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ON HEIGHT ORTHOGONALITY IN
NORMED LINEAR SPACES

JAVIER ALONSO AND MARIA L. SORIANO

ABSTRACT. We study geometric properties of an orthog-
onality relation defined in normed linear spaces and based on
a classical property of right triangles.

In a real inner product space we can state the usual notion of orthog-
onality in many different ways that are also meaningful in real normed
linear spaces. For example, the vectors « and y in a real inner product
space are orthogonal if and only if ||z +y|| = ||z —y||, where || || denotes
the norm induced by the inner product. That property led James [11]
to say that in a real normed linear space two vectors x and y are orthog-
onal in the isosceles sense if the above identity holds. Similar properties
gave rise to a great number of different concepts of generalized orthog-
onalities: z is Birkhoff orthogonal to y if ||z + Ay|| > ||z|| for every
A € R [7]; z is Pythagorean orthogonal to y if ||z — y||*> = ||=||* + ||y
[11]; and so on, see [1, 2]. However, properties like symmetry, homo-
geneity, additivity, etc., of the orthogonality in inner product spaces
do not always carry over to generalized orthogonalities. For example,
isosceles and Pythagorean orthogonalities are homogeneous only in in-
ner product spaces, whereas Birkhoff orthogonality is homogeneous in
any normed linear space. In sum, it seems that orthogonality in normed
linear spaces should provide a good framework for developing studies
of the geometric structure of such spaces.

In this present paper we shall study an orthogonality introduced by
Alsina, Guijarro and Tomas [4] which is based on a well-known property
of right triangles: The height onto the hypotenuse in a right triangle
divides it into two similar triangles.

Let E be a real normed linear space of dimension at least two. If
z,y € E, then x is orthogonal to y in the height sense, x L y, if either
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lllllyll = 0 or
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e —yll = H||y|— n ””’””_H'
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Known [4] properties of H-orthogonality are the following:

(a) Symmetry: x 1L H y if and only if y L ¥ x.

(b) Simplification: z L y implies Az L# \y for every A € R.

(c) If z,y € E\ {0} and * L y, then = and y are linearly
independent.

(d) Emistence: For every x € E and every t > 0, there exists y € E
such that ||y|| =t and x L y.

(e) Existence of diagonals: For every z,y € E\ {0}, there exists § > 0
such that = + 6y L7 = — 6y.
It is easy to see that H-orthogonality also has the property of non-
degeneracy, which means that Az L ¥ pz if and only if Auz = 0.

Property (d) can be improved in the sense that we can find the vector
y in each two-dimensional subspace that contains . This follows from
the proof given in [4]. Proposition 1 includes a new and intuitive proof
of this fact, but the interest of this proposition is centered rather on
the uniqueness property.

Lemma 1. Let S be the unit sphere of a norm in R2, and let
z:0€[0,2r] — xz(f) €S
be a parametrization of S, where x(0) is the point of S that is at an
angle 6 to an arbitrary point ©(0). Then, for every A > 0, the functions
0 € [0,7] — [|z(0) + Az(8)]|, 6 € [0,7] — [|z(0) — Az(0)||

are, respectively, decreasing and increasing.

Proof. Let x = z(0), u = x(f;) and v = z(2), with 0 < 0; < 65 < 7.
We shall see that ||z + Av|| < ||z + Aul|. From the convexity of S it
follows that v = p(px + (1 — p)v), with p > 1 and 0 < p < 1. On the
one hand, from the identity

7 1 L4 ppA —p(1 = p)
a:+)\v—<l+up)\>(w+)\u)+< T4 oA Av
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it follows that

< Mz Aull AL+ ppA — p(1 — )

T+ v
I Ih= 1+ ppA 1+ ppA

On the other hand, from the identity

pu(z + Au) = (1 + ppA)u — p(1 — p)o,

we get
pillz + Aull = [1+ ppA — p(1 = p)].

Therefore, ||z + Av|| < ||z + Aul|. In a similar way it can be proved that
le = of| > [le = duf. 0

Proposition 1. (i) Existence. Let x € E and t > 0. For every
two-dimensional subspace L C E, with x € L, there exists y € L such
that ||y|| =t and z 1L H y.

(ii) Uniqueness. Let z,y € E \ {0} be such that x 12 y. If
z 1" ax + By, with B > 0 and ||az + By|| = ||y||, then a = 0 and
8=1.

Proof. (i) We can assume without loss of generality that the space
L is R? endowed with a norm whose unit sphere is S. By property
(b) we can suppose that « € S. Let z(f) be a parametrization of S as
considered in Lemma 1, with = 2(0). The function F : [0,27] — R,
defined by

F(0) = ||l2(0) — ta(6)[| — [[t2(0) + z(9)||

is continuous and
F0)=|1—-¢t/— |1+t = —F(r)=F(2m).

Then there exist 6y € (0,7) and 61 € (7, 27) such that F'(6y) = F(61) =
0, and we obtain that the vectors yo = tz(fy), y1 = tz(61) satisfy
ol = llyall = ¢, = L yo and = L7 y,.

(ii) We can assume that [|z|| = 1. We can also assume that
a > 0 because if a < 0 we could consider that z 1 3 and z 1
(—a/B)z+(1/8)g, where § = az+By. From a = 0 it follows that 8 = 1.
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So we shall suppose that @ > 0 and we shall get a contradiction. By
property (c) we know that = and y are linearly independent so that we
can assume without loss of generality that the subspace spanned by =
and y is R? endowed with a norm. Again, let x() be a parametrization
of its unit sphere S with z = z(0), as described in Lemma 1. For the
sake of brevity we shall write ¢t = ||y|| = ||az + By||. We shall assume
that the sense of € is such that az + Sy = tz(61) and y = tz(03), with
0 <6 <0y <m Then z(0) L# tz(6;) and z(0) L¥ tz(hs), which
gives F(01) = F(f2) = 0, with F as defined in (i). Therefore, from
Lemma 1 it follows that

[[(0) — tz(01)[| = ||=(0) — tz(62)]|
(1) = [}t2(0) + (65

= [[t2(0) + (61)]]-
Let us now consider the identity
(2) tz(0) + z(61) = vz(0) + B(tz(0) + z(62)),
where v = a/t + t(1 — 8). If v = 0, then it follows from (1) and (2)
that 8 = 1 and then o = 0, which contradicts the assumption. And,
if a4+ B —1=0, then tx(61) — z(0) = B(tz(f2) — z(0)), which also
gives § = 1 and o = 0. Therefore we can suppose that v # 0 and
a+pB—-1#0.
Now, the convex function
FO) = o(02) + A@(01) - 2(62) |, A €R,

satisfies f(0) = f(1) = 1, and from the identities

£2(0) + (61) = ”’E’f [x(a2) + <% + %) (2(61) - m(02))},
t(0) + 2(6) = 2 [x(e2) + %(m(al) _ x(92))] ,
t(6y) - 2(0) = @I

: :x(ez) + (#;1_1) (2(6;) — x(ez)):,
t(0) (0 = I

Jot0) + (557 ) (a0 - =),
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it follows that

_hltrt
Jea(0) + (o)l = 2o ( L4 5).

Jea(0) + a(6a)] = 27 (2,

Y

-1 -1
l|ltz(01) — z(0)]] = t‘a+f |f<aiﬁ_l>’
ltz(82) — z(0)]| = tlo +aﬂ_ 1|f<a +_ﬂ1* 1>'

Taking into account (1), we get

t t o a—1 -1
— = — + — |, _ = _— .
f(v) f(v 7t> f(a+/3—l> f<a+ﬁ—l>
Remembering that f(0) = f(1) = 1, we have from the convexity of f,
independently of the signs of v and a + 8 — 1, that f(\) =1 for every
A in the smallest interval that contains the points
t t a a—1 -1

Oa ]-7 R _+_7 ) .
vy oyt a+B-1" a+pB-1

Therefore,

At ta+B—1
Jt2(0) + 20y = 0 = Bt I

a
so that |y| = |a+ 8 —1].

We end the proof by considering the separate cases. If y =1—a—f,
then, bearing in mind that ¢ = ||y|| = ||az + By||, we get

0§ﬂ17m+a:%@ufﬁyﬁﬁﬁa

so that @« = 0 and 8 = 1. On the other hand, if y = a + 3 — 1, then
n 1/«
—rsY% - — —
v A7)
from which it follows that v > 0. From the identity

(t* + a + B)x(0) = t(tx(0) + (61)) + B(z(0) — tz(62)),
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we get

t2 +C¥+,8 S (t+,8)||t$(0)+$(91)“ _ (t+/8)t(06+ﬂ— 1)7

(0%

and then
2
< Blat B+ i(B-1)

— o465 -1) =5( % +10-9) +1(5 -1
_aB _

—1)%
2 -,
which gives
o2
— +(B-1%<0,
so that & = 0 and 8 = 1, completing the proof. o

Another commonly studied kind of existence property, named «-
ezistence, is the following: For every x,y € E is there some a € R
such that x | ax + y? If the orthogonality is homogeneous, i.e., z L y
implies z L Ay for every A € R, then a-existence and existence (as
stated in Proposition 1) are equivalent properties. But, as we shall see
later, H-orthogonality is not, in general, homogeneous.

Proposition 2. For every xz,y € E there exists a« € R such that
z LH ar+y.

Proof. We can assume that z and y are linearly independent and that

lz|]] = 1. Let us consider the continuous function
ar +y
G(a)_|aw+y—w||—‘||ax+y||$+m', acR.

Our aim is to see that there exist ay,as € R such that a; < as and
G(az2) <0 < G(ay), which would imply that there exists ag € [ay, o)
such that z 1 agz + 3.
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The function a € R — f(a) = ||az + y|| is positive, convex and such
that limy,4c0 f(a) = +00. Hence, there exist 51,82 € R, 81 < (o,
such that f is strictly decreasing in (—oo, 8] and strictly increasing in
[B2,+00). Taking into account that

ar +y
|

T+
o—r— 00

- s
lim m—|

—— || =0= Ilim
amtoe |* 7 laz 4 y]

there exist y; < 81 and 2 > (B2 such that

H MHSI if o<,
laz + y||
and
= R
——— <1 ifa>.
H |z + yl|

Therefore, taking a; < 7, such that f(a;) > 1, it follows that

lorz +y —af = flaa = 1) = flea)
[(lenz +yll = Dl + 1

= sz +ylla + SEL L OEEI ] g
loaz+yl  Joaw + o]
o1xr+y oxr +y
2 ||llarz + y||x + H— +z|| +1
| let Moz ol ™ | Tawe + o1
> |llase + ylle + -S2EFL
|z

so that G(ay) > 0. On the other hand, taking ay > 72 + 1, it follows
that

lagz +y —zf = flaz —1) < flaz) = [[(leaz +y[| + Dzl - 1

Qo + Qo +
= ||||aez + y|lz + 2 Y r— —2 Y H —
a2z + yl| oz + y||
Oé2 Tty Tty
e S 2
R L v | Tasz + gl
Qox +
< |[llezz + yllz + 2—y
laox
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so that G(az) < 0, which completes the proof. o

It is interesting to note that while H-orthogonality has the property
of uniqueness in the sense of Proposition 1, as the next example will
show, it does not have the property of a-uniqueness, i.e., the a in the
a-existence property can be non-unique.

Example 1. Let us consider E to be the space R? endowed with
the norm
max{|21|, |22‘} if 21(321 + 422) >0,
|22| + 1|z otherwise,

o2 = §

whose unit sphere is the hexagon of vertices £(1,1), %(0,1) and
+(—1,3/4). Taking z = (1,1/2), y = (—82/81,164/81) and a =
574/1377, we have x 17 y and z 1L ¥ azx + 4.

Proposition 3. Let z,y € E and a € R be such that z # 0 and
z L7 ax +y. Then,

|a|<M 1++2
T\ 2 )7

and the bound is sharp.

Proof. There is no loss of generality in assuming that o # 0 and

|lz|| = 1. Then, z L# ax + y means that
oar +vy
®) o= e+l = |22+ o+ il
o + |
To simplify, we denote
ar +y
= —1 = .
u=(a-Doty,  v= i as syl

From the identities
(llOéﬂﬁerll2 +a
laz +yl|
au=y+ (a—-1)(az+y),

<a+llaw+yll2> < 1 >
N\ et )E Vi v
loz + y]| loz + y]|

)(ax+y> — av+ [laz + yly,
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we get the following inequalities

laflv]] — llaz +ylllyll < [laz +ylI* + af

(4) < la||v]| + llez + yll[y]],
(5) |a — 1||04Ta+ yll = llyll < Ilull < o — 1||04Ta4|r yll + ||3/||’

2] 2

laz +y| oz +yl|

We shall now consider four separate cases:

Case 1. Assume that 0 < o < 1. Then, from (4) and the definition
of u it follows that

low + yl|* + a < afJull + [loz + yl]lyll
<a(l —a+yl) + [laz + yllllyl,

so that
(7) laz + y|I* = ly|lllez + y|| + ala — [|y||) <O.

This means that the polynomial ¢* — ||y||t + a(o — ||y||) must have real
roots and, therefore, a nonnegative discriminant. That is,

40® —4llylle — [lylI* <0,

from which it follows that

i (572) << (2572)

2 2

Case 2. Assume that 1 < a. From (3), (5) and (6) we get

(e +llaz+yl*) —llyll _ (o= Dljoz+yll + [yl
— )

loz + || a

from which again (7) follows.
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Case 3. Assume that o < 0 and « + ||az + y||? > 0. In this case we
have the inequality

(- ez +yl —llyl _ (a+loz+yl*) + [yl
—o - [l + yl|

so that
(8) e + y|I* = llyllllaz + yl| + ala + |lyll) < 0.
With the argument followed in Case 1 we now get

40® + 4flylla — [|y|I* <0,

(M52 <a<in(F52),

so that

Case 4. Finally, assume that o < 0 and a + |laz + y||? < 0. From
(3) and (4) we have

—all(e =)z +yl| - llaz + ylllyll
(=) —a—lyl) = llaz + vyl

from which (8) follows.

To see that the bound is sharp we can consider the space R? with
the maximum norm. Taking z = (1,1 — v/2), y = (=1,1) and
a = (1++2)/2, we have z 1 ¥ axr +y and —z 1¥ (—a)(-z) + y.
O

It is well known that a normed linear space is an inner product space
if and only if the parallelogram equality

lz +yl* + llz — yl* = 2([l[* + llyll*)

holds for every x,y € E. This basic characterization was strengthened
by several authors: Day [9] showed that only unit vectors are needed
and later Schoenberg [12] replaced equality by an inequality in either
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direction. Benitez and del Rio [6] proved that E is an inner product
space if and only if the B-rectangle inequality holds, i.e., if and only if

v,y € B, w LP y = |lz+yl* + o — ylI* ~ 2(|l* + lly 1),

where |? denotes Birkhoff orthogonality and ~ denotes either < or
>. Finally, Amir [5] observed that the proof given by Benitez and Del
Rio was valid for any orthogonality that has the existence of diagonals
property. Hence, one has the following proposition.

Proposition 4. A normed linear space E is an inner product space
if and only if the H-rectangle inequality holds.

Proposition 5. If z,y € E \ {0} and § € R are such that
x+ 6y L7 x— 6y, then

(|2

[yl

|

lyllv2

and the bounds are sharp.

<l <

)

Proof. We can assume that ||z|| = ||y|| = 1. If ||z + dy||||z — dy|| = 0,
then |§| = 1. Therefore, we can also assume that ||z +dy|| > ||z —dy| >
0. Now, x + 6y L & — 6y means that

x+ 0y x — 0y
215 = ||l — oy [ 2L 2o
d ‘”x ‘5y"<||x+5y||>+”“5y”<|x—6y|>H

Then

216l + oyllllz — oyll = l[[lz = yl* (= + 6y) + [l + 6y]|*(z — dy)|
= I(lz = dyl* + l|l= + 6y[|*)=
= (lla + 8yl* — Il — oy[I*)dyll
> ||z = oy[|* + [l + oy
= (llz + 8yl* = ll= — oy [I*) o],

from which it follows that

(L + oDz — oyll* = 2[6l[l + dyllllz — oyll + (1 = |8 = + dy]|* < 0.
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Therefore, the polynomial
P(t) = (1+18)t* = 2[8 |z + dyllt + (1 — |0]) || + oy||?
must have real roots, so that
[l + oyll* — (1 + [6)) (1 — [d]) [l + dy||* > 0,

ie., |6 > 1/v2.

To get the other bound, we have

rann) < o= )|
x—06 —— ) +|lz+ o
o = dull (20 ) + et oul (25

H(II»’H&/II2 Iw—5y|2)< z — 8y >+ 2||90—5y||wH
[l + dyll le =yl llz + oy

< Nz 48yl — |z — dy|I* + 2l]= — oy||

N [l + byll

2)6] = ‘

Therefore,
Iz — 8yl|* — 2llz — dyll + ll= + oyll (216] — ||z + dyl|) <0,
and the discriminant of the polynomial
Q(t) =t — 2t + || + oyl (218] — ||z + dyl))
must be nonnegative, i.e.,
Iz + dylI* = 2[8lllx + oyl +1 > 0.

We want to see that |§] < V2, so that we can assume that |6] > 1. The
roots of the polynomial H(t) = % — 2|§|t + 1 are

to=10l+I02—1, t_=1d|— ]2 L

Therefore, either ||z + dy|| < t_ or ||z + dy|| > t+. In the former case

we have
6] =1 < |lz+ dyl| < [6] — V/I6]* — 1,
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so that |§] < v/2. In the latter case,

6] + VI6]* = 1 < [l + dyl| <1+ d],

and we also get |6 < v/2.

To see that the bounds are sharp, we can consider, as in Proposition
3, the space R? with the maximum norm. Taking = = (1,1), y = (1,0)
and § = /2, we have 2+ 0y L¥ 2z —dy and y + 6 1o LH y— 51z
O

The next result shows that the lower bound in Proposition 5 is
attained only in very special spaces.

Proposition 6. Assume that there exist x,y € E \ {0} such that
x40y LH x— 0y, with |6] = ||z||/(lyl[v2). Then the subspace spanned
by = and y is isometrically isomorphic to (R2,]| ||c0)-

Proof. First, we can assume that ||z|| = [|y]| = 1 and § = 1/v/2. Let
L = span(z,y). By means of an isometric isomorphism we can assume
that L = R?, z = (1,0) and y = (1,1). Then we shall see that the unit
sphere S of L is a square.

From the proof of Proposition 5 we know that P(||z—dy||) < 0, where
P(t) = (1+18)t* = 2[8 ]|« + dyllt + (1 — |9])[|= + dy]|*.

But now, the discriminant of this polynomial is zero. Therefore,
P(||z — dy||) = 0, which yields

9) llz + 6yl = (1 + V2)l|lz — dyll.

Bearing in mind that = + 6y L7 x — 6y, we get |22 — y|| = 1.
Then, we have [(1,0)] = (1, 1| = [I(1,—1)] = 1, from which it
follows that the line segment [(1,—1), (1,1)] must be in S. Hence,
o+ 6yl = [I(1+6,8)] = 1+ 6, and we get from (9) |z — 5y = o,
which gives [|(v2 — 1,—1)|| = 1. But (v/2 —1,—1) is a point in the
line segment [(—1,—1), (1, —1)]. Therefore, S must be the square of
vertices +(1,1), +(1, —1). O
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Remark 1. With regards to the upper bound in Proposition 5, we
know that there are two-dimensional spaces, different from (R2, || ||s),
where it is attained. For example, consider in R? a norm whose unit
sphere is the hexagon of vertices +(1,0), £(0,1) and +(1,3), where
V2 < B < 2. Then, taking z = (1,0) and y = (0,1), we have
T+ \/§y 1H \/§y

Orthogonality in an inner product space is, obviously, homogeneous.
However, as a general rule, we can say that all the generalized orthogo-
nalities that have been defined are homogeneous either in every normed
linear space (Birkhoff [7], Singer [13], Diminnie [10], area [3]) or only
in inner product spaces (isosceles [11], Pythagorean [11], Carlsson [8]).
But we shall see that this is not the case for H-orthogonality.

Definition 1. Let E be a real normed linear space of dimension
at least two. We say that E has the 7/2-property if for every two-
dimensional subspace L C E, there exists an isometric isomorphism
between L and R? such that the unit sphere in R? is invariant under
rotations of angle m/2 radians.

Proposition 7. Let L be a real normed linear space of dimension
two.

(i) If there exist ,y € L\ {0} such that x L7 \y for every A € R,
then L has the m/2-property.

(ii) If L has the 7 /2-property, then the H-orthogonality is homoge-
neous.

Proof. We can assume without loss of generality that L is R? endowed
with a norm whose unit sphere is parametrized by
z: 0€[0,2r] — z(0) = |z(0)|(cosb,sinb) € S,
where | | denotes the usual modulus of a vector.

(i) We can assume that ||z]] = |ly|| = 1 and that the above
parametrization satisfies ¢ = x(0) = (1,0) and y = (7/2) = (0,1). We
shall see that |z(8)| = |z(6 +7/2)|, for every 6. Now, z(0) L \z(r/2)
is equivalent to the identity

[2(0) = Az(x/2)|| = ||lz(m/2) + Az (0)][|.
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Hence, our hypothesis says that ||(A, 1)]| = ||(1,—\)|| for every A € R.
But this yields

|(cos ,sinB)|| = ||(sin 8, — cos 8)]|
™
6+ =
(oo Z)om (D))
for every 6.
(ii) In this case we can assume that |z(0)| = |z(8 + 7/2)| for every

6. We shall see that z(6) L# \z(0 + 7/2) for every A € R, and then,
bearing in mind Proposition 1, we shall have that the H-orthogonality
is homogeneous.
Let A € R. Then
z(0) — Az <0 + g) = |2(8)|(cos 0 + Asin @, sin @ — Acos®),
a:<9 + g) + Az(0) = |2(0)|(Acos@ — sin B, Asin 0 + cos B).
Also, let #; and 65 be such that

2(0) — Az <9 + g) = ||z(6) — )\w<9 + g)
x<9 + g) +Az(0) = ||x<9 + g) + Az (8)]]|2(62)| (cos B, sin ).

2(0) — Az (0 + g)

|z(61)|(cos 0y,sin6y),

Then

|z(61)] = |z(0)|V 1+ A2

x<9 + g) +2z(0)]||z(62)],
and 1 Asinf+ cos0
m sin 6 + cos
tan <01 + §> " tanf; Acosf —sinf tan s,

from which it follows that |z(63)| = |z(61+7/2)|. Hence ||z(8) —Az(6+
7/2)|| = ||z(8 +7/2) + Az(8)||, which means that z(0) L7 \z(0+7/2).
O
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It follows from Proposition 7 that in a two-dimensional space H-
orthogonality is homogeneous if and only if there are two vectors x and
y such that z L7 )y for every A € R. The following result is then
obvious.

Corollary 1. A real normed linear space of dimension at least two
has the 7 /2-property if and only if H-orthogonality is homogeneous.

Conjecture 1. A real normed linear space of dimension at least
three is an inner product space if and only if H-orthogonality is homo-
geneous.
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