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A COMBINATORIAL IDENTITY
OF SUBSET-SUM POWERS IN RINGS

ROY MALTBY

ABSTRACT. Escott showed that, for any set of n natural
numbers, the sum of the kth powers of the sums of subsets of
even cardinality is equal to the sum of the kth powers of the
sums of subsets of odd cardinality for k = 1, . . . , n − 1. We
present a new proof of this fact which shows that this result
holds in noncommutative rings as well.

The main application of Theorem 1 is to the Prouhet-Tarry-Escott
problem, which is to determine, for each d ∈ N, the least m such
that there exist (a1, . . . , am) ∈ Nm and (b1, . . . , bm) ∈ Nm not
permutations of each other so that

∑m
i=1 ak

i =
∑m

i=1 bk
i for all k ≤ d.

(We use N to denote the set of natural numbers, and for every n ∈ N
we use n to denote the set {1, . . . , n}.) In [3], this author describes
in detail one method of applying Theorem 1 to the Prouhet-Tarry-
Escott problem. For a thorough discussion of the Prouhet-Tarry-Escott
problem, see Borwein and Ingall’s recent paper [1].

Dorwart and Brown [2, p. 624] attribute Theorem 1 to Escott. Here
we give a fuller presentation of the old proof sketched by Borwein and
Ingalls following their Proposition 1 in [1]. This proof has similarities
to the one presented by Wright [4]. This proof shows that the theorem
holds for natural numbers, and we follow it with a proof that the
identity holds in noncommutative rings as well.

Theorem 1. For any n ∈ N and α1, . . . , αn ∈ N,

∑
I⊆n

|I| odd

( ∑
i∈I

αi

)k

=
∑
I⊆n

|I| even

( ∑
i∈I

αi

)k

,

for all k < n.
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Proof. Let m ∈ N and a1, . . . , am, b1, . . . , bm ∈ N. Observe that in
Z[x],

(x − 1)n
∣∣∣∣

m∑
i=1

xai −
m∑

i=1

xbi

if and only if
m∑

i=1

1ai −
m∑

i=1

1bi = 0

and

(x − 1)n−1

∣∣∣∣ d

dx

( m∑
i=1

xai −
m∑

i=1

xbi

)
.

In fact, these conditions are equivalent to

m∑
i=1

1ai −
m∑

i=1

1bi = 0

and

(x − 1)n−1

∣∣∣∣ x
d

dx

( m∑
i=1

xai −
m∑

i=1

xbi

)
,

which simplify to
m∑

i=1

1ai −
m∑

i=1

1bi = 0

and

(x − 1)n−1

∣∣∣∣
m∑

i=1

aix
ai −

m∑
i=1

bix
bi .

Repeating the reasoning above, we see that this last divisibility state-
ment is equivalent to saying that

m∑
i=1

ai1ai −
m∑

i=1

bi1bi = 0

and

(x − 1)n−2

∣∣∣∣
m∑

i=1

a2
i x

ai −
m∑

i=1

b2
i x

bi .
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Repeating this reasoning n times, we see that

(x − 1)n
∣∣∣∣

m∑
i=1

xai −
m∑

i=1

xbi

if and only if
m∑

i=1

ak
i −

m∑
i=1

bk
i = 0

for all k < n.

Now, specifically, put m = 2n−1 and for each I ⊆ n such that |I|
is even, put a different one of a1, . . . , am equal to

∑
i∈I αi. Then do

likewise for b1, . . . , bm, except with the condition that |I| be odd rather
than even. Now

n∏
i=1

(1− xαi) =
m∑

i=1

xai −
m∑

i=1

xbi .

It is clear that

(1− x)n
∣∣∣∣

n∏
i=1

(1− xαi),

so the previous paragraph allows us to conclude that

n∑
i=1

ak
i −

n∑
i=1

bk
i = 0

for all k < n. In other words,

∑
I⊆n

|I| odd

( ∑
i∈I

αi

)k

=
∑
I⊆n

|I| even

( ∑
i∈I

αi

)k

for all k < n.

Now we present a new proof which shows that the identity holds in
any (not necessarily commutative) ring. This may be a better proof
than the old proof of Theorem 1 repeated above, even if one is only
interested in the ring of integers.
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Theorem 2. Let R be any ring. For any n ∈ N and a1, . . . , an ∈ R,

∑
I⊆n

|I| odd

( ∑
i∈I

ai

)k

=
∑
I⊆n

|I| even

( ∑
i∈I

ai

)k

for all k < n.

Proof. When k = 0, the formula says that n has as many subsets of
odd size as it does of even size. This well-known result is easily verified
by fixing p ∈ n and observing that the map f is a bijection between
the set of odd-cardinality subsets of n and the set of even-cardinality
subsets of n if f is defined by:

f(I) =
{

I � {p} p ∈ I,
I ∪ {p} p /∈ I.

Let k < n, k ≥ 1. Then

∑
I⊆n

(−1)|I|
(∑

i∈I

ai

)k

=
∑
I⊆n

(−1)|I|
∑

(i1,... ,ik)∈Ik

k∏
j=1

aij

=
∑
I⊆n

∑
(i1,... ,ik)∈Ik

(−1)|I|
k∏

j=1

aij

=
∑

(i1,... ,ik)∈nk

ci1,... ,ik

k∏
j=1

aij

where, for all (i1, . . . , ik) ∈ nk,

ci1,... ,ik
=

∑
{i1,... ,ik}⊆I⊆n

(−1)|I|

=
∑

J⊆n�{i1,... ,ik}
(−1)|{i1,... ,ik}∪J|

= (−1)|{i1,... ,ik}|
∑

J⊆n�{i1,... ,ik}
(−1)|J|.
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But we know that ∑
J⊆n�{i1,... ,ik}

(−1)|J| = 0

since we know by the reasoning at the start of this proof that
n � {i1, . . . , ik} has just as many subsets of even cardinality as it does
of odd cardinality. So every ci1,... ,ik

= 0. Hence,

∑
I⊆n

(−1)|I|
( ∑

i∈I

ai

)k

= 0.
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