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ANDERSON’S CONJECTURE FOR DOMAINS
WITH FRACTAL BOUNDARY

MICHAEL D. O’NEILL

ABSTRACT. The inequality

lim inf
r→1

Re b(rζ)∫ r

0
|b′(pζ)| dρ

> 0

is shown to hold for all ζ in a set E ⊂ T with Hausdorff
dimension 1, when b lies in a special class of Bloch functions
first considered by Jones.

1. Introduction and background. A function f , defined and
analytic in the unit disk, is called a Bloch function if

‖f‖B = sup
z∈D
(1− |z|2)|f ′(z)| <∞.

We write f ∈ B. The following proposition, which establishes a close
connection between Bloch functions and conformal mappings, is well
known, see [2, 3].

Proposition 1.1. If g is a univalent function in D and f = log g′,
then f ∈ B and ‖f‖B ≤ 6. Conversely, if ‖f‖B ≤ 1, then there exists a
univalent function g such that f = log g′.

Functions in the Bloch space are Lipschitz mappings from the disk
with the hyperbolic metric to the complex plane with the Euclidean
metric

|b(z1)− b(z2)| ≤ C‖b‖Bd(z1, z2).

This is easily seen by integration because the hyperbolic distance
between two points z1 and z2 in the unit disk is defined as

d(z1, z2) = inf
γ

∫
γ

2|dz|
1− |z|2
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where the infimum is over all rectifiable arcs joining za and z2 in D.
See [5], for example, for the basic facts on the hyperbolic metric. In
this paper the hyperbolic metric will always be denoted by d and
the Lipschitz property of Bloch functions from the hyperbolic to the
Euclidean metric will be used several times.

Let DR(z) ⊂ D denote a disk with hyperbolic center z and hyperbolic
radius R. In Section 2 we will consider Bloch functions b with the
property

M(ε,R) : inf
z∈D

(
sup

w∈DR(z)

(1− |w|2)|b′(w)|
)
> ε > 0,

where R and ε are positive. We will show that, if b ∈ B has M(ε,R)
for some ε > 0 and R > 0 and if b = log f ′ for some univalent f , then

∫ 1

0

|f ′′(rζ)| dr <∞ ∀ ζ ∈ E,

where E ⊂ T has Hausdorff dimension one. This will follow from the
inequality

lim inf
r→1

Re b(rζ)∫ r

0
|b′(pζ)| dρ > 0 ∀ ζ ∈ E.

That the above inequality holds on a dense set of points for any Bloch
function follows from the recent result of Jones and Mueller, [9]. Here
we are interested in the question of the metric size of the set E.

2. The Anderson conjecture for a class of domains consid-
ered by Jones. In [1] Anderson conjectured that a univalent function
f has ∫ 1

0

|f ′′(rζ)| dr <∞

for some ζ ∈ ∂D.

The conjecture was recently verified by Jones and Mueller [9], but the
problem of the size of the set on which the function f ′ has finite radical
variation remains open. It is expected that the conjecture should hold
for a set with Hausdorff dimension one. In this section we show that,
in case the mapping is onto a domain with fractal boundary, the set
has the expected size.
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At the end of the note we will also point out how the result of
Bourgain [4] implies the dimension one property when the mapping
is onto a type of domain which is in a certain sense of the opposite
extreme behavior.

Let b = − log f ′. We claim that

lim inf
r→1

Re b(rζ)∫ r

0
|b′(ρζ)| dρ > 0 =⇒

∫ 1

0

|f ′′(rζ)| dr <∞.

This was remarked in [10].

Proof of claim. We have

∫ 1

0

|f ′′(rζ)| dr =
∫ 1

0

|b′(rζ)| exp(−Re b(rζ)) dr,

and we may assume ∫ 1

0

|b′(rζ)| dr = +∞.

Choose rn → 1 such that
∫ rn

rn−1

|b′(rζ)| dr = 1, ∀n,

and such that

lim inf
r→1

Re b(rζ)∫ r

0
|b′(ρζ)| dρ > c′ > 0, ∀ r ≥ r0.

We have
∫ 1

0

|f ′′(rζ)| dr ≤
∫ r0

0

|f ′′(rζ)| dr

+
∞∑

n=1

∫ rn

rn−1

|b′(rζ)| exp
(
− c′

∫ rn−1

0

|b′(tζ)| dt
)
dr

≤
∫ r0

0

|f ′′(rζ)| dr +
∞∑

n=1

exp(−cn)
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for some c > 0. We will prove the following

Theorem 2.1. Let b ∈ B have the property M(ε,R) for some ε > 0
and some R > 0 as explained in Section 1. Assume that b(0) = 0.
There is a set E ⊂ T with Hausdorff dimension one such that

lim inf
r→1

Re b(rζ)∫ r

0
|b′(ρζ)| dρ > 0

for all ζ ∈ E.

We remark, following [8], that for a domain whose boundary is
everywhere wrinkled on all scales, any Riemann mapping corresponds
to a Bloch function with M(ε,R). To be precise, let b = log f ′ for
some univalent f mapping D onto a domain Ω, and define the Koebe
transform of f as

Fz0(z) =
f((z + z0)/(1 + z0z))− f(z0)

(1− |z0|2)f ′(z0) .

Lemma 2.1 (Jones). The Bloch function b has M(ε,R) for some
ε > 0 and for some R > 0 if and only if there is no sequence {zn} in D
such that zn → λ and {Fzn

} converges uniformly on compact subsets
to

F (z) =
z

1 + λz
for some λ ∈ T.

This lemma tells us that if there is no sequence of conformal rescalings
which blows up any piece of ∂Ω to a line, then any Bloch function which
gives a Riemann map to Ω must have M(ε,R) for some ε,R > 0.

Proof of Lemma 2.1. It follows by integration that a Bloch function
b fails to have M(ε,R) for all ε,R > 0 if and only if for each positive
integer n there is a point zn ∈ D such that

(2.1) |b(z)− b(zn)| < 1
n
, ∀ z ∈ Dn(zn).
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Let b = log f ′ for some univalent f , and suppose that we can find a
sequence {zn} such that (2.1) holds. Then we have both

e−1/n <
|f ′(z)|
|f ′(zn)| < e1/n

and

− 1
n
< arg

(
f ′(z)
f(zn)

)
<
1
n
.

Taking a subsequence, we may assume that zn → λ for some λ ∈ T.
Then we have

(2.2) F ′
zn
(z) =

f ′((z + zn)/(1 + znz))
(1 + znz)2f ′(zn)

−→ 1
(1 + λ̄z)2

uniformly on compact subsets of D. Therefore,

Fzn
(z) −→ z

1 + λ̄z

uniformly on compact subsets of D. Conversely, we see that if zn →
λ ∈ T and (2.2) holds uniformly on compact sets, then by taking a
subsequence and relabeling we have (2.1). To make dimension estimates
we will use

Lemma 2.2 (Hungerford). Fix 0 < ε < c < 1. Let E0 = T = I0,0

and, for n > 1, En = ∪In,k where In,k are disjoint closed arcs such
that, for each In,k, there is a unique In−1,j with

(i) In,k ⊂ In−1,j

(ii) |In,k| ≤ ε|In−1,j |
(iii)

∑
i(j) |In,i| ≥ c|In−1,j |, where i(j) runs through all indices such

that In,i ⊂ In−1,j.

Let E = ∩nEn. Then with dimE denoting the Hausdorff dimension of
E, we have

dimE ≥ 1− log c
log ε

.
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Proofs appear in [7] and [11].

We also require a lemma from [8].

Lemma 2.3. Let b ∈ B have M(ε,R) for some ε,R > 0, I ⊂ T an
arc and r0 = 1 − |I|. Then there exist α, β, δ > 0 depending only on ε
and on R such that

m

({
ζ ∈ I : Re br(ζ)− Re br0(ζ) > α

(
log

(
1− r0
1− r

))1/2})
≥ β|I|

for all r with (1− r) < δ(1− r0). Here m denotes Lebesgue measure.

Proof. The letters C,C1, C2, . . . denote absolute constants, and
the constant C(ε,R) may change from line to line. By a standard
computation with Green’s theorem,

‖Re (br − b(0))‖2
2 =

1
2
‖br − b(0)‖2

2 ∼
∫∫

D

|b′r|2(1− |z|) dx dy

where a ∼ bmeans that a/b is bounded above and below by two positive
numerical constants. See, for instance, [5, p. 237].

We claim that the integral on the right is bounded below by

C(ε,R) log
(

1
1− r

)
.

With 1− r sufficiently small, break the disk {|z| < r} into annuli

Aj = {1− 2−C1Rj < |z| < 1− 2−C1R(j+1)}

where the numerical constant C1 is chosen so that a radius of Aj has
hyperbolic length, say, > 3R.

By integration of b, there is a ρ > 0 such that at each point w where
(1 − |w|2)|b′(w)| > ε we have (1 − |w′|2)|b′(w′)| > (ε/2) for each w′

in the hyperbolic disk Dρ(w). By the condition M(ε,R), there are at
least C22C1RJ such disjoint disks in each of the annuli Aj . For each j,
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then, let Uj denote a union of at least C22C1Rj disjoint disks contained
in Aj such that (1− |w′|2)|b′(w′)| > (ε/2) for each w′ ∈ Uj . Then
∫∫

D

|b′r|2(1− |z|) dx dy ≥
(
ε

2

)2 ∑
j

∫∫
Uj

1
1− |z| dx dy

≥
(
ε

2

)2 ∑
j

2−C1R(j+1)

∫∫
Uj

1
(1− |z|)2 dx dy

≥ C(ε,R)
∑

j

1

≥ C(ε,R) log
(

1
1− r

)
.

Suppose now that, for whatever choice of α′
0, β

′
0 > 0, there exists b

with the propertyM(ε,R) such that

m

({
|Re (br − b(0))|2 ≥ α′

0 log
1

1− r

})
< β′

0.

Then, since∫
|Re (br − b(0))|2 dθ

2π
≤ C ′β′

0 log
1

1− r
+ (1− β′

0)α
′
0 log

1
1− r

we violate the above claim for some b by choosing α′
0 and β

′
0 sufficiently

small. So

m

({
|Re (br − b(0))| ≥ α0

(
log

1
1− r

)1/2})
> β′

0 > 0

for some α0 and β′
0 depending only on ε and R, for all b withM(ε,R).

We claim now that there are 0 < α(ε,R) ≤ α0 and 0 < β0(ε,R) ≤ β′
0

such that

m

({
Re (br − b(0)) ≥ α

(
log

1
1− r

)1/2})
> β0 > 0

for all r sufficiently close to one. To prove the claim, we may assume
that

m

({
Re (br − b(0)) ≤ −α0

(
log

1
1− r

)1/2})
>
β′

0

2
> 0
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since otherwise the claim is immediate. The function Re (br − b(0)) is
harmonic and has mean value zero. But, if

m

({
Re (br − b(0)) ≥ α

(
log

1
1− r

)1/2})
< β0,

then∫
Re (br − b(0)) < −α0

β′
0

2

(
log

1
1−r

)1/2

+ (1− β0)α
(
log

1
1−r

)1/2

+
∫ ∞

α(log(1/(1−r)))1/2
m({Re (br − b(0)) > λ}) dλ.

By Exercise 3 [11, p. 188], this is less than

−α0
β′

0

2

(
log

1
1− r

)1/2

+ (1− β0)α
(
log

1
1− r

)1/2

+ C3

∫ ∞

α

ue−u2
du

which gives a contradiction for sufficiently small α and for r sufficiently
close to one. Therefore, there exists β0 and O < r1 < 1 such that

m

({
Re (br − b(0)) ≥ α

(
log

1
1− r

)1/2})
> β0 > 0

for each r > r1. Since Bloch functions are Lipschitz from the hyperbolic
metric to the Euclidean metric in the plane, we may, by taking α0

slightly smaller and increasing r if necessary, assume that the above
set is a union of arcs with disjoint interiors of length ∼ (1 − r). Fix
r′ > 0. Let τ be the conformal self mapping ofD which maps the arc J ,
complementary to [e−i(β0/20), ei(β0/20)], onto I, and let QI denote the
Carleson square determined by I. Notice that the hyperbolic distance
from τ (0) to any point in QI ∩ {|z| = r0} is uniformly bounded with a
bound only depending on β0, hence on ε and R. We have

m

({
Re ((b ◦ τ )τ ′ − (b ◦ τ )(0)) ≥ α

(
log

1
1− r′

)1/2})
≥ β0,

and the above set is the radial projection onto T of a certain set of arcs
on the circle |z| = r′. Denote the union of these arcs by E ⊂ {|z| = r′}.
Let r be determined by

log
1 + r
1− r

= log
1 + |τ (0)|
1− |τ (0)| + log

1 + r′

1− r′
.
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We project the set τ (E) ∩QI outward from the ball
{∣∣∣∣ w − τ (0)

1− τ (0)w

∣∣∣∣ ≤ r′
}

along geodesic rays through τ (0) onto the circular arc {|w| = r} ∩QI .
Let E′ denote the image on {|w| = r} ∩ QI . Each arc of τ (E) is
projected through a hyperbolic distance which is less than

γ = γ(β0) = γ(ε,R) = 2 · d(τ (0), {|z| = r0}) + 1.

Using again the Lipschitz property of Bloch functions and letting
E′′ ⊂ I denote the radial projection of E′, there exists an α > 0
such that

Re br(ζ)− Re br0(ζ) > α

(
log

(
1− r0
1− r

))1/2

, ∀ ζ ∈ E′′

if, say,

log
1 + r′

1− r′
≥ 100γ.

By the choice of τ we also have β > 0 such that

|E′′| ≥ β|I|

and β depends only on ε and R. The requirement on the size of
log((1 + r′)/(1− r′)) is met if (1− r) < δ(1− r0) for sufficiently small
δ = δ(γ) = δ(ε,R) > 0. Shrinking δ further if necessary to meet the
earlier demands on r completes the proof.

Proof of Theorem 2.1. Assume that ‖b‖B ≤ 1, and let rj = 1 − 2−j

for all j ≥ 0. Choose a large j0 so that 2−j0 < δ. By Lemma 2.3 there
are α, β > 0 and there is a set

C1 ⊂ {Re brj0
(ζ) > α

√
j0}

which has |C1| > β and is the union of arcs of length 2−j0 . In each of
these arcs we again apply Lemma 2.3 to obtain a set

C2 ⊂ {Re br2j0
(ζ)− Re brj0

(ζ) > α
√
j0}
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which is the union of arcs of length 2−2j0 and has the property that if
I ⊂ C1 is an arc of length 2−j0 then |C2 ∩ I| ≥ β|I|. We continue in
this way, at the lth step obtaining

Cl ⊂ {Re brlj0
(ζ)− Re br(l−1)j0

(ζ) > α
√
j0}

the union of arcs of length 2−lj0 such that if I ⊂ Cl−1 is an arc of length
2−(l−1)j0 then |Cl ∩ I| ≥ β|I|. We are in the situation of Lemma 2.2,
and the set E = ∩lCl has

dimE ≥ 1− log β
log 2−j0

.

Let ζ ∈ E. Choose a large j, and let m satisfy

mj0 ≤ j < (m+ 1)j0.

We have

Re brj
(ζ) ≥ Re brmj0

(ζ)− cj0 ≥ αm
√
j0 − cj0(2.3)

≥ c

(
α√
j0

∫ rmj0

0

|b′(ρζ)| dρ− j0

)

≥ c

(
α√
j0

∫ rj

0

|b′(ρζ)| dρ− j0 − α
√
j0

)
.(2.4)

By (2.3), we have

Re brj
(ζ) −→ +∞, j → +∞

for all ζ ∈ E. Therefore, if
∫ 1

0

|b′(ρζ)| dρ < +∞,

we have
lim inf

r→1

Re b(rζ)∫ r

0
|b′(ρζ)| dρ = +∞.

Otherwise, we have by (4) that

lim inf
r→1

Re b(rζ)∫ r

0
|b′(ρζ)| dρ ≥ c

α√
j0
.
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Noting that dimE → 1 as j0 → +∞, the proof is complete.

We remark that the Anderson conjecture with lower bound dimension
estimates is known for the case of Bloch functions with lacunary power
series [6]. Notice also that Anderson’s conjecture holds at any point
where the radial variation of the Bloch function b is finite. So if b is
a bounded function then, by the result of Bourgain [4], Anderson’s
conjecture holds on a set with dimension one. As the functions in
Jones’s class obey a lower bound law of the iterated logarithm at almost
every point, these two cases are, in the sense of boundedness of the
Bloch function, at the opposite extremes.

Note added in proof. In November of 1999 Paul Müller informed the
author that the ideas in [9] lead to a proof that Anderson’s conjecture
holds on a set with full Hausdorff dimension. Because this article
contains a complete proof of the lemma of Jones announced in [8] and
because of the simplification of the proof of Anderson’s conjecture in
the case of fractal boundaries, both Prof. Müller and the Editor have
suggested that it should appear here.

REFERENCES

1. J.M. Anderson, Category theorems for certain Banach spaces of analytic
functions, J. Reine Angew. Math. 249 (1971), 83 91.
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