A COMBINATORIAL IDENTITY OF SUBSET-SUM POWERS IN RINGS

ROY MALTBY

Abstract

Escott showed that, for any set of n natural numbers, the sum of the k th powers of the sums of subsets of even cardinality is equal to the sum of the k th powers of the sums of subsets of odd cardinality for $k=1, \ldots, n-1$. We present a new proof of this fact which shows that this result holds in noncommutative rings as well.

The main application of Theorem 1 is to the Prouhet-Tarry-Escott problem, which is to determine, for each $d \in \mathbf{N}$, the least m such that there exist $\left(a_{1}, \ldots, a_{m}\right) \in \mathbf{N}^{m}$ and $\left(b_{1}, \ldots, b_{m}\right) \in \mathbf{N}^{m}$ not permutations of each other so that $\sum_{i=1}^{m} a_{i}^{k}=\sum_{i=1}^{m} b_{i}^{k}$ for all $k \leq d$. (We use \mathbf{N} to denote the set of natural numbers, and for every $n \in \mathbf{N}$ we use \mathbf{n} to denote the set $\{1, \ldots, n\}$.) In $[\mathbf{3}]$, this author describes in detail one method of applying Theorem 1 to the Prouhet-TarryEscott problem. For a thorough discussion of the Prouhet-Tarry-Escott problem, see Borwein and Ingall's recent paper [1].

Dorwart and Brown [2, p. 624] attribute Theorem 1 to Escott. Here we give a fuller presentation of the old proof sketched by Borwein and Ingalls following their Proposition 1 in [1]. This proof has similarities to the one presented by Wright [4]. This proof shows that the theorem holds for natural numbers, and we follow it with a proof that the identity holds in noncommutative rings as well.

Theorem 1. For any $n \in \mathbf{N}$ and $\alpha_{1}, \ldots, \alpha_{n} \in \mathbf{N}$,

$$
\sum_{\substack{I \subseteq \mathbf{n} \\|I| \text { odd }}}\left(\sum_{i \in I} \alpha_{i}\right)^{k}=\sum_{\substack{I \subseteq \mathbf{n} \\|I| \text { even }}}\left(\sum_{i \in I} \alpha_{i}\right)^{k}
$$

for all $k<n$.

[^0]Proof. Let $m \in \mathbf{N}$ and $a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{m} \in \mathbf{N}$. Observe that in $\mathbf{Z}[x]$,

$$
(x-1)^{n} \mid \sum_{i=1}^{m} x^{a_{i}}-\sum_{i=1}^{m} x^{b_{i}}
$$

if and only if

$$
\sum_{i=1}^{m} 1^{a_{i}}-\sum_{i=1}^{m} 1^{b_{i}}=0
$$

and

$$
(x-1)^{n-1} \left\lvert\, \frac{d}{d x}\left(\sum_{i=1}^{m} x^{a_{i}}-\sum_{i=1}^{m} x^{b_{i}}\right)\right.
$$

In fact, these conditions are equivalent to

$$
\sum_{i=1}^{m} 1^{a_{i}}-\sum_{i=1}^{m} 1^{b_{i}}=0
$$

and

$$
(x-1)^{n-1} \left\lvert\, x \frac{d}{d x}\left(\sum_{i=1}^{m} x^{a_{i}}-\sum_{i=1}^{m} x^{b_{i}}\right)\right.
$$

which simplify to

$$
\sum_{i=1}^{m} 1^{a_{i}}-\sum_{i=1}^{m} 1^{b_{i}}=0
$$

and

$$
(x-1)^{n-1} \mid \sum_{i=1}^{m} a_{i} x^{a_{i}}-\sum_{i=1}^{m} b_{i} x^{b_{i}}
$$

Repeating the reasoning above, we see that this last divisibility statement is equivalent to saying that

$$
\sum_{i=1}^{m} a_{i} 1^{a_{i}}-\sum_{i=1}^{m} b_{i} 1^{b_{i}}=0
$$

and

$$
(x-1)^{n-2} \mid \sum_{i=1}^{m} a_{i}^{2} x^{a_{i}}-\sum_{i=1}^{m} b_{i}^{2} x^{b_{i}}
$$

Repeating this reasoning n times, we see that

$$
(x-1)^{n} \mid \sum_{i=1}^{m} x^{a_{i}}-\sum_{i=1}^{m} x^{b_{i}}
$$

if and only if

$$
\sum_{i=1}^{m} a_{i}^{k}-\sum_{i=1}^{m} b_{i}^{k}=0
$$

for all $k<n$.
Now, specifically, put $m=2^{n-1}$ and for each $I \subseteq \mathbf{n}$ such that $|I|$ is even, put a different one of a_{1}, \ldots, a_{m} equal to $\sum_{i \in I} \alpha_{i}$. Then do likewise for b_{1}, \ldots, b_{m}, except with the condition that $|I|$ be odd rather than even. Now

$$
\prod_{i=1}^{n}\left(1-x^{\alpha_{i}}\right)=\sum_{i=1}^{m} x^{a_{i}}-\sum_{i=1}^{m} x^{b_{i}}
$$

It is clear that

$$
(1-x)^{n} \mid \prod_{i=1}^{n}\left(1-x^{\alpha_{i}}\right)
$$

so the previous paragraph allows us to conclude that

$$
\sum_{i=1}^{n} a_{i}^{k}-\sum_{i=1}^{n} b_{i}^{k}=0
$$

for all $k<n$. In other words,

$$
\sum_{\substack{I \subseteq \mathbf{n} \\|I| \text { odd }}}\left(\sum_{i \in I} \alpha_{i}\right)^{k}=\sum_{\substack{I \subseteq \mathbf{n} \\|I| \text { even }}}\left(\sum_{i \in I} \alpha_{i}\right)^{k}
$$

for all $k<n$.

Now we present a new proof which shows that the identity holds in any (not necessarily commutative) ring. This may be a better proof than the old proof of Theorem 1 repeated above, even if one is only interested in the ring of integers.

Theorem 2. Let R be any ring. For any $n \in \mathbf{N}$ and $a_{1}, \ldots, a_{n} \in R$,

$$
\sum_{\substack{I \subseteq \mathbf{n} \\|I| \text { odd }}}\left(\sum_{i \in I} a_{i}\right)^{k}=\sum_{\substack{I \subseteq \mathbf{n} \\|I| \text { even }}}\left(\sum_{i \in I} a_{i}\right)^{k}
$$

for all $k<n$.

Proof. When $k=0$, the formula says that \mathbf{n} has as many subsets of odd size as it does of even size. This well-known result is easily verified by fixing $p \in \mathbf{n}$ and observing that the map f is a bijection between the set of odd-cardinality subsets of \mathbf{n} and the set of even-cardinality subsets of \mathbf{n} if f is defined by:

$$
f(I)= \begin{cases}I \backslash\{p\} & p \in I \\ I \cup\{p\} & p \notin I\end{cases}
$$

Let $k<n, k \geq 1$. Then

$$
\begin{aligned}
\sum_{I \subseteq \mathbf{n}}(-1)^{|I|}\left(\sum_{i \in I} a_{i}\right)^{k} & =\sum_{I \subseteq \mathbf{n}}(-1)^{|I|} \sum_{\left(i_{1}, \ldots, i_{k}\right) \in I^{k}} \prod_{j=1}^{k} a_{i_{j}} \\
& =\sum_{I \subseteq \mathbf{n}} \sum_{\left(i_{1}, \ldots, i_{k}\right) \in I^{k}}(-1)^{|I|} \prod_{j=1}^{k} a_{i_{j}} \\
& =\sum_{\left(i_{1}, \ldots, i_{k}\right) \in \mathbf{n}^{k}} c_{i_{1}, \ldots, i_{k}} \prod_{j=1}^{k} a_{i_{j}}
\end{aligned}
$$

where, for all $\left(i_{1}, \ldots, i_{k}\right) \in \mathbf{n}^{k}$,

$$
\begin{aligned}
c_{i_{1}, \ldots, i_{k}} & =\sum_{\left\{i_{1}, \ldots, i_{k}\right\} \subseteq I \subseteq \mathbf{n}}(-1)^{|I|} \\
& =\sum_{J \subseteq \mathbf{n} \backslash\left\{i_{1}, \ldots, i_{k}\right\}}(-1)^{\left|\left\{i_{1}, \ldots, i_{k}\right\} \cup J\right|} \\
& =(-1)^{\left|\left\{i_{1}, \ldots, i_{k}\right\}\right|} \sum_{J \subseteq \mathbf{n} \backslash\left\{i_{1}, \ldots, i_{k}\right\}}(-1)^{|J|} .
\end{aligned}
$$

But we know that

$$
\sum_{J \subseteq \mathbf{n} \backslash\left\{i_{1}, \ldots, i_{k}\right\}}(-1)^{|J|}=0
$$

since we know by the reasoning at the start of this proof that $\mathbf{n} \backslash\left\{i_{1}, \ldots, i_{k}\right\}$ has just as many subsets of even cardinality as it does of odd cardinality. So every $c_{i_{1}, \ldots, i_{k}}=0$. Hence,

$$
\sum_{I \subseteq \mathbf{n}}(-1)^{|I|}\left(\sum_{i \in I} a_{i}\right)^{k}=0
$$

REFERENCES

1. Peter Borwein and Colin Ingalls, The Prouhet-Tarry-Escott problem revisited, Enseign. Math. 40 (1994), 3-27.
2. H.L. Dorwart and O.E. Brown, The Tarry-Escott problem, MAA Monthly 44 (1937), 613-626.
3. Roy Maltby, Pure product polynomials and the Prouhet-Tarry-Escott problem, Math. Comp. 66 (1997), 1323-1340.
4. E.M. Wright, Prouhet's 1851 solution of the Tarry-Escott problem of 1910, Amer. Math. Monthly 66 (1959), 199-201.

Excel Geophysics, Box 5056, 303 21st Street SE, High River, Alberta, Canada T1V 1M3
E-mail address: rmaltby@telusplanet.net

[^0]: Received by the editors on December 20, 1996.

