L @ N) = L. But, since K is a complement K = L,
whence the result follows.

Proposition 2.3. The following statements are equivalent for a
module M:
(1) M 1is WCH.

(ii) For any semi-simple submodule A of M there exists a direct
summand K of M such that AN K = 0 and A ® K is essential in
M.

(iii) For any complement L in M with essential socle, there exists a
complement of L which is a direct summand of M.

(iv) For any complement L in M with essential socle, there exists a
direct summand K of M such that KN L =0 and K ® L is essential
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n M.

Proof. (i) < (ii) and (iii) < (iv) by Lemma 2.2.

(ii) = (iv). Let L be a complement in M with essential socle.
By assumption, there exists a direct summand K of M such that
K NSocL =0 and SocL & K is essential in M. Thus, KNL =0
obviously and, since Soc L @ K is contained in L & K, L & K is also
essential in M.

(iii) = (i). Let A be a semi-simple submodule of M. By Zorn’s
lemma there exists a complement L in M such that A is essential in
L. Thus, L is a complement with essential socle. By hypothesis there
is a complement K of L which is a direct summand of M. Since A is
essential in L, K is also a complement of A.

In [8], it is left as a question whether any direct summand of a module
satisfying Cp; satisfies C1; or not. Now we are going to provide a
sufficient condition that any direct summand of a W('i; module be
W (1. Before doing this, we prove

Lemma 2.4. If M is a WC11 module satisfying C3 and M = K® K’
with Soc K’ essential in K', then K is W(C1;.

Proof. Let A be a semi-simple submodule of K. By the WC;
assumption, there exists a direct summand L of M such that A &
Soc K’ @ L is essential in M. Then we obviously have LN K’ = 0. Now
let 7 : M — K denote the canonical projection. Hence n(L) ® K' =
L & K' is a direct summand of M by the C3 assumption. Thus,
m(L) is a direct summand of M, hence of K. Now we claim that
ANm(L) =0 and A @ w(L) is essential in K. Since AN (L @ K') is
semi-simple, AN (L& K') = ANSoc (L& K')=AN(SocL @ Soc K')
by [3, Corollary 9.1.5], which is in AN (L & SocK’) = 0. Thus,
AN(Le K') = An(n(L)® K') = 0. Therefore, AN x(L) = 0.
Furthermore, A+ (L& K') = A® (L® K'). Now, since A® L ® Soc K’
is essential in K @ K’, then A@n(L)® K' = A® L & K' is essential
in K@ K', whence A @ w(L) is essential in K. Therefore, 7(L) is a
complement of A in K by Lemma 2.2. Finally, we conclude that K is
WC]_l.
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Corollary 2.5. If M is a W11 module satisfying Cs and Soc M is
essential in M, then any direct summand of M is WCl;.

Proof. Any direct summand of M has essential socle.

Proposition 2.6. Let M be a W1, module with essential socle and
satisfying C3 and (A). Then any direct summand of M is a direct sum
of uniform submodules.

Proof. Let I' = {F | F is a family of direct summands of M which
have simple socles and whose sum is direct}. I' is an inductive set. Let
F be a maximal element in I and T be the direct sum of all submodules
in F. T is a local summand by the C'5 assumption, thus a complement
by (A) and [8, Lemma 4.5]. If Soc M is not in T, then we have a
direct summand L of M such that T' @ L is essential in M. Note that
L is W1, and satisfies C'3 by Corollary 2.5, and Soc L is nonzero by
hypothesis. Take some simple submodule N in L; then there exist
submodules P and P’ such that P@® P’ = L and N & P is essential in
L. Hence Soc L = Soc P ® Soc P’ = N @ Soc P. Thus, Soc P’ is simple
and essential in P’. But then F' U {P'} contradicts the maximality of
F. Therefore, Soc M is in T', whence T is essential in M. Also, since
T is a complement in M, T' = M. Hence, the result follows for M.
Now, since any direct summand of M satisfies the properties in the
hypothesis by Corollary 2.5, the result follows immediately.

Proposition 2.7. A weak CS-module is WCly;.

Proof. If A is a semi-simple submodule of M, then there are
submodules K and K’ of M such that M = K & K’ and A is essential
in K, by hypothesis. Thus, since K’ is a complement of K, then it is
a complement of A.

Proposition 2.8. A WCi1-module is WCis.

Proof. If A is a semi-simple submodule of M, then, by assumption,
there exist submodules K and K’ of M such that K @ K’ = M and
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K is a complement of A. Then (A® K)/K is essential in (K & K')/K
by [3, Lemma 5.2.5]. We know that there exist two isomorphisms
®: A - (A9 K)/K and f : (K ® K')/JK — K'. Hence their
composition f® : A — K’ is the desired essential monomorphism.
Thus the result follows.

Proposition 2.9. If M is WC11, then M = K & K' for some two
submodules K and K' with Soc K essential in K and Soc K' = 0.

Proof. For A = Soc M there exist submodules K and K’ such that
K® K = M and A ® K’ is essential in M. Now A = SocM =
Soc (K & K') = Soc K @ Soc K’ = Soc K. Thus A is contained in K.
Hence, KN(A® K') = Ais essential in KN (K & K') = K. Therefore,
Soc K = Soc M is essential in K, whence the result follows.

Theorem 2.10. If M = ®yc1 M, with M Wy, for each o € 1,
where I is any nonempty index set, then M is W(Cy;.

Proof. Let A be a semi-simple submodule of M. Let o € I. By
Proposition 2.3 there exists a direct summand K, of M, such that
(ANMy)e K, = (ADK,)NM, is essential in M. Let F be a nonempty
subset of I containing « such that there exists a direct summand K of
BacrMy with (AN (BacrMy)) K = (ADK)N(DacrM,) is essential
in ®ycpM,. Now let My stand for ®,cp M, and suppose that F' #£ I.
Then choose some 3 € I which is not in F. By hypothesis, there
exists a direct summand K’ of Mg such that ((A® Soc K) N Mg) ® K’
is essential in Mpg. It is clear that K @ K’ is a direct summand of
M;®Mp. Now since A is semi-simple AN(K®K') = ANSoc (KB K') =
AN (Soc K ®Soc K') which is a submodule of AN (Soc K @ K'), which
is the zero submodule since (A @ Soc K) N K’ = 0. It is left only to
prove that (A® K & K')N (M; & Mg) = (AN (M1 & Mg))® K ® K' is
essential in M; ® Mg. Now let Y stand for AN M;. Then Y & K
is essential in M;. Also K' @ ((A @ SocK) N Mg) is essential in
Mpg. Therefore D =Y @ K @ K' @ ((A @ SocK) N Mpg) is essential
in My & Mg by [3, Corollary 5.1.7]. Now, since Y @ K @ K’ and
((A®Soc K) N Mpg) are both contained in (A® K & K') N (M; & Mp),
then so is their sum D. And, since D is essential in My & Mg, then
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sois (A® K ® K') N (My & Mg). By repeating this argument, we can
conclude that there exists a direct summand L of M such that A® L
is essential in M. Hence, by Lemma 2.2, L is a complement of A.
Therefore, the conclusion follows.

Corollary 2.11. A direct sum of weak CS-modules is WC1;.

Proposition 2.12. If M is WCy2 and Soc M is finitely generated,
then M = K ® K' for some submodules K and K' of M with Soc M
essential in K and Soc K' = 0.

Proof. There exist submodules K and K’ of M such that M = K@K,
and an essential monomorphism f : Soc M — K, by W5 assumption.
Also Soc M = @?_;M; for some simple submodules M; and n € N.
Thus, f(Soc M) = &, f(M;) where each f(M;) is simple. Also, since
@7, f(M;) is essential in K, then Soc K = @', f(M;). Thus, Soc M =
@ M; =Soc (K®K') = Soc K®Soc K’ = (], f(M;))®Soc K'. By
the Remak-Krull-Schmidtt theorem, see [3, Theorem 7.3.1], Soc K’ =0
and ®F ; M; = &7, f(M;), whence the result follows.

3. Continuous modules.

Definition 3.1. A module is said to be an F' module, respectively
Fy module, if any submodule which is isomorphic to a complement,
respectively a complement with essential socle, in M is a complement
in M.

There exist examples of F' modules which are not continuous.

Example 3.1. Let K be afield and V = K x K. Consider the ring R
of 2 X 2 matrices of the form (a;;) with a11,a22 € K, a12 €V, a21 =0
and a;; = az2. Now the only right ideals of R are 0, Rg, I, Is, I3,
I(z,y) for any nonzero x and y in K, where I; is the set of (a;;) with
a11,a2 and ag; all zero, and a1z € K x 0; I is the set of (a;;) with
a11,a22 and ag; all zero, and a1z € 0 x K; I3 is the set of (a;;) with
ai1, a2 and ag; all zero and a1, € V; I(x,y) is the set of (a;;) with
a1, a2 and agy all zero and aj2 € (z,y)K. Now all the right ideals
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except I3 are complements in Rg, and I3 is not a complement since it
is essential in Rg. I3 is isomorphic to no other right ideal since it is the
only right ideal of R which is two-dimensional over K. Thus, Rg is an
F module but not CS, since Rpg is the only nonzero direct summand of
itself and dim V' = 2.

By the above example we see that the F condition does not imply
continuity. But with regard to the C's condition we have the following.

Proposition 3.2. An F module M satisfies the C3 property.

Proof. Let A and B be direct summands of M with zero intersection
and B®B’ = M. By Zorn’s lemma we can choose a complement L of B
in M containing A. Thus, L@ B = w(L) ® B is essential in M, where 7
is the canonical projection onto B’. Then 7 (L) is essential in B’. Now
since w(L) = L, n(L) is a complement in M by assumption. Hence
m(L) = B',s0 L® B = B'® B. Thus, A being a direct summand of L,
A @ B is a direct summand of L & B, whence the conclusion follows.
O

Theorem 3.3. M is continuous if and only if M is an F module
satisfying C1y .

Proof. Necessity is obvious. As for the converse, we first claim that
M is CS. Let A be a submodule of M. Then, by the C1; assumption,
there exist submodules K and K’ such that K ® K' = M and A® K
is essential in M. By Zorn’s lemma there exists a complement 7" such
that A is essential in T. Thus TN K = 0. Now let # : M — K’ be
the canonical projection. Then T'® K = 7(T) & K is essential in M.
Hence m(T) is essential in K’'. Also by the F assumption 7(T) = K',
since it is isomorphic to 7. Hence T'® K = M. Therefore, M is CS.
It is easy to see that a module which is both CS and F is continuous.
Therefore, the conclusion follows.

Corollary 3.4. A direct sum M =®M, of C11, hence CS/continuous,
modules M, is continuous if and only if M is an F' module.
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Proof. By Theorem 3.3 and [8, Theorem 2.4]. o

The following proposition can be proved by the same technique as
Theorem 3.3.

Proposition 3.5. A module which is both WCy, and Fy is a CESS-
module.

Proposition 3.6. An Fy; module M = &M, is a CESS module if
and only if each M, is WC1;y.

Proof. Necessity part of the proof follows by the observation that any
direct summand of a CESS module is CESS, and sufficiency follows by
Theorem 2.9 and Proposition 3.5.
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