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JACOBIANS OF CURVES OVER FINITE FIELDS

JOSÉ FELIPE VOLOCH

Let C/Fq be a curve over a finite field of genus g at least two. Assume
C has a rational point P0 and consider C embedded in its Jacobian J
by sending P0 to 0 ∈ J . So C(Fq) ⊂ J(Fq) and we can consider the
subgroup G of J(Fq) generated by C(Fq). If G is not the whole of
J(Fq), we will show that we can construct an étale cover of C where
every Fq-rational point of C splits completely into Fq-rational points.
We will prove that, if q is large enough compared to g, then G = J(Fq)
and will give examples showing that this equality does not always hold
and these examples will lead to curves over finite fields with many
rational points.

Theorem. With the notation as above, if q ≥ (8g − 2)2, then
G = J(Fq).

Before proving the theorem, we need a lemma.

Lemma. Let A be an abelian group and α a surjective endomorphism
of A. Let G be a subgroup of kerα and ϕ : A → A/G the canonical
map and β : A/G→ A/G the endomorphism induced by α. Finally, let
ψ : A/G→ A be the unique homomorphism such that α = ψ ◦ϕ. Then
ψ(kerβ) = G.

Proof. By construction, β ◦ ϕ = ϕ ◦ α, that is, β(y) = ϕ(α(x)) for
any x, ϕ(x) = y. Also ψ is defined by ψ(y) = α(x) for any x, ϕ(x) = y,
that is, α = ψ ◦ϕ. We also have β = ϕ ◦ψ. Indeed, given y ∈ A/G and
x, ϕ(x) = y, we have β(y) = β(ϕ(x)) = ϕ(α(x)) = ϕ(ψ(y)). It follows
that ψ(kerβ) ⊂ kerϕ = G. On the other hand, given x ∈ kerϕ, we
can write x = α(y), y ∈ A. Then β(ϕ(y)) = ϕ(α(y)) = ϕ(x) = 0, so
ϕ(y) ∈ kerβ and therefore x = ψ(ϕ(y)) ∈ ψ(kerβ), which proves that
G ⊂ ψ(kerβ), proving the lemma.
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Proof of the theorem. We apply the lemma with A = J(F̄q) and
α = 1− F where F is the Fq-Frobenius and G the group generated by
C(Fq). So J/G = B is an abelian variety and ψ : B → J is an isogeny
of degree n = [J(Fq) : G]. Note that β, as in the lemma, equals 1−F ,
where F is the Fq-Frobenius on B, which follows since J and ϕ are
defined over Fq. Thus kerβ = B(Fq) and, by the lemma, ψ(kerβ) = G.
Let C ′ be the pull-back of C under ψ, so C ′ is an étale cover of C of
degree n defined over Fq. (In fact, C ′ is the maximal étale abelian cover
of C defined over Fq in which every rational point of C splits). Also,
since C(Fq) ⊂ G = ψ(B(Fq)), we get that ψ−1(C(Fq)) ⊂ C ′∩B(Fq) =
C ′(Fq). Therefore, #C ′(Fq) ≥ n#C(Fq). We now use the Riemann
hypothesis for curves over finite fields to estimate these cardinalities.
#C(Fq) ≥ q+1−2gq1/2 and #C ′(Fq) ≤ q+1+2g′q1/2, where g′ is the
genus of C ′ and, by the Hurwitz formula g′ = n(g− 1) + 1. Combining
these inequalities we obtain q+1+2(n(g−1)+1)q1/2 ≥ n(q+1−2gq1/2)
which gives n(q + 1 − 2(2g − 1)q1/2) ≤ q + 1 + 2q1/2. Finally this last
inequality, combined with the hypothesis q ≥ (8g − 2)2, give n < 2, so
n = 1 and we are done.

As mentioned above, examples where the theorem’s conclusion does
not hold will give examples of curves with many rational points.

Consider the Hermitian curve C : xq+1 + yq+1 = 1 over Fq. As is
well known, this curve attains the upper bound given by the Riemann
hypothesis over Fq2 , namely it has genus g = q(q − 1)/2 and q3 + 1
points over Fq2 . This means that all eigenvalues of Frobenius over
Fq2 are equal to −q. Hence the eigenvalues of Frobenius over Fq4

are equal to q2. It follows that C has q4 + 1 − q(q − 1)q2 = q3 + 1
points over Fq4 , that is, C(Fq2) = C(Fq4). As for the Jacobian J ,
Frobenius acts as −q over Fq2 so J(Fq2) = J [q + 1], the q + 1-torsion.
Similarly, J(Fq4) = J [q2−1], which is bigger than the group generated
by C(Fq4) = C(Fq2), since the latter is contained in J(Fq2). For any
subgroup G of J(Fq4) containing J(Fq2) we can apply the construction
of the proof of the theorem and obtain an étale cover of C of degree
n = [J(Fq4) : G] with at least n(q3 + 1) rational points over Fq4 and
genus n(g − 1) + 1, and we can take n to be any divisor of (q − 1)2g.

For a numerical example take q = 3, so g = 3 and for any divisor n
of 26 we get a curve of genus 2n+ 1 over F81 with 28n rational points.
Or, take q = 4, so g = 6 and for any divisor n of 312 we get a curve of
genus 5n + 1 over F256 with 65n rational points. There are no known
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curves with more points with the same parameters for the larger values
of n, according to the tables in [6]. These curves get very close to the
best-known upper bounds for the given parameters, which are obtained
by Oesterlé’s method. For example, the case q = 3, n = 64, gives a
curve with 1792 points over F81 and Oesterlé’s bound is 1897. The
case q = 4, n = 531441 gives a curve with 34543665 points over F256

and Oesterlé’s bound is 46069115.

Another example is the Suzuki curve yq − y = xq0(xq − x), where
q = 22m+1, q0 = 2m, m ≥ 1 (see [2]). This curve has q2 + 1 points over
Fq and genus g = q0(q − 1). The eigenvalues of Frobenius turn out to
be 2m(−1 ± i). It follows that the curve also has q2 + 1 points over
Fq2 , that is, C(Fq) = C(Fq2). The Jacobian has (q+1+2q0)g rational
points over Fq and (q2 + 1)g rational points over Fq2 . So we get, by
taking covers, for any divisor n of (q+1−2q0)g = (q2+1)g/(q+1+2q0)g,
a curve of genus n(g − 1) + 1 having n(q2 + 1) points over Fq2 .

For a numerical example take q = 8, so g = 14, and for any divisor n
of 514 we get a curve of genus 13n+1 with 65n rational points over F64.
There are no known curves with more points with the same parameters
for the larger values of n according to the tables in [6].

A similar class of examples can be obtained from the Ree curves in
characteristic three (see [3]).

The above examples can be used as first steps of class field towers
(see [4]). Namely, we can consider for a curve C the cover C ′ given
by the construction in the theorem, then apply the same construction
to C ′ and get a cover C ′′ and so on. This construction may stop
(C(k) = C(k+1) = · · · ) or not. It follows from [4, Theorem 2.3] that the
sequence will not stop if, for some prime l, the l-primary component
of J(Fq)/G has rank at least 2 + 2

√
#C(Fq). With the exception

of finitely many values of q, the Hermitian, Suzuki and Ree curves
above will lead to infinite towers. These towers are good in the sense
that lim#C(k)(Fq)/g(k) > 0, where g(k) is the genus of C(k) but not
optimal in the sense that the limit attains its maximum value of

√
q−1.

We can consider more general class field towers as follows (see [4]).
Take a set S of rational points of C and consider the cover C ′ which is
the maximal unramified abelian extension of C where the points of S
split completely, take for S′ the pullback of S on C ′ and repeat with
C ′, S′ instead of C, S. The first step can be described geometrically
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as follows if P0 ∈ S. Take the subgroup GS of J(Fq) generated by S,
apply the lemma to get an isogeny ψ : A → J with ψ(A(Fq)) = GS

and take C ′ as the pullback of C under ψ. That this construction
gives the maximal such extension, follows from Rosenlicht’s geometric
class field theory (see [5]). Let us call such a set S saturated if, for
any S1, S ⊂ S1 ⊂ C(Fq), if GS = GS1 , then S = S1. For example,
S = {P0} or C(Fq) are saturated. We would like to point out the
following. If S is saturated, then S′ = C ′(Fq). Indeed, the points of S′

are rational by construction. On the other hand, C ′(Fq) = C ′ ∩A(Fq)
so ψ(C ′(Fq)) ⊂ GS and, since S is saturated, ψ(C ′(Fq)) = S, which
gives the result.

In [1], Adleman et al. propose an algorithm for solving the discrete
logarithm problem on Jacobians of hyperelliptic curves of high genus.
In the algorithm they assume, but do not prove, that the set of rational
points of the Jacobian can be generated by the image of prime divisors
of small degree (their set G, see [1, Section 6]). From the theorem
above, if qr ≥ (8g − 2)2, then X(Fqr) generates J(Fqr) and it follows
immediately that the set of prime divisors of degree dividing r generate
J(Fq).

Remark. Lenstra has pointed out that, making use of the fact that
the ζ function of C divides the ζ function of C ′ in the above proof,
one can get the improved bound q < (4g − 2)2 in the conclusion of the
theorem.
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