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PRODUCTS OF FACTORIALS IN
BINARY RECURRENCE SEQUENCES

FLORIAN LUCA

ABSTRACT. In this paper, we show that every nondegen-
erate binary recurrence sequence contains only finitely many
terms which can be written as products of factorials. More-
over, all such terms can be effectively computed. We also find
all the terms of the Fibonacci sequence which are products of
factorials.

1. Introduction. Let o and 8 be nonzero algebraic integers, and
let a and b be nonzero algebraic numbers. For any integer n > 0, let
(1) Uy, = aa™ + b3".

It is clear that
(2) Upto = MUpty1 + Su, forn=0,1,...,

where 7 = a +  and s = —afl. We refer to the sequence (un)n>0
as a binary recurrence sequence. If uy and w, are algebraic integers,
then (un)nZO is a binary recurrence sequence of algebraic integers. The
sequence (up)n>o is said to be nondegenerate if a/f is not a root of
unity. We refer to the equation

22—rz—s=0

as the characteristic equation of the sequence (uy,)n>0-

Let PF be the set of all positive integers which can be written as
products of factorials; that is,

k
(3) p_}':{w|w:Hmj! for some ijI}.
j=1
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1388 F. LUCA

For any finite extension F of Q, let dgp = [F : Q]. For any algebraic
number ¢ € F, let Ng({) denote the norm of (. For any algebraic
integer v in F, let [y]r denote the ideal generated by + in the ring of
algebraic integers inside F, and let [[n(7) be the set of prime ideals of
F dividing 7.

Now let ¢ > 1 be an integer. For each i = 1,... ,t, let o; and ;
be nonzero algebraic integers, and let a; and b; be nonzero algebraic
numbers. For any integer n > 0, let

(4) Ui = a;af + b3

We suppose that each sequence (Ui,n)nzo is nondegenerate. For each
t =1,...,t, we denote r; = a; + 3; and s; = —q;5;. Finally, let
K= Q(ai,ﬁi,ai,bi |Z: ]_, ceey t).

The main result of this article is the following.

Theorem 1. The equation

t
(5) 1T Mk (win,) € PF

i=1
has finitely many solutions (ny,...,n;). Moreover, there ezists a

computable number C depending only on dkx and the heights of the
numbers a;, b;, a;, B;, such that every solution of (5) satisfies

(6) max(ny,...,n) < C.

Under some restrictive hypothesis on the sequences (ui,n)nZO we ob-
tain inhomogeneous variants of Theorem 1. Let fi,..., f; be polyno-
mials with algebraic coefficients such that f = H:Zl fi is nonconstant.

Corollary 1. Suppose that the nondegenerate sequences (u;n)n>o0
given by formula (4) satisfy r;, s; € Z, and |s;| =1 fori=1,...,t.
Then the equation

(7) [T N (fi(win,)) € PF

i=1
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has finitely many solutions (ni,...,n:). Moreover, there exists a
computable number C' depending only on the numbers o;, B;, a;, b;
and the polynomials f;, such that every solution of (7) satisfies

(8) max(ny,...,n) < C.

Theorem 2. Suppose that the sequences (u; n)n>0 given by formula
(4) have the same characteristic equation. Let o, 8,7 and s denote the
common value of the a;’s, B8;’s, r;’s and s;’s, respectively. Suppose that
r,s € Z. Suppose also that either one of the following holds:

(i) [Tk (@) # 11k (B) and o is real.
(ii) ([a]x, [Blk) # 1 and f(0) # 0.
Then the equation

t
(9) [T Vx(filuin)) € PF

i=1
has finitely many solutions (ny,...,n;). Moreover, there ezists a

computable number C depending only on the numbers «, (3,a;,b; and
the polynomials f;, such that every solution of (9) satisfies

(10) max(nyg,...,nt) < C.

Our method of proof of Theorem 2 can be used to prove a more
general statement. Let r,s,t be rational integers, «, 3, the zeros of
3 —ra? —sz—t, K = Q(o, 3,7), and (v ,,)n>0 be recursive sequences
of order three satisfying the relation:

Vint3 = TVint2 + SVint1 + 0 n

(11) .
forn=0,1,... and ¢=1,2,...,t.

In this case one can generalize Theorem 2 as follows:

Theorem 3. Assume that either one of the following holds:
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(1) [k (@) € T (B)UI Ik (7) and the absolute value of one of a, 3,7
1s larger than the other two.

(i) [T(e) 0TIk (B) Z T1(%)-

Then the equation

t

(12) [Tvin € PF
i=1
has finitely many solutions (ni,...,n:). Moreover, there exists a

computable number C' depending only on the sequences (Vi n)n>o for
i=1,...,t such that every solution of (12) satisfies

(13) max(ng,...,nt) < C.

For any real number z, let |z| be the largest integer smaller than or
equal to x.

Corollary 2. Let o > 1 be a real irrational quadratic unit. Let
a € Q(a). Then the equation

(14) laa™| € PF

has finitely many solutions n. Moreover, there exists a computable
number C depending only on the numbers o and a such that every
solution of (14) satisfies n < C.

Corollary 3. Let (un)n>0 be a nondegenerate binary recurrence se-
quence of algebraic numbers whose characteristic equation has rational
coefficients, and let f be a nonconstant polynomial with algebraic coef-
ficients. Let k > 1 be a fized integer. Then the equation

k
(15) Nk (f(un)) = H m;!

has finitely many solutions n. Moreover, there exists a computable num-
ber C' depending only on k, the sequence (un)n>0, and the polynomial
f, such that every solution of (15) satisfies n < C.
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Assume now that o and S are the roots of a quadratic equation
2?2 —rz — s = 0, where 7 and s are rational integers. Assume also
that /3 is not a root of unity. The nondegenerate binary recurrence

sequences of integers (s )n>0

(16) un:% forn=0,1,...,
and
(17) Up ="+ p" forn=0,1,...,

are called Lucas sequences of the first and second kind, respectively.
For a Lucas sequence we give a more precise version of Theorem 1.

Theorem 4. Let (un)n>o be a Lucas sequence. Let o and 3 denote
the two roots of the characteristic equations. Suppose that || > |B|. If
|un| € PF, then n < max(12, 2e|a| + 1).

We conclude with the following computational result.

Corollary 4. (i) If (Ln)n>o0 is the Lucas sequence Ly = 2, L1 =1
and Ly 42 = Ly41+ L, for n > 0, then the only nontrivial solutions of
the equation

k
(18) Ly = [ m;!
j=1
are Lo = 2! and L3 = (2!)2.
(i) If (Fn)n>o is the Fibonacci sequence Fy = 0, F1 = 1 and

Foio = Fui1 + F, for n > 0, then the only nontrivial solutions of
the equation

k
(19) F, =[] m;!
j=1

are F3 =21, Fg = (2!)3 and F1o = (2!)%- (3!)2 = 3! -4l
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2. Preliminaries. The proofs of Theorems 1, 2 and 3, and of their
corollaries use estimations of linear forms in logarithms of algebraic
numbers.

Suppose that (1,...,(; are algebraic numbers, not 0 or 1, of heights
not exceeding Ay, ..., A;, respectively. We assume A,, > e for m =
1,...,I. Put @ = logA;---logA;. Let F = Q({1,...,¢). Let
ni,...,n; be integers, not all 0, and let B > max{|n,,|m =1,...,1}.

We assume B > e. The following result is due to Baker and Wiistholz.

Theorem BW ([1]). If ¢(i"* - (" # 1, then
(20) ¢t ¢ = 1] > exp(—=(17(1 + 1)dg )" Qlog B).

In fact, Baker and Wiistholz showed that if log(; ---log(; are any
fixed values of the logarithms, and A = nylog(; +--- + n;log(; # 0,
then

(21) log |A| > —(16ldg)*!*?Qlog B.
Now (20) follows easily from (21) via an argument similar to the one
used by Shorey et al. in their paper [3, p. 66].

We also need the following p-adic analogue of Theorem BW which is
due to Yu, see [4, Theorem 4].

Theorem Y ([4])!. Let m be a prime ideal of F lying above a prime
integer p. Assume that ord,(; =0 fori=1,...,1. If " - " #1,
then there exist computable absolute constants Cy and Cy such that

dr
(22)  ordg (¢ (M —1) < (ClldF)CZ’bpg—zpﬁlog(d%B).

For any rational number ¢ = k/l with k£ and ! integers such that
(k,1) = 1, let P(q) be the largest prime number P dividing k with the
convention that P(0) = P(£1) = 1. Let o and 8 be nonzero algebraic
integers, and let @ and b be nonzero algebraic numbers. Put

(23) U, = aa”™ +b8" forn=0,1,....
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Assume that (u,)n>o is nondegenerate. The following result is due to
Yu and Hung.

Theorem YH ([5]). Let L = Q(a, 3,a,b). There exist computable
positive numbers C3 and Cy depending only on dy, and on the heights
of the numbers a, 3,a,b such that
(24) P(Ni(uy)) > Can!/(t1),

whenever n > Cy.
The proof of Theorem 3 uses the following result of Carmichael.

Theorem C ([2]). Let (un)n>0 be a Lucas sequence. Then P(u,) >
n—1 forn > 12.

We also use the following estimations.

Lemma. Let n > 2 be an integer, and let p < n be a prime number.
Then

(i)

(25) n"? < nl<n"

Proof. (i) Obvious.

(ii) Let op(n) be the sum of the digits of the integer n written in the
base p. We use the fact that

n—op(n)

(27) ord,(n!) = P
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From formula (27), it follows immediately that ord,(n!) < (n/(p— 1)).
For the other inequality we distinguish two cases.

Case 1. Suppose that p? < n. Notice that

op(n) < (p— 1)(|log,(n)] +1) < (p — 1)%‘

Hence, it is enough to show that

(28) - D2ED) < s

One can check easily that, if p > 2 is fixed, then the function

_ log(zp)
flz) = Zlogp

is decreasing for & > p. Since n > p?, it follows that

log(np) log(p®) _ 3(p—1)
— < = < > 2.
(p—-1) log (p—1) 2log 3 3/4 forp>2

Case 2. Suppose that n < p?. It follows that n = ap + b for some
integers a and b such that 1 <a <p—1,and 0 < b < p—1. Then

n—op(n)=ap+b—(a+b)=ap—a.
Hence, it is enough to show that 4(ap — a) > ap + b. But this is
equivalent to 3ap > 4a + b. If a > 2, this follows because 3ap > 6p >

4p—1)+(p—1) > 4a+b. If a = 1, this follows because the inequality
3p >4+ (p—1) is equivalent to 2p > 3, which is obvious. u]

3. The proofs.

The proof of Theorem 1. By Cy,Cs,..., we shall denote com-
putable positive numbers depending only on the numbers «;, 5;, a;, b;
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fori=1,...,t. Let d = dg. Let A be a common denominator of all
numbers a;, b; for i =1,... ,t. From equation (5) it follows that
t k
(29) H NK(Auz,nz) = Atd H m]-!
i=1 j=1

For simplicity, denote
Wip = Ay p = ciap +d;p forn=0,1,...,

where ¢; = Aaq; and d; = Ab;. Notice that ¢; and d; are algebraic
integers for all ¢ = 1,... ,t. Equation (29) can be rewritten as

t

k
(30) H NK(wi,ni) = Atd H m]'

i=1

For any i = 1,...,t, let K; = Q(ay,0:,a4,b;). By Theorem YH we
know that there exist positive numbers C; ; and C; » such that

(31) P(Ni, (wi,n)) > Ciamy 1,
whenever n > ;2. Let C; = min(Cy1,...,C:1), and let Cp =
max(C1,2,...,Cy2). Let p be the largest prime number dividing
t
AT Nx(cidiiy).
i=1

Let C3 be the smallest positive integer such that Cyn!/(¢+1) >
whenever n > C3. Let Cy = max(Cs,Cs3). Finally, let ¢ be the first
prime number greater than p.

Assume that 1 < n; < --- < n; and that m; < --- < myg. Suppose
that n; > Cy4. Then

(32) P(Nk, (wt,nt)) > Cln:/(dxfﬂ) > Clntl/(dJrl) > p.

Since Nk, (Wt n,) | Nk (Wt,n, ), it follows, by formula (30) and inequality
(32), that

(33) my Z P(NKt (wtmt)) > Cln:/(dxt+1) 2 Clni/(d—i—l) > p
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Hence, my > ¢. Since ¢t A, it follows that

ord, <Atdﬁmj!> = ) ordy(m;!)

Jj=1 mj2>q
1
(34 SR o
4(q B 1) m;>q
> Cy L/ dHD)

4g-1)""

Denote (C1/(4(q — 1))) by Cs.

Now let 7 be an arbitrary prime ideal of K lying above ¢q. Let A be
an upper bound for the heights of all the numbers «;/8; and a;/b;. We
assume that A > e. Let Q = (log A)2. It follows, by Theorem Y, that

OI‘d'/rwi,ni = Ord'/r(bzﬂ;nl) + ordx << - %) <%> a 1>

C qu" 2
< (Cedx,) 710g—2q910g(dx,-ni),

for some absolute constants Cg and C%. Let
d

Cs = (Ced)°"—L—Q.
log™ ¢

Then
ord w; n, < Cy log(d*n;).

If wl(’“n) is any conjugate of w; ,, in K, then, by a similar argument, it
follows that
ordﬁwgf;)i < Cglog(d*n,).

Hence,
(35)
k t
ord, <Atd H mj!> = ord, < H Nk (wi,n,-)> < ord, < H H wl(’”n)1>
j=1 j=1 j=1p=1

< Cgtdlog(d*ny).
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From inequalities (34) and (35) it follows that
(36) Cstdlog(d®n;) > C5ni/(d+1).

Inequality (36) clearly shows that n; < Cy. o

Proof of Corollary 1. We first show that we may assume that all
polynomials f; are monic and linear for ¢ = 1,... ,¢t. Indeed, let

filX) = ci(X = Gu)(X = Gi2) -+ (X = Giji)
where j; = deg (f;).

By replacing K with K({;1,...,¢;,j;), one may assume that the f;’s
are linear. If
fl(X) = CiX + di

for some ¢, then one may replace f; by

fi =X+ di7
and the sequences (u;,)n>0 by
Uipn = Cillip

and notice that with these notations f;(u;) = fi(ui,). Thus, we may
assume that all polynomials f; are monic and linear for ¢ = 1,... ,t.
Denote

Wi = fi(Uin) = aiaf +b;6;" + ¢ forn=0,1,....

We may assume that s; = —1. Indeed, if s; = 1, then we can replace
the sequence (u;,)n>0 by the two sequences

i = Ujon = a;(ad)" + b;(B2)" forn=0,1,...

i)
and

Ui = Ui 2n+1 = (aioi) (@)™ + (0:;8)(B7)" for n =0,1,...

which have the companion polynomial z? — (r? + 2s;)z + s? = 2% —

(r2 4+ 2)z + 1. Since s; = —1, it follows that 3; = ai_l. Since (Ui n)n>0
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is nondegenerate for every ¢ = 1,...,¢t, it follows that «; is a real
quadratic unit, not 1 or —1. Notice that

Wi = a0 + b + G = azo; (o — zin) (0 — zi2)

= a; "(ai0f — aizin)(af — 2i2)
where z; 1 and z; » are the roots of the polynomial

b G

22 + .
a; a;

Let K' = K[z 1,2i2 | i =1,...,t]. Equation (7) implies that

t t
HNKI (wimi) = NKI (H Oél_n1>
i=1 i=1
t

- <HNK’(aia? — aizi,l)NK:(a;’ — Zi12)>

i=1

k d
(i)’

j=1

where d’ = [K' : K]. Notice that [];_, @; ™ is a unit. Hence,

t
NKI<Hai""> =1.
i=1

Corollary 1 follows now from Theorem 1 because

k d’
( H m]'> e PF. O
j=1

Proof of Theorem 2. We may again assume that all polynomials f; are
monic and linear for i = 1,... ,t. Let f;(X) =X+ fori=1,... ¢t
We assume that at least one of the numbers (; is nonzero (otherwise
the conclusion of Theorem 2 follows from Theorem 1). Let d = dxk.
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We assume that |s| # 1 (otherwise the theorem follows from Corol-
lary 1). Since |s| # 1 it follows that none of the numbers o and S is a
root of unity.

Let A be a common denominator of all the numbers a;,b;, (; for
i =1,...,t. Let ¢;,d; and n; denote Aa;, Ab; and A(;, respectively.
Assume that K contains all the roots (; for i = 1,...,¢ (otherwise
we can just replace K by a larger field containing all these elements).
Equation (9) implies that

t k
(37) T Mk (win,) = A" ] my!,
i=1 j=1

where
Wi n =ca"+d;f"+mn forn=0,1,....
It is clear that ¢;,d; and 7; are algebraic integers for ¢ =1,... ,t.
(i) By C1,Ca,..., we shall denote computable positive numbers

depending only on the numbers «, 3, and a;,b;,(; for i = 1,...,t.
It is clear that both o and 3 are real. By an argument similar to the
one used at the beginning of the proof of Corollary 1, we conclude that
we can assume that both o and 8 are positive. It is clear that a # .

Suppose, for example, that 7 is a prime ideal in K such that = €
[Ix () = Ik (B). Let p= Nk(m). Let

Ci = max(ord.d; | i =1,...,1%).

Let A be an upper bound for the heights of all numbers 1/8 and 7;/d;
fori =1,...,t. Suppose that A > e. Let Q = (log A)2. Since

ord,(d;8" + n;) = ord,(—d;8") + ord,r<< — %) (6*1)” — l>,

it follows, by Theorem Y, that
(38)

n Cl lf i = 0,
ord (" + i) < { Oy + (Cad)® (p? 1og? p)Qlog(d?n) if m; £ 0,

for some absolute constants Co and Cs. Let Cy = (Cad)“2Qp?/ log? p.
Let C5 be a positive integer such that

(39) n > 2C4log(d*n) > 20
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whenever n > (5. Suppose now that n; < --- < n; and that
my < --0 <M.

Assume first that ny > C5. Since
ord, (c;a™) > n; > Cy + Cylog(d®n;) > ord. (d;™ + m;),
it follows that

ord, (win,;) = ord,(c;a™ + d;8™" + n;)

40
(40) < Oy + Cylog(d®ny) < 2C4log(d*ny).

Assume that w!) = ™ (a®)ni 4 g (3 47 s a conjugate of

w;.n, in K. Notice that {a®), 3} = {a,8}. It follows, by a similar
argument, that

ord, (wl(f:l)) < Cy + Cylog(d®n;) < 204 log(d*n;).

Hence,
(41)

t
ord, ( H Nk (wi,ni)> = ord, <
i=1

On the other hand,

k k
ord, (Atd H mj!> > Z ord,(m;!) > Zordp(mj!)

j=1 j=1 j=1

t d
H H wz(’;)z) < 2tdCylog(d’ny).

i=1p=1

Hence,
Z m; < Cglog(d®n;),

m;2>p

where Cg = 8td(p — 1)C4. Since logx > x for any real number z > 1,
it follows that

(42) Z mjlogm; < ( Z mj) < CZ%(log(d*n;))>.

m;2>p m;2>p
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From the lemma, it follows that

(43) At H m;! < exp(Cr + Cs(log(d*n:)?)

m;2>p

where C7 = tdlog A and Cy = CZ.
Assume that a > 8. Rewrite equation (37) as

(44) illeK(wi’ni) :< 11 m,-!> (Atd 11 m,-!>.

m;<p m;>p

Let py < -+ < p; be all the prime numbers less than p. For each
m=1,...,1, let ¢, = ordpm(HmJ_<p m;!). Then

k t
dm < Ordpm (Atd H mJ'> = Ol‘dpm <H NK (wi,ni)> .
j=1 i=1

t
pgﬁn < H NK(wiyni)

=1
ST T B L w
= o ZHH(Uz’,u%—vi,u(a) +n;" a"i>
=1 p=1
chatdnt,

1) ) (1) (w)

where u; ., v; ,, are equal to c; ord,"”, c;
a®) = a or a{® = 3. In the above inequality

according to whether

Co = [T [T (11 + 18] + 5.

It follows that

1
Gm < o (log Cg + tdnilog o) < Cig + Criny,

m
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where C1p = (log Cy/log2) and Cy; = (tdloga/log2). From equation
(44), it follows that

(45) Nx(wen,) = Q [ pir,

where () is an integer which divides (A% Hmj >pm;!) and 6, > 0 are
integers such that

(46) Om < gm < Cio+Ciing form=1,...,1L

From inequality (43), it follows that

(47) log @ < C7 + Cs(log(d*ny))?.

Write

d
Nk (win,) = I—I(ultoz"t + v, 0™ + n),
p=1

where both u, and v, are some conjugates of either c; or d;. Let
G= szl u,,. Write

(48) Nk (win,) = Ga®™ + F.
Combining equations (45) and (48), we obtain

F

l
1
49 1— o~ ] porQ =
( ) Ga m:lpm Q Gadnt

Let v = max(a~!, 8/a). Notice that 0 < v < 1. Then

d n
F v ﬁ t n(l‘) _
e[ () ()
N e A e [ R
<" Cra;,
where
d v n(H)
012:‘1—H<1+—H+—>‘.
o Uy, Uy
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Let C13 = log Cy2, and let C14 = —logy > 0. From formulae (49) and
(50), it follows that

F

m < eXP(Cw - Cl4nt)-

l
1
(51) 1- aa_d"f 11 pfr;nQ‘ = ‘
m=1

Let A; be an upper bound for the heights of all the numbers 1/G, a1
and p,, for m = 1,...,1. Suppose that A; > e. Let Q; = (log A;)"*2.
Let C15 = max(Cy1,1). It follows, by Theorem BW, equation (49) and
inequality (46), that

!

52 |- go [ wire
> exp(—(17(1 + 4)d)* 130, log Q log(C1g + Cisny)).

From inequalities (51) and (52), it follows that
(53) Crany — C13 < Ciglog Qlog(Cro + Cisny),
where

Cie = (17(1 + 4)d)*130Q.
From formulae (53) and (47), we conclude that

(54) Ciang < Ci3 + 016(07 + C’g(log(dZnt))z) log(Cm + Cl5nt).

Inequality (54) implies that n; < Cr.

Notice that the conclusion n; < C;7 came from the fact that we
assumed ny = min(n; |i =1,...,t) > Cs. This concludes the proof of
the theorem if £ = 1. On the other hand, if ¢ > 1, but 0 < n; < Cs,
then wq n, can take only finitely many values. Hence, equation (37)
reduces to finitely many equations of the same type as (37) with only
t — 1 factors, namely wj p, - W2 pn, and w; », for ¢ =3,... ,t. Assertion
(i) follows now by induction on t.

The case a < B can be treated similarly.

(ii) By C1,C4,..., we shall denote computable positive numbers
depending only on the numbers «,8 and a;,b0;,(; for i = 1,... .
Suppose that f = szl fi has the property that f(0) # 0. With
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our notation, this amounts to {; # 0 for any ¢ = 1,... ,t. Let m be a
prime ideal in K such that 7 | ([o]k, [B]k). Let p = Nk/(m).

Suppose that ny < --- < n; and that m; < --- < my.
Let n = H;Zl ;- Let C1, = ord.(n™), where 7(#) is a conjugate of

n in K. Let
d
C1=>» Cipu
pn=1
Notice that
t
(55) H wl(':zl =7 (mod 7™).

i=1

Suppose that ny > C1. From congruences (55), it follows that

¢
ord, < H Nk (wzm)> = Ch.
i=1

Therefore,
k k
Ci = ord, <Atd H mj!> > ord, <Atd H mj!>
(56) j=1 j=1
my

> ord,(mg!) > ————.

Z ordy(mit) 2 4, )
It follows that
(57) myg § 02,

where Cy = 4(p — 1)Cy. Let p; < p2--- < p; be all the prime numbers
which are less than A - Cy. From equation (37) and formula (57), it
follows that

t !
(58) HNK(wi,ni) = H pim  for some integers g, > 0.
i=1 m=1

By an argument similar to the one used at (i), it follows easily that

(59) gm <C3+Csny form=1,... 1,
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where ('35 and C4 are some computable constants depending only on
the numbers «, 8, ¢;,d; and n; for i = 1,... ,t. We may assume that
min(Cs,Cy) > 1. By equation (58), it follows that

t

l
N (win,) | ] N (win,) = T] pir-
m=1

i=1

Hence,
l

(60) NK(wt,nt) = H pfr;nv

m=1
for some integers d,, > 0, such that
(61) Om < @m <C3+Csny form=1,...,1.
However, it is easy to see that
(62) Nk (wi,n,) = N(n;)  (mod w™).

From equation (60) and congruence (62), it follows that

(63) ord,r( H Pl — Nk ( m)) > dny.

Let Cs = ord,(Nk(n:)). Let A be an upper bound for the heights of all
numbers Nk (7:), p1,...,p. Suppose that A > e. Let Q = (log A)'*L.
It follows, by Theorem Y and inequality (61), that

ord,r( Hpm Nk (n: >

. I
(64) = ord. (N (n:)) + ords <m 112 - 1>

d
< Cs+ (Co(l + 1)d)C7(l+1)l£;—2pﬂlog(d203 +d2Cymy).
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Let 4
Cs = (Co(l + 1)d)" D) L _q
log” p
From inequalities (63) and (64), it follows that

(65) dny < Cs + Cglog(d*Cs + d2Cyny).

Inequality (65) shows that n; < Cy.

Notice that the conclusion n; < Cg came from the fact that we
assumed n; = min(n; | ¢ = 1,...,t) > Cy. This concludes from
the proof of the theorem if ¢ = 1. On the other hand, if ¢t > 1,
but 0 < ny < C, then w;,, can take only finitely many values.
Hence, equation (37) reduces to finitely many equations of the same
type as (37) with only ¢ — 1 factors, namely wi , - W2, and wj p, for
i=3,...,t. The assertion (ii) follows now by induction on t. O

Proof of Theorem 3. Follows from arguments similar to the ones
employed in the proof of Theorem 2.

Proof of Corollary 2. Let o« > 1 be a real irrational quadratic unit.
Let K = Q(«). Let d > 1 be a square free positive integer such that
K = Q(Vd). Let o € Gal (K/Q) be such that o(v/d) = —/d. Finally,
let A > 0 be a positive integer such that A - a is an algebraic integer.
Let

(66) up, = aa™ + o(a)o(a)” forn=0,1,....

It is clear that (un)n>¢ is a binary recurrence sequence of rational
numbers. Moreover, A-u,, € Z for all n > 0. Since « is a unit, it follows
that |o(a)] = 1/ < 1. Let C; > 0 be such that |o(a)o(a)™| < 1 for
n > Cy. It follows, by equation (66), that

laa" | =u, +r, forn>Cy

where A -7, is an integer in the interval [-A + 1, A — 1]. Hence, all
solutions of equation |aa™| € PF can be found among the solutions of
finitely many equations of the form

(Auy) + (Ac) e PF



PRODUCTS OF FACTORIALS 1407

where (Ac) € {-A+1,-A+2,...,A —1}. The conclusion of the
corollary follows now from Theorems 1 and 2. i

Proof of Corollary 3. By C1,Cs,..., we shall denote computable
positive numbers depending only on the numbers «,f,a,b and f.
Suppose that

f(X)=apX"+a, X7+ +ay,

(67) .
for some ay, ... ,a; with ag # 0.

We write

Equation (15) implies that

t k
(68) [T M (win) = ATy,
i=1 j=1

where
Win =ca" +d;f"+n; forn=0,1,....
Here A is a common denominator of a,b,ag and the roots (; of f,

c1 = A%apa, dy = A%apb and ¢; = Aa, d; = Abfor i = 2,...,t. We
assume again that K contains all the numbers (; fori =1,... ,t.

We distinguish two cases.

Case 1. Suppose that ([a]k,[B]k) # 1. It follows, by Theorem 2,
that we may assume that f(0) = 0. Hence, we assume that n; = 0. By
replacing the sequence u,, with the two sequences

liy = Uz = a(a®)" +b(6%)" forn=0,1,...

and

fy = Ugny1 = (ac)(@®)™ + (B)(B*)" forn=0,1,...,
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it follows that we may assume that o8 > 0. Assume that 7= |
(la]k, [B]k) for some prime ideal m in K. Let p = Nk(m). Since
m =0, it follows that

(69) ord, ( f[ Nk (w,-,n)> > dn.

Let Cy = dord,(A). Suppose that m; < my < ---my. From equation
(68), inequality (69) and the lemma, we conclude that

k
n < ord, <A(t+1)d 11 mj!>
j=1
< (t+1)Ci + k - ord,(my!)

k
<(t+1)Ci+ ——my.
<(t+1) 1+p_1mk

Therefore,
(70) my > Con — Cl,

where Cy = (p — 1)/k and C5 = (p — 1)(t + 1)C1/k. Suppose that
|a| > |B]. It follows that

t

T M (wi )

=1

S |a‘tdno4

where

t d
Oy = [T TT A1 + 14 + 19¢).
=1 p=1

From the lemma, we conclude that
1 k
(71) exp (§mk log mk> < myl < AltHDd H m;j! < |a\td"C4.
j=1
Hence,

(72) my logmy < Cs + Cgn,
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where C5 = 2log Cy and Cg = 2tdlog||. Combining inequalities (71)
and (72) we obtain

(73) (Con — C3)log(Can — C3) < Cs + Cgn.
Formula (73) shows that n < C7.

Case 2. Suppose that ([a]k,[B]k) = 1. It follows, by Theorem 1,
that we may assume that at least one of the numbers a and 3 is not a

unit. From Theorem 2, we conclude that we may assume that o and
are complex conjugate. In this case, none of the numbers o and (3 is a

unit. Let 7 € [[x (o) — 1 (B)-

Suppose that m; < my < --- < mg. By an argument similar to the
one used in the proof of Theorem 2(i), one concludes that

my! < exp(Cs + Cy(log(d*n))?),
for some constants Cg, Cy depending only on 7, the sequence (urn)n>0,
and the polynomial f. It follows that

k
(74) [t < (ma))* < exp(Cro + Cra(log(d®n)?),
j=1

where C1g = kCg and C7; = kCy. On the other hand, notice that

ay 1 Qg 1
|f(X)|2|a0|Xt|<1— o a _>
(75) ap| |X| ao| |X|t
> M . \X|,
2

for [X| > Cho = max((Ja1| + - - + |as])/(2]aol), 1)-

Let A be an upper bound for the heights of the numbers /3 and a/b.
Assume that A > e. Let Q = (log A)2. By Theorem BW, it follows

that, for n > 3,
1 < b>< >
a)\«a

> |al|a|™ exp(—68Qlogn)
= exp(C13 + C1an — Cy5logn),

|un| = laa™ +b8"| = |af|a]"

(76)
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where Cy3 = log |a|, C14 = log|a| and Cy5 = 681Q. Let C16 be such
that
Ci3+nCiy — Cislogn > logCiy  for n > Ci.

From inequality (75), it follows that

(77) | f(un)| > aTO||un\ > exp(C17 + Cian — Cyslogn)  for n > Cyg,

where Cy7 = Ci3 + log(|ao|/2). From equation (15) and inequalities
(74) and (77), we obtain

(78) Ci7 + Cran — C1slogn < Cho + Cr1 (log(d?n))?.

Inequality (78) clearly shows that n < Cis. o

Proof of Theorem 4. Let (un)n>0 be a Lucas sequence. We first show
that 2|a|™ > w,, for n > 1. This is clear if (un)n>0 is a Lucas sequence of
the second kind. Suppose that (u,)n>0 is a Lucas sequence of the first
kind. Since o and 3 are the two roots of the equation z2 —rz —s = 0,
it follows that |a — 8] = |r? + 4s| > 1. Hence, |a — 8| > 1. It follows

that . .
at = p"

«
o 2 " - 5| 2“5

Up,-
Suppose now that w, = H?Zl m;! for some n > max(12,2|a| + 1).
Assume that m; < mg < -+ < myg. It follows, by Theorem C, that
P(u,) > n — 1. Hence, my > n — 1. It follows that

1 n—1
(79) 2af™ > up > mp! > (n— 1) > (” ) ,
e

where the last inequality above follows from Stirling’s formula. We
conclude that

(80) elal(2la))H/ M=) > p 1,
It is enough to show that 2 > (2|a|)*/(»~1) or that 2"~ > 2|a|. But

this is immediate because n — 1 > 2|a| and because 2% > z for z > 0.
O
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Proof of Corollary 4. Straightforward consequence of Theorem 4.
]
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ENDNOTES

1. Here we use Theorem 4 on page 275 in [4]. However, in [4] the bound is
quadratic in log(dZ B). Kunrui Yu has informed us that the dependence of the
bound is, in fact, linear in log(di‘B) and that the apparent quadratic dependence

of the bound in [4] on this term is just a misprint.
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