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SUPPLENESS OF SOME QUOTIENT
SPACES OF MICROFUNCTIONS

ATSUHIKO EIDA AND STEVAN PILIPOVIĆ

ABSTRACT. The theory of microfunctions which Sato in-
troduced contributed very much to that of linear partial dif-
ferential equations. He constructed a useful transformation of
these equations by expanding the analytic singularities of a
hyperfunction onto the cosphere bundle. We stick not only
to the analytic singularities but also to some other singu-
larities of some subclasses of hyperfunctions which Komatsu
[7], Hörmander [4], Eida [2] and others have introduced. For
this reason, in this paper we develop the theory of some quo-
tient spaces of microfunctions. We state the suppleness of the
sheaves of these functions which is important for the theory
of microdifferential equations. Our investigations enable us to
introduce the notions SS∗ and SS1/∗ for hyperfunctions.

1. Notations and definitions. We consider some classes of hyper-
functions, that is, ultradifferentiable functions and ultradistributions.
We will recall the basic definitions [2, 6]. Let Mp be a sequence of
positive numbers satisfying the following conditions.

M0 =M1 = 1;(M.0)
M2

p ≤Mp−1Mp+1, p = 1, 2, . . . ;(M.1)
Mp/MqMp−q ≤ ABp, 0 ≤ q ≤ p;(M.2)

∞∑
p=1

Mp−1/Mp <∞.(M.3)′

We note that the Gevrey sequence Mp = (p!)s or pps or Γ(1 + ps),
for s > 1, satisfies the above conditions.

A function f(x) on an open set U inRn is called an ultradifferentiable
function of class (Mp) (respectively {Mp}), if for any compact set K
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in U and for any h > 0 there is C > 0 (respectively if for any compact
set K in U there are h > 0 and C > 0) such that

sup
x∈K
|Dαf(x)| ≤ Ch|α|M|α|,

where α is any n-tuple of nonnegative integers. We denote by
Df (Mp)(U) (respectively Df{Mp}(U)) the space of all ultradifferen-
tiable functions of class (Mp) (respectively {Mp}) on U . From now
on, ∗ will stand for both (Mp) and {Mp}.
We denote by Df∗

c (U) the space of ultradifferentiable functions of
class ∗ with compact support in U . Refer to Komatsu [6] and others
for its topology. The space Db∗(U) of ultradistributions of class ∗ is
defined as the strong dual space of Df∗

c (U).

Note that the presheaves U → Df∗(U), U → Db∗(U), U ⊂ Rn, form
sheaves. These sheaves are known to be soft, that is, if K is a closed
set in an open set U in Rn and if f is a section on a neighborhood of
K in U , then there is an extension f̃ on U .

B(U) denotes the space of Sato’s hyperfunctions on an open set U in
Rn. We do not give a formal definition by using relative colomology
groups. It is known that U → B(U) forms a sheaf and that this sheaf
is flabby, that is, the restriction mappings S : B(U)→ B(U1), U1 ⊂ U ,
are always surjective. Refer to [11] for more details.

So far, all the above sheaves are defined on Rn. However, they can
be defined also on a real analytic manifold M .

There exist injections

Df∗
M ↪→ BM , Db∗M ↪→ BM .

According to Kaneko [5], a hyperfunction f on U can be written as a
formal sum of boundary values of holomorphic functions Fj(z) defined
on infinitesimal wedges U +

√−1Γj0, where Γj are open cones on Rn:

f(x) =
N∑

j=1

Fj(x+
√−1Γj0).

For an open set U in a real analytic manifold M , we denote by S∗U
the cosphere bundle of U . Let V be the complexification of U . Then



SUPPLENESS OF SOME QUOTIENT SPACES 167

S∗
UV can be identified as

√−1S∗U . From now on we are interested in
the microlocal calculus on this space.

Let f(x) ∈ B(U). It is said that f is microanalytic at the point
(x,
√−1 ξ∞) ∈ √−1S∗U if, for a suitable representation as above, of

f on a neighborhood of x, Γj ∩ {y ∈ Rn; 〈ξ, y〉 < 0} �= ∅ holds for all
j ∈ {1, . . . , N}.
The set of all points at which f is not microanalytic is called the

singular spectrum of f , which we denote by SS(f).

Let π :
√−1S∗M → M be the canonical projection. The sheaf of

microfunctions on
√−1S∗M is the associated sheaf of the presheaf:

√−1S∗M ⊃ Ω→ Γ(π(Ω); BM )/{u ∈ Γ(π(Ω); BM ) | SS(u) ∩ Ω = ∅}.
This sheaf is denoted by CM . It enjoys the exact sequence

0 −→ AM −→ BM −→ π∗CM −→ 0,

which is due to Sato et al. [11]. Here AM denotes the sheaf of real
analytic functions on M . Moreover, there exists a canonical surjective
spectrum map

SpM : π−1BM −→ CM .

Then, for u ∈ BM , SS(u) = supp (SpM (u)). The injection

Db∗M ↪→ BM , (respectively Df∗
M ↪→ BM ),

induces a sheaf homomorphism

π−1Db∗M −→ CM , (respectively π−1Df∗
M → CM ).

We define a subsheaf C∗M (respectively Cd,∗
M ) of CM as the image of

the above morphism and call it the sheaf of microfunctions of class ∗
(respectively d, ∗). Furthermore, we have a canonical exact sequence

0 −→ AM −→ Db∗M −→ π∗C∗M −→ 0

(respectively 0 −→ AM −→ Df∗
M −→ π∗Cd,∗

M −→ 0).

2. Quotient sheaves of microfunctions. We introduce an order
to the set of sequences satisfying conditions (M.0), (M.1), (M.2) and



168 A. EIDA AND S. PILIPOVIĆ

(M.3)′. This order will imply the corresponding inclusions of test
function spaces.

(i) (Mp) ≤ (Np), {Mp} ≤ {Np} if there are constants L and C such
that

Mp ≤ CLpNp, p = 0, 1, 2, . . .

(ii) {Mp} ≤ (Np) if for any ε > 0 there is a constant Cε such that

Mp ≤ Cεε
pNp, p = 0, 1, 2, . . .

(iii) (Mp) ≤ {Mp}.
We let † and ∗ denote (Np), {Np} or (Mp), {Mp} in the sequel and

use the above orderings on such sequences. If † ≤ ∗, we have canonical
injections

Cd,†
M ↪→ Cd,∗

M ↪→ C∗M ↪→ C†M ↪→ CM .

From now on C1M = CM and, by definition, 1 corresponds to the
sequence {p!}; (M.3)′ implies 1 ≤ ∗ for any ∗.

Definition 2.1. We define sheaves C†,∗M , C†/∗M , Cd,†,∗
M on

√−1S∗M by
the following exact sequences:

(i) 0→ Cd,∗
M → C†M → C†,∗M → 0, when † ≤ ∗,

(ii) 0→ C∗M → C†M → C†/∗M → 0, when † ≤ ∗,
(iii) 0→ Cd,∗

M → Cd,†
M → Cd,†,∗

M → 0, when ∗ ≤ †.
The canonical surjective spectrum map SpM induces the following

surjective spectrum maps:

Sp1,∗
M : π−1BM −→ C1,∗

M ,

Sp
1/∗
M : π−1BM −→ C1/∗

M .

Definition 2.2. Let u ∈ BM . We define the singular spectrum of
class ∗, SS∗(u) and that of class 1/∗, SS1/∗(u), in the following way.

SS∗(u) = supp (Sp1,∗
M (u)),

SS1/∗(u) = supp (Sp1/∗
M (u)).
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It is known that if u ∈ Db∗, then SS∗(u) is identical with WF∗(u)
defined by Hörmander [4].

3. Suppleness. Let F be a sheaf of Abelian groups on a topological
space X. From [1], recall that F is supple if, for any open set Ω of X,
any closed Z,Z1, Z2 of Ω which satisfy Z = Z1 ∪ Z2 and any section
u ∈ ΓZ(Ω,F), there exists ui ∈ ΓZi

(Ω,F), i = 1, 2, with u = u1 + u2.

We will use the following decomposition of δ, [8, 9],

δ(x− x′) =
1

(2π
√
π )n

∫
Rn×Rn

(2|ξ|)n/2

{
1 +

1
2
ξ

|ξ| (x− x′)
}

· e
√−1 ξ(x−x′)+|ξ|{(x−u)2+(x−x′)2} du dξ.

First we prove a lemma which is stated in [9] with a sketched proof.
In the sequel we identify S∗Rn with Rn × (√−1Sn−1).

Lemma 3.1. Let Z be a closed subset of Rn ×√−1Sn−1,

Z̃ =
{
(x, ξ) ∈ Rn × (Rn\{0});

(
x,
√−1 ξ

|ξ|
)
∈ Z

}

and let

WZ̃(x, x
′) =

1
(2π
√
π )n

∫
Z̃

(2|ξ|)n/2

{
1 +

1
2
ξ

|ξ|(x− x′)
}

· e
√−1 ξ(x−x′)+|ξ|{(x−u)2+(x′−u)2} du dξ.

Then WZ̃ is a distribution and

SS(WZ̃) ⊂ {(x, x′,
√−1 (ξ, ξ′)); x = x′, ξ = −ξ′, (x,√−1 ξ) ∈ Z}.

Proof. Denote by Z the set on the righthand side of the above inclu-
sion. We will prove that the complement, in Rn×Rn\{0}, of Z, CZ, is
a subset of the complement of SS(WZ̃). This implies the assertion. Let
x1 �= x or ξ1 �= −ξ which implies that (x, x1,

√−1 (ξ, ξ1)) ∈ CZ. Then
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it is clear that (x, x1,
√−1 (ξ, ξ1)) /∈ SS(WZ̃). Let (x0,

√−1 ξ0) /∈ Z.
This is the last possible case with (x0, x0,

√−1 (ξ0, ξ0)) ∈ CZ. We have
to prove that

(x0, x0,
√−1 (ξ0,−ξ0)) /∈ SS(WZ̃).

There exists an open set Ox0 � x0 and an open cone Γξ0 � ξ0 such that

(x0, ξ0) ∈ (Ox0 × Γξ0) ∩ Z̃ = ∅.

Let Γj , j = 1, . . . , r, be open convex proper cones such that

Rn\Γξ0 =
r⋃

j=1

Γ̄j ,

and mes (Γ̄j\Γj) = 0, j = 1, . . . , r. We put

Z̃ ∩ (Rn × Γj) = Z̃j , j = 1, . . . , r.

Note, if y ∈ Γ∗j , y ∈ −Γ∗j , t ∈ Γj , then

〈t, y − y′〉 > εj |t| |y − y′| for some εj > 0.

Let j ∈ {1, . . . , r}. Put

Bj = bvz,z′

∫
Z̃∩(Rn×Γj)

(2|t|)n/2

{
1 +

1
2
t

|t| (z − z′)
}

· e
√−1 t(z−z′)−|t|{(z−u)2+(z′−u)2} du dt,

(x, x′) ∈ Ox0 ×Ox0 ,

where the boundary value is taken over y ∈ Γ∗j , y′ ∈ −Γ∗j and
|y|+ |y′| < Cj where Cj is a suitable constant. We have that each Bj ,
j = 1, . . . , r, is a distribution which has singular spectrum contained
in

(Ox0 ×Ox0)× (
√−1 (Γj ∩ Sn−1)×√−1 (−Γj ∩ Sn−1)).

Since
WZ̃(x, x

′) =
∑

j

Bj , (x, x′) ∈ Ox0 ,

it follows that (x0, x0,
√−1 (ξ0,−ξ0)) /∈ SS(WZ̃).
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Theorem 3.1. a) The quotient sheaf Db∗M/Df∗
M is supple.

b) The sheaves C1,∗
M and C1/∗

M are flabby and the following sequences
are exact

0 −→ Df∗
M −→ BM −→ π∗C1,∗

M −→ 0,

0 −→ Db∗M −→ BM −→ π∗C1/∗
M −→ 0.

c) Let 1 ≤ † ≤ ∗. The sheaves C†,∗M and C
†/∗
M are supple and the

sequences
0 −→ Df∗

M −→ D†
M −→ π∗C†,∗M −→ 0,

0 −→ Db∗M −→ Db†M −→ π∗C†/∗M −→ 0,

are exact.

d) Let 1 ≤ ∗ ≤ †. The sheaf Cd,†,∗
M is supple and the sequence

0 −→ Df∗
M −→ Df†

M −→ π∗Cd,†,∗
M −→ 0

is exact.

Proof. a) It is enough to prove the assertion for M = Rn. Let
G ∈ (Db∗/Df∗)(Rn). By partition of unity we may suppose that
suppG is a compact set K. The use of the partition of unity also
implies that we may suppose that there is a representative G̃ ∈ Db∗ of
G such that SS∗G̃ = K and that G̃ is compactly supported.

Now by the same arguments as in [3], we have that for closed sets
K1 and K2 with the union K there exist G̃1 and G̃2 of Db∗M such that
they are compactly supported,

(3.1) G̃ = G̃1 + G̃2 and SS∗G̃i ⊂ Ki, i = 1, 2.

Let Γj , j = 1, . . . , r, be convex closed proper cones such that
measure (Γj ∩ Γi) = 0, i �= j, ∪r

j=1Γj = Rn and that for every j

there exists a convex closed cone Γ̃j such that Γj ⊂⊂
◦
Γ̃j . By using [10,

Corollary 1], we obtain that G̃ =
∑r

j=1 G̃
j such that

SS∗G̃j ⊂ Rn ×√−1 (Sn−1 ∩ Γj) ∩K, j = 1, . . . , r.
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Put

K̃ =
{
(x, ξ) ∈ Rn × (Rn\{0});

(
x,
√−1 ξ|ξ|

)
∈ K

}

and define K̃1 and K̃2 in the same way. Put

K̃ij = (Rn × Γj) ∩ K̃i, i = 1, 2, j = 1, . . . , r.

The corresponding sets in Rn ×√−1Sn−1 are denoted by Kij . Define

G̃j

Γ̃j
=

∫
Rn

WRn×Γ̃j
(x− x′)G̃j(x′) dx′, x ∈ Rn.

Then, by Theorem 1.9 in [2] we have SS∗G̃j

Γ̃j
⊂ K1j ∪ K2j . Note

SS∗(G− G̃j

Γ̃j
) = 0. We put

A1j = {(x, ξ) ∈ Rn × Γ̃j ; d((x, ξ),K1j) ≤ d((x, ξ), K̃2j)},
A2j = {(x, ξ) ∈ Rn × Γ̃j ; d((x, ξ),K1j) ≥ d((x, ξ), K̃2j)},

G̃Aij
(x) =

∫
Rn

WAij
(x, x′)G̃j(x′) dx′, i = 1, 2.

By Theorem 1.9 in [2] these ultradistributions are well defined and

SS∗G̃j
Aij
⊂ Aij ∩ SS∗G̃j ⊂ Kij , i = 1, 2, j = 1, 2, . . . , r.

Note that

G̃j−G̃A1j
−G̃A2j

= G̃j−G̃j

Γ̃j

+
∫
Rn

(WA1j∪A2j
(x, x′)−WA1j

(x, x′)−WA2j
(x, x′))

· G̃j(x′) dx′.

We will prove that

SS∗(G̃j − G̃A1j
− G̃A2j

) ⊂ K1j ∩K2j , j = 1, . . . , r.

It is enough to prove

SS(WA1j∪A2j
−WA1j

−WA2j
) ⊂ {(x, x, ξ,−ξ); (x, ξ) ∈ A1j ∩A2j}.
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Let (x0, ξ0) ∈ (A1j ∪A2j)\(A1j ∩A2j) and assume (x0, ξ0) ∈ A1j\A2j .
There exists an open ball B((x0, ξ0), ε) such that B((x0, ξ0), ε)∩A2j =
φ. We have

W(A1j∪A2j) −WA1j
−WA2j

=W(A1j∪A2j)\B((x0,ξ0),ε) −WA1j\B((x0,ξ0),ε) −WA2j

and this implies that

(x0, x0, ξ0,−ξ0) /∈ SS(W(A1j∪A2j) −WA1j
−WA2j

).

Then

SS∗(G̃j − G̃A1j
− G̃A2j

) ⊂ K1 ∩K2,

SS∗G̃i ⊂ Ki and G̃i =
r∑

j=1

G̃Aij
, i = 1, 2,

holds. Since

r∑
j=1

(G̃j − G̃A1j
− G̃A2j

) + G̃1 + G̃2 = G̃,

we obtain the desired decomposition (3.1). This implies

G = G1 +G2, suppGi ⊂ Ki,

where Gi are elements of (Db∗/Df∗)(Rn) determined by G̃i, i = 1, 2.

b) d). We will prove the first diagram in b), the flabbiness of C1,∗
M

in b) and the suppleness of C†,∗M in c). The other parts of the theorem
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may be proved in a similar way. The diagram

0

u

0

u

0 w AM

u

w AM

u

w 0

u

0 w Df∗
M

u

w Db∗M

u

w π∗C†,∗M

u

w 0

0 w π∗Cd,∗
M

u

w π∗C†M

u

w π∗C†,∗M

u

w 0

0 0 0

implies the exactness is of the first sequence in b).

Suppose that U is an open set of M . It is well known that
Hn(U,AM ) = 0, n > 0 and since Df∗

M and Db∗M are soft, we have

Hn(U,Df∗) = 0, Hn(U,Db∗) = 0, n > 0.

Since

0 −→ AM −→ Df∗
M −→ π∗Cd,∗

M −→ 0

is exact, it follows that Hn(Ω, Cd,∗) = 0, n > 0, for any open set Ω of√−1S∗M .

This implies that

0 −→ Γ(Ω, Cd,∗
M ) −→ Γ(Ω, C1M ) −→ Γ(Ω, C1,∗

M ) −→ 0

is exact and the flabbiness of C1,∗
M follows from the diagram
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Γ(X, C1)

u

w Γ(X, C1,∗)

u

w 0 exact

Γ(Ω, C1)

u

w Γ(Ω, C1,∗) w 0 exact

0

exact.

Let F ∈ Γ(U, C†,∗M ), suppF = K = K1 ∪K2 where Ki, i = 1, 2, are
closed sets. Then for every x there is an open neighborhood of x, Wx,
such that F |Wx

is determined by a section F̃ ∈ Γ(Wx, C†M ).
Let {Uα; α ∈ N} be a locally finite covering of U which refines the

cover {Wx; x ∈ U}, and let κα, α ∈ N, be a partition of unity of
Df∗

M (U) which is subordinated to {Uα; α ∈ N}. Thus, if α ∈ N, we
have

suppκα ⊂ Uα ⊂Wx0 for some x0 ∈ U.
Put F =

∑
α∈N Fκα. Then suppFκα ⊂ K and if

F̃α ∈ Γ(Uα, C†M ), α ∈ N,

corresponds to Fκα, then

Kα = SS∗F̃α = suppFκα, α ∈ N.

Now, by part (a), there exist F̃α1 and F̃α2 in Γ̃(Uα, C†M ) such that

SS∗F̃αi ⊂ Ki ∩Kα, i = 1, 2, α ∈ N.

Then, F1 and F2 of Γ(U, C†,∗M ), which correspond to
∑
α∈N

F̃α1 and
∑
α∈N

F̃α2 respectively,

have the properties

F = F1 + F2, suppFi ⊂ Ki, i = 1, 2.
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Corollary 3.1. Let Ω be an open subset of
√−1S∗M , and let

u ∈ Db∗M (π(Ω)).
(i) (SS∗u) ∩ Ω = ∅⇔ Sp(u)|Ω ∈ Cd,∗

M (Ω).

(ii) For u ∈ Db†M (π(Ω)), † ≤ ∗, we have

(SS1/∗u) ∩ Ω = ∅⇐⇒ Sp(u)|Ω ∈ C∗M (Ω).

The quoted assertions imply that we can generalize the definitions of
SS∗ and SS∗ of u ∈ BM in

√−1S∗M as follows.

Let q = (
◦
x,
√−1,

◦
ξ∞) ∈ √−1S∗M . Then

◦
q /∈ SS∗u if Sp(u)◦

q
∈ Cd,∗

M ,

◦
q /∈ SS1/∗u if Sp(u)◦

q
∈ C∗M .
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