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STABILITY THEOREM FOR THE FEYNMAN
INTEGRAL VIA TIME CONTINUATION

KUN SOO CHANG, JUNG AH LIM AND KUN SIK RYU

ABSTRACT. Lapidus proved a stability theorem for the
Feynman integral as a bounded linear operator on Lz2(R%)
with respect to potential functions. We establish a stability
theorem for the Feynman integral with respect to measures
whose positive and negative variations are in the generalized
Kato class. This is a partial extension of Lapidus’s result. In
fact, we develop our stability theorem under a more general
setting in the sense that potential functions in Lapidus’s paper
are involved in the Kato class and the measures in this paper
are involved in the generalized Kato class which generalizes
substantially the Kato class.

0. Introduction. The purpose of this paper is to study the stability
of the analytic (in time) operator-valued Feynman integral with respect
to certain functions determined by measures in the generalized Kato
class. In 1984, Johnson proved the dominated convergence theorem for
the Feynman integral as an operator from Lo(R?) to L2(R?) [10]. As
far as we know, this is the first stability theorem for the Feynman
integral. Since then, many mathematicians have proved stability
theorems for the Feynman integral as either £(L,(R%), L,/ (R%)) theory
[6, 12] or L(L1(R),Cy(R)) theory [5], where p is a real number such
that 1 < p <2 and d is a positive integer such that d < 2p/(2 — p) for
l1<p<a.

In [15], Lapidus proved a stability theorem for the Feynman integral
as an £(Ly(R?)) theory with respect to the potential functions V, V;,,

m = 1,2,..., satisfying the following conditions: V,, converges to V'
almost everywhere in R? and there exist U € L{ and W € (L} )a

such that, for all m > 1, V.7 < U almost everywhere and V,;, < W
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almost everywhere where p=1ifd =1 and p > (d/2) if d > 2. Let K4
denote the class of all Kato functions. (See [11] for precise definitions
of K4, Li. and (L )z). It is helpful to point out that K, properly
contains (L, )z for the following discussion [11].

In this paper we introduce recent results of the existence theorem for
the analytic (in time) operator-valued Feynman integral first, and then
we prove a stability theorem for the Feynman integral with respect to
signed measures u, f,, n = 1,2, ... satisfying the following conditions:
For each Borel set E in R%, ,,(E) converges to u(F) and {p,(F)}> ,,
{p;, (E)}>2, are nonincreasing sequences and there exist v € GKy and
n € GK4 such that uf <wvand p,, <nforalln € N. Here GK4 stands
for the generalized Kato class. GKj is a substantial generalization of
the Kato class K, in the sense that if f is a Kato class function on R¢,
then |f|-m is in GK 4 where m is the Lebesgue measure on R¢. In fact,
we develop our stability theorem under a more general setting in the
sense that potential functions in Lapidus’s paper are involved in K  as
we discussed in the above paragraph, and the measures in this paper
which generalize the potential functions are in GK; — GK4. Theorem
3.6 and Theorem 3.3 play a key role to prove Theorem 4.2, which is our
main theorem in this paper. The statement and the proof of Theorem
3.6 are quite close to those of Theorem 3.1 in [15]. Theorem 3.3 is
borrowed from [13].

1. Preliminaries. In this section we recall definitions and results
related to Brownian motion, positive continuous additive functionals,
measures in the generalized Kato class, closed forms and their associ-
ated operators.

Let (Q,F, Fi, Xt, P;) be the canonical Brownian motion on R? [4].
Let t be a nonnegative real number. For each w in Q = C([0, 00), R%),
the collection of all continuous functions from [0, 00) to R, we define
a function 6w : [0,00) — R¢ by (f,w)(s) = w(t + s) for all s in [0, 0).

Definition 1.1. A function A : [0,00) X @ — R is called a positive
continuous additive functional, abbreviated by PCAF, if A(t,-) = A, is
Fi-measurable for each ¢ and there exists A € F, called a defining set
of A, satisfying the following properties:

(i) P,(A) =1 for all z in R,
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(ii) Orw € Q for all w in A.

(iii) For each w in A, the function A.(w) : [0,00) — R is continuous,
increasing and vanishes at 0 and is additive in the sense that

Apys(w) = Ag(w) + As(biw)

for all t,s > 0.

For a nonnegative bounded Borel measurable function V on R%, we
consider a function A" defined on [0, 00) x Q by

(1.1) AV(t,w):AX(w):/O V(w(s)) ds

for all (¢,w) in [0,00) x . This is a typical example of a positive
continuous additive functional.

Definition 1.2. A positive Borel measure p on R¢ is said to be in
the generalized Kato class if

lim sup/ MZO, d>3,
|

_ qyld—2
a0t ;eRd z—y|<a |LL' y|

t sup [ (logle -yl Duldn) =0, d=2,
|z—y|<a

a—0t pcRd
sup / p(dy) < oo, d=1.
zeR4 J|z—y|<1

We denote by GK,4 the generalized Kato class.

Let H'(R?) be the standard Sobolev space, i.e.,

(12) HYRY) = {u € Lo(R4, m)| g—“ € Lo(R%,m),1<i < d},
Zi

where Lo(R%, m) denotes the space of R-valued functions on R% which
are square integrable with respect to the Lebesgue measure m and the
derivatives are taken in the distributional sense. In this paper we adopt
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Ly(R%) instead of Ly(R?, m). For a form ¢ and an operator H, D(q)
and D(H) stand for the domains of ¢ and H, respectively. We let &

denote the classical Dirichlet form, that is, the bilinear form acting on
D(&) = HY(RY):

(1.3) E(u,v) = 1 Vu - Vvdm.

2 Jra
For a signed Borel measure p = p™ — p~ on R? where pt and p~
are the usual positive and negative variations of u, respectively, we say
that g is in GKy — GKy if y and p~ are both in GK4. For p in
GKg4 — GKg4, we define Q, and &, as follows:

(1.4) Qu(u,v)z/ uvdu:/ uvdu+—/ wodp~
R4 R4 R4

for all u,v in D(Q,) = La(RY, |u|) N L2(RY) and
(1.5) Eu(t,0) = E(u,v) + Qu(u,0)

for all u,v in D(E,) = D() N D(Q,).

For p in GKy4 — GKy, let A*" and A*~ be PCAFs corresponding to
pt and -, respectively. (The existence of A*" and A*~ is guaranteed
by [1, Theorem 2.1.4].) We let AY = Af+ — A . Then (A});so is
a continuous additive functional which has finite variation on every
bounded interval [8]. Let us introduce the notation

»

(1.6) pif(2) = Eole™ f(w(t)]

provided that the right-hand side in (1.6) makes sense for f € Ly(R?)
where FE, stands for the expectation with respect to P, and P, is the
probability measure associated with the Brownian paths in R¢ which
start at = at time 0.

Let H be a real or complex Hilbert space equipped with the inner
product (,) and the norm || - ||. From [13], we have the following
theorem.

Theorem 1.3. Let q be a densely defined, symmetric closed form
i H which is bounded below by ~v. Then there exists a unique bounded
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below self-adjoint operator H satisfying that, for any & < v, D(q) =
D((H = €)"?) and q(u,v) = ((H — &)"u, (H — £)*/?v) + &(u, v), for
all u,v in D(q). Furthermore, q(u,v) = (Hu,v) for all uw in D(H), v
in D(q).

From [1, Proposition 3.4.3 and Proposition 3.4.4], we have the fol-
lowing proposition.

Proposition 1.4. Let uy = pu™ — p~ be in GKg — GKy. Then
(i) &€, is a densely defined symmetric bilinear form with domain
D(&y) = D(€) N D(Qy).
(ii) &, is closed and bounded below.
(iil) (p}')e>o0 is a strongly continuous symmetric semigroup on Lo(R?).

Moreover, let H* be the bounded below self-adjoint operator corre-
sponding to (€, D(E,)) whose existence is guaranteed by Theorem 1.3,
and let H* be the infinitesimal generator of (pl')i>o. Then

(iv) H* = H*,

and hence we have
(1.7) pif(z) = e " f(2)
for all f in L2(R%).
Remark. By (1.6) and (1.7), we obtain the Feynman-Kac formula
(1.8) e " f(2) = Byle ) f(w(t))]

for every f in Ly(R?), m-almost everywhere z in R¢ and for all ¢ > 0.

Now we extend &, to the subspace D(EC) = D(E,) + iD(E,) of
Ly(R%,C) = Ly(RY) + iLy(R?) where i = /1.
Define £ : D(C) — C by

(1.9) Ef(u,v)z/ Vu-ﬂdm—}—/ uv dp
R4 R4
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for all u,v in D(£T). From [1], we have the following propositions.

Proposition 1.5. Let pu be in GKg — GKg4. Then, for u = uy + ius,
v =111 +1ivg N D(Sf), EE is represented as follows:

(1.10) 5E(u, v) = Eu(ur,v1) + Eulug, v2) + [ (uz, v1) — Eu(ur, v2)].

Proposition 1.6. Let p = pt — p~ be in GKy — GK4. Then
(i) EE is a densely defined symmetric sesquilinear form.

(ii) £S is bounded below and closed.

Moreover, let HE, be the bounded below self-adjoint operator corre-
sponding to (EE, D(EE)) whose existence is guaranteed by Theorem 1.3.
Then we obtain

(1.11) (e™"eu)(2) = Eule™ " “u(w(t))]

for every u in Lo(R%, C), m-almost everywhere x in R% and for all
t>0.

2. The existence of the analytic (in time) operator-valued
Feynman integral. Now we introduce the definition and the existence
theorem of the analytic (in time) operator-valued Feynman integral
of functions that we are especially interested in. Given w in Q =
C([0, ), R%), let

(2.1) Flw) = Fr(w) = e~ A¢®)

where p is in GKy — GK, and A} is given in Section 1. Let C,Cy
and C, be the set of all complex numbers, all complex numbers with
positive real part and all nonzero complex numbers with nonnegative
real part, respectively.

Definition 2.1. Given ¢t > 0, u € Ly(R? C) and = € R?, consider
the expression

(J'(F*)u) () = Bpfe™ u(w(t)}
_ /Q =A@y (w(t)) dPa(w),

@

(2.2)
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where (2, is the set of w in C([0,00), R?) such that w(0) = z and P,
is the probability measure associated with the Brownian paths in R¢
which start at x at time 0. We say that the operator-valued function
space integral J!(F*) exists for ¢ > 0 if (2.2) defines J'(F*) as an
element of £(L2(R% C)), the space of bounded linear operators on
Ly(R%,C). If JY(F*) exists for every ¢ > 0 and, in addition, has an
extension as a function of ¢ to an analytic operator-valued function on
C,, and a strongly continuous function on C,, we say that J!(F*)
exists for all t € C,. When ¢ is purely imaginary, J!(FH) is called the
analytic (in time) operator-valued Feynman integral of F'*.

The following theorem comes from [1]. We state it and give a sketch
of its proof for convenience.

Theorem 2.2. Let p = pt — p~ be in GKg — GKy4 and let ET
be given by (1.9) and HE be the self-adjoint operator corresponding
to (EC,D(ET)). Then J'(F*) exists for all t € C. and has the
representation

(2.3) JHFH) = e tHe

for all t € C, where e tHe s given meaning via the spectral theorem
applied to the self-adjoint operator HE. In particular, for t € R, the
analytic (in time) operator-valued Feynman integral J(F*) exists and
we have

(24) JH(FH) = e~itHo
where {e‘“Hé, t € R} is the unitary group corresponding to the self-
adjoint operator HE,.

Proof. By Proposition 1.4, &, given by (1.5) is a densely defined,
symmetric closed bilinear form which is bounded below and the con-
tinuous additive functional A} is related to the operator H* by the
Feynman-Kac formula (1.8). Hence in the light of Theorem 2.2.5 in
[1], the proof is complete.

Remark 2.3. Let S denote the family of all smooth measures. It is
well-known fact that GK, is properly contained in S [1, 3]. Under
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certain conditions on g = pu* — = in S — S, the existence theorem of
the analytic (in time) operator-valued Feynman integral of the function
given by u was proved in [1]. So we expect that the stability theorem
which will be proved in Section 4 can be extended to a stability theorem
for the Feynman integral with respect to certain functions determined
by smooth measures.

3. Perturbation of forms. In order to prove Theorem 4.2, the
main result of this paper, we use some known results in operator theory
and a perturbation theorem which we prove in this section. In fact,
the main theorem is closely related to perturbation theories for closed
forms.

Unless otherwise specified, let H denote a complex Hilbert space with
the inner product (, ) and the norm || -|. Furthermore, for x,,z in
H, let x, — = denote that x,, is strongly convergent to z and z, Bz
denote that x, is weakly convergent to x. For operators A,, A on H,
let A, — A indicate that A, converges to A in the strong operator
topology.

Definition 3.1. Let A, A,,, m = 1,2,... be self-adjoint operators
on H. We say that {A,,}5°_; converges to A in the strong resolvent
sense if

[I+iA,] — [[+iA],
where I denotes the identity operator and ¢ = v/—1.

From [14] and [13], we have the following two theorems, respectively.

Theorem 3.2 (Trotter, Kato, Rellich, Neveu). Let H, H,,, m =
1,2,..., be self-adjoint operators on H. Then the following statements
are equivalent:

(a) {Hn}2°_, converges to H in the strong resolvent sense.
(b) e=iHm — e=iH for qll t in R.

(¢) I+ iXHp]| P = [T+ H| ! forall X in R, X\ # 0.

(d) e~ itH itH

e m — e " uniformly in t on any compact subset of R.
If, in addition, the operators H,, and H are uniformly bounded below,
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then (a) implies:

(e) e tHm — e=tH yniformly int on any compact subset of [0, +0o0).

Theorem 3.3. Let {t,} be a nonincreasing sequence of densely
defined, closed symmetric forms in H which are uniformly bounded
below by v. If H, is the self-adjoint operator associated with t,,
then H, converges to a self-adjoint operator H > ~ strongly in the
generalized sense. Furthermore, (H, — &)Y/?u 5 (H — €)'/?u for all u
in U, D(t,) and £ < v. If, in particular, the symmetric form t defined
by t(u,u) = limy, o0 tn(u,u) with D(t) = UpD(t,) is closable, then
H is the self-adjoint operator associated with t, the closure of t, and
(H, — &)YV?u — (H — €)Y?u for all w in D(t) and £ < 7.

Remark 3.4. Let g be a densely defined, symmetric closed form in
H which is bounded below and let H be the self-adjoint operator
corresponding to ¢. If z is in D(q), z in H and q¢(z,y) = (z,y) for
every y belonging to a core of ¢, then z is in D(H) and Hz = z. (See
[13, Theorem 2.1, p. 322].)

Remark 3.5. Let D' be a core of a closed form ¢ and H be the bounded
below (by «) self-adjoint operator corresponding to t. Suppose that
(u,y) = (w, (H — a)/?y) for all y in D’ where u,w are in . Then we
can easily prove that (u,y) = (w, (H — a)'/?y) for all y in D(t).

Theorem 3.6. Lett, t,, n=1,2,... be densely defined, symmetric
closed forms in H satisfying the following properties where H and H,,
are the self-adjoint operators associated with t and t,, respectively:

(i) D(t,) C D(t), n=1,2,....

(ii) t(u,u) > y(u,u), for all u in D(t), tn(u,u) > y(u,u), for all u
in D(t,), n=1,2,... withy<0.

(i) There is a core D' of t such that D' C liminf D(t,) and, for
some a < v, (H, —a)'?u — (H — a)'/?u for all u in D'.

Then {H,}22 , converges to H in the strong resolvent sense.

Proof. Fix v € H and let w, = [I +iH,]"'(v). Then w, € D(H,)
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and
(3.1) lwnll < [Jv]].

Clearly
v =w, +itH,w,.

By virtue of Theorem 1.3, for o < -y, we have the following equalities:

D(t) = ((H - a)*/%),
t(u,v) = (H — a)*?u, (H — a)*/?v) + a(u, v),Vu,v € D(t),
D(t,) = ((H, — @)*?) and
tn(u,v) = (H, — )Y ?u, (H, — )**0) + alu,v),Yu,v € D(t,).

Consequently,
(32) (v, wn) = llwall® + i{ll(Hn — @) ?wa|? + allwa|*}.
By (3.1) and the Cauchy-Schwarz inequality,
(3-3) [tm (v, wn))| < (v, wa)| < [lo]]*.
Hence, by (3.2) and (3.3), we have
1(Hn — ) ?wa|® + allwnl|* < [|o]*.

Now we conclude that {(H,, — a)'/?w,} is a bounded sequence since
a < 0and

I(Hn — ) 2w, ? < o)) — allwnll?

(34) < (1= o]

Hence, by (3.1), (3.4) and the Banach-Alaoglu Theorem [17], there
exist vectors w and u in H such that

(3.5) w, —w and (H, —a)'?w, % u,

along some subsequence {n;} — oco.
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We claim that:

(3.6) we D(H) and (H — a)'?w=u.

To prove (3.6), let y € D’. Then, by (3.5) and the hypothesis (iii),
we have

(w,y) = lm (wn,, (Ha, —a)'?y) = (w, (H - a)'?y).

T j —»00
Since D’ is a core of t, it follows that by Remark 3.5
(u,y) = (w, (H — a)'/?y)
for all y in D(t) = D((H — a)/?).
Consequently,
w € D(((H —)'/?)") = D((H — a)'/?)
and (H —o)Y?w=u

where ((H — a)'/?)* represents the adjoint operator of (H — a)'/2. To
complete the proof of (3.6), it only remains to show that w € D(H).
Now, let y € D'. By (3.5), (3.6) and the hypothesis (iii), we have
<Uay> = <(I + iHnj)wnjay>
nJ oo

= (w,y) + i {((H — )" *w,(H — a)"y) + a(w,y)}

= (w,y) +it(w,y).
Note that we obtain the second equality in the above equation by
Theorem 1.3 since w,,; € D(H,;). Hence t(w,y) = ((v—w)/i,y) for all
y € D'. Since D' is a core of t, we have w € D(H) and Hw = (v—w)/i

by Remark 3.4. This completes the proof of (3.6). Furthermore, we
have

(3.7) w = [I+iH] 'v.

Now, it is sufficient to show that w, — w, that is,

(3.8) [I+iH,]) ' (v) — [T +iH] (v)
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to complete our proof.

In the light of (3.7), the limit w in (3.5) does not depend on the
subsequence {wnj}. By a standard compactness argument, it follows
that w,, — w as n — co. Hence, by (3.2),

lim [[w,|? = lim Re ((v,wn)) = Re ((v,w)) = ||wl|*.
n—oo n— o0
Consequently, we have w, — w as desired. ]

4. Stability theorem. A stability theorem for the analytic (in
time) operator-valued Feynman integral, which is our main theorem in
this paper, is proved in this section.

Proposition 4.1. Let p be a measure in GKg — GKy. Then
D(&,) N Co(RY) is a core of €, where Co(R?) denotes the family
of all continuous functions on R? with compact support and hence

HY R N Cy(R?) is a core of E,,.

Proof. Since p is a measure in GK 43— GK g, there exist A > 1 and real

constants ¢ and 3 such that ||pf+7)‘“7f\|2 < cePt||f|]2 for all t > 0 and
f € Lx(RY). (See [1, Proposition 3.4.7 and Theorem 3.4.8]). Noting
that |u| = p* + p~ is a Radon measure and &, is a closed form, we
conclude that D(€,)NCy(R?) = HY(R?)NCo(R?) is a core of £,,. (See
[2, Theorem 5.8].) mi

Theorem 4.2. Let p, pp, n = 1,2,--- be signed measures on
(R4, B(R?)) satisfying the following properties:

(i) For each Borel set E in §, pn(E) converges to u(E) as n — oo
and {pun(E)}52 1, {u, (E)}S2, are nonincreasing sequences.

(ii) There exist v € GKq and n € GKy such that

pt <v, py<n

for all n € N.

For simplicity, let t,, = EETL andt = 5/? where f,fn and 5/? are given in
Section 1. Assume that t, is uniformly bounded below by oo < 0. Then
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{H,}$2., converges to H in the strong resolvent sense where H,, and
H are self-adjoint operators associated with t,, and t, respectively.

Remark 4.3. Using hypothesis (i) in the above theorem, we get
{u(E)}e, is a nonincreasing sequence for each Borel set E in R.
Then the definition of GK,; and hypothesis (ii) imply that, for all
n €N, p, isin GK; — GKy.

Remark 4.4. A simple proof shows that the limiting measure p is
in GK; — GK4. To prove this, let £ € B(RY). Then, pt(E) —
inf{ur(E)} and p, (E) — inf{u, (F)} as n — oo by the monotone
convergence theorem for sequences. Since u,(E) — u(E) = p(E) —
p(E), we get p = pt — p~ = inf .t — inf p,; and this implies that
inf .t > p* and inf p; > p~. Hence we conclude that p* € GKy and
u- € GKy.

Proof of Theorem 4.2. For each n € N, t, is a densely defined,
closed symmetric form which is bounded below by Remark 4.3 and
Proposition 1.6. Using (1.10) and hypotheses on measures p,,, a direct
calculation shows that ¢, is a nonincreasing sequence of forms. Since
t,, is uniformly bounded below by «, we can define

(4'1) Q(fa f) = limnaootn(fa f)

for all f in D(q) = U,D(t,). Let f = g + ih be in U, D(¢,). By (1.10)
and (4.1), we have

a(f, f) = E(g,9) + E(h, h)

+limn_>oo[/ \g|2d,un+/ |h|2dpn}.
R R

We claim that ¢ C ¢. In fact, D(q) C D(t). (See Remark 4.4.) And
so0, for the proof of ¢ C t, it remains to show that, for all f = g + ih in

D(q),

R4 R4

(4.2)
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and
(4.4) limn_mo/ \h|2d,un:/ |h|% du.
R¢ R¢

If g = Xg, where Xg denotes the characteristic function of a Borel
set E, (4.3) is true by hypotheses on measures u, and p. For a simple
function g, (4.3) is easily proved by using the case of characteristic
functions. Suppose that g is a nonnegative Borel measurable function.
Then there exists a nonnegative and nondecreasing sequence {g,}
of simple functions converging to g. By the monotone convergence
theorem, we have

(4.5) W
R4 R4
for all sufficiently large n. And so,
(4.6)  lim, e |:1imm—>oo/ gmzdyn] :limn—wo/ |g/* dpin-
R4 R4

Using the iterated limit theorem for a double sequence and the case of
simple functions, we have

R4 R?
(4.7) = lim, o0 [/ |gm |* d,u}
Rd

=/ lg|? dps.
Rd

By (4.6) and (4.7), we conclude that

(4.8) limn—)oo/ |g|2 dpn, = / |g|2 dp.
R4 Rd

For a Borel measurable function ¢ = g* — g~, we easily get (4.3)
by using the case of nonnegative Borel measurable functions. By
essentially the same method as in the proof of (4.3), we can prove
(4.4).
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Now note that ¢ is a closed form. Hence ¢ is closable. By Proposi-
tion 4.1, D = HY(R%) N Cy(R?) is a core of £, and hence D' = D +iD
is a core of t = £F. Furthermore, D' C D(q) = U,D(t,) C D(2).
Consequently, it is easy to show that ¢ is the closure of ¢ and ¢ is
bounded below with lower bound a. Then in the light of Theorem 3.3,
(H, — 6)Y?u — (H — €)'/?u for all u in D(q) and £ < . Hence we
conclude that {H,}52 , converges to H in the strong resolvent sense by
Theorem 3.6.

Corollary 4.5. Under the same conditions as in Theorem 4.2,
(4.9) JUHFHm) — JUHF")

for allt € R.

Proof. By virtue of Theorem 2.2, we get
(4.10) JU(Fin) = 7 #HS"  and  JU(FH) = e Ho

where HZ" and HY, are self-adjoint operators associated with an and
EE, respectively. By Theorem 4.2 and Theorem 3.2, we get (4.9).
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