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A SYSTEMATIC GENERALIZATION
PROCEDURE FOR FIXED-POINT THEOREMS

J.D. STEIN, JR.

ABSTRACT. The progress of mathematics often follows a
standard path: the discovery of a new theorem, followed by a
systematic exploration of that theorem. Two standard ways
of exploring theorems are by weakening the hypotheses and
strengthening the conclusion. This paper discusses another
way to explore theorems through the sharing of hypotheses,
and develops this idea in the context of three classical fixed-
point theorems: the Banach Contraction Principle, the Tarski
Fixed-Point Theorem for complete lattices and the Brouwer
Fixed-Point Theorem for solid n-spheres.

Introduction. Mathematical research often progresses in accor-
dance with the anthropologist Steven Jay Gould’s theory of ‘punctu-
ated equilibrium,’ in which dramatic breakthroughs are interspersed
with long periods of quiet but gradual advance.

The Banach Contraction Principle provides a good example. When
first discovered, this theorem represented a dramatic breakthrough. We
state a preliminary version here as a reference point.

Banach Contraction Principle. Let T be a map of a complete
metric space X into itself. Assume there exists a constant M ∈ (0, 1)
such that d(Tx, Ty) ≤Md(x, y). Then T has a fixed point.

Once the dramatic breakthrough has been made, other mathemati-
cians will use the basic idea to discover additional theorems. Two
classic ways to go about this are: (1) to strengthen the conclusion and
(2) to weaken the hypothesis. In the case of the Banach Contraction
Principle, a well-known strengthening of the conclusion is that the fixed
point is unique. There are many examples of weakening the hypothesis;
one such is Browder’s result [2] that the conclusion holds if one assumes
that u is an upper semi-continuous function on the positive reals such
that u(t) < t and d(Tx, Ty) < u(d(x, y)).
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Weakening the hypothesis and strengthening the conclusion are two
time-honored and highly productive ways of developing new mathemat-
ical results. The purpose of this paper is to examine another way of
developing new mathematical results. This technique, which we shall
call ‘sharing a hypothesis,’ is probably not new, but an investigation
of the AMS’s Silver Platter database failed to reveal (to the author,
anyway) a specific enunciation of the idea under this or related terms.

Suppose that we wish to examine potential generalizations of the
Banach Contraction Principle. An obvious question to ask is the
following: assume that T merely satisfies the hypothesis that for each
x, y ∈ X, d(Tnx, Tny) ≤Md(x, y) for some integer n = n(x, y). Must
T have a fixed point?

A simple counterexample can be found on [0,∞) with the usual
metric. Define Tx =

√
(x2 + 1). It is straightforward to show that

Tnx =
√

(x2 + n). Suppose x < y. Then

d(Tnx, Tny)/d(x, y) = [
√

(x2 + n) −
√

(y2 + n)]/(x− y)
= (x+ y)/[

√
(x2 + n) +

√
(y2 + n)]

by rationalizing the numerator. Choosing n large will make this latter
expression arbitrarily small. However, it is clear that T has neither fixed
nor periodic points. This example is due to Prof. Joseph Bennish.

An alternative way of viewing the hypotheses of both the Banach
Contraction Principle and the generalization suggested above is to
consider a class F = {Ta : a ∈ A} of continuous maps of X into itself.
The contraction hypothesis is shared by the maps in F as follows. For
each x, y ∈ X, there exists an a ∈ A, which may depend on x and y,
such that d(Tax, Tay) ≤Md(x, y). In the standard Banach Contraction
Principle, the class F consists of a single map. In the generalization
suggested above, which turned out to be false, the class F consists of
the powers of T .

This paper will investigate ‘shared-hypothesis’ versions of three well-
known fixed point theorems: the Banach Contraction Principle, the
Tarski Fixed-Point theorem for complete lattices, and the Brouwer
Fixed-Point Theorem for the solid n-sphere. We present the latter two
theorems for reference purposes; the usual statement of the Brouwer
Theorem has been slightly altered for reasons that will later become
apparent.
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Tarski Fixed-Point Theorem. Let T be an isotone map on a
complete lattice. Then T has a fixed point.

Brouwer Fixed-Point Theorem. Let Sn be the solid unit n-sphere
in Rn. Let T : Rn → Rn be a continuous map which takes Sn into Sn.
Then T has a fixed point.

Shared-hypothesis versions can be proposed for the Tarski and Brouwer
Theorems as well, because the key hypothesis in each theorem involves
a restriction either on individual points in the domain of the map (in
the Brouwer Theorem, x ∈ Sn =⇒ Tx ∈ Sn), or on pairs of points (the
Banach Contraction Principle has already been discussed, and, in the
Tarski Theorem, the hypothesis is x ≤ y =⇒ Tx ≤ Ty).

There are many potentially interesting shared-hypothesis versions of
the three fixed-point theorems. We list some of the more interesting
ways below.

Hypothesis 1 (Single map, finite powers). Given a single map
T , there is an integer N such that, for each point x ∈ X, or pair
x, y ∈ X, there exists n = n(x), or n(x, y), with n ≤ N such that the
hypothesis is true for Tnx (or the pair Tnx, Tny).

In the remaining hypotheses, we shall simply state the situation for
the single point (rather than the pairs of points) case.

Hypothesis 2 (Finitely many maps). Given finitely many maps
T1, . . . , TN , for each x ∈ X there exists a k ∈ {1, . . . , N} such that the
hypothesis is true for Tkx.

Hypothesis 3 (Single map, arbitrary powers). Given a single
map T , for each point x ∈ X there exists an n such that the hypothesis
is true for Tnx.

Hypothesis 4 (Single map, all but finitely many powers).
Given a single map T , for each point x ∈ X the hypothesis is true for
all but finitely many Tnx.
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Hypothesis 5 (At least one of countably many maps). Given
a family {Tk : k = 1, 2, . . . }, for each point x there exists a k such that
the hypothesis is true for Tkx.

Hypothesis 6 (All but finitely many maps). Given a family
{Tk : k = 1, 2, . . . }, for each point x the hypothesis is true for all but
finitely many Tkx.

As far as the Banach Contraction Principle is concerned, the example
given at the start of this paper shows that Hypotheses 3 6 do not yield
theorems involving fixed or periodic points.

Before proceeding, we note that in theorems with several hypotheses
there can be a variety of ways to share the hypotheses. Also, it is
sometimes necessary to rephrase the statement of a theorem in order to
facilitate this process. For instance, the usual statement of the Brouwer
Theorem is that any continuous map of Sn into itself has a fixed point.
The hypotheses involve both continuity and Sn and, even though both
could be shared, it seems more reasonable to retain continuity for all
the maps. As a result, a natural ‘shared hypothesis’ problem would be
to assume that T1, . . . , TN are continuous maps of Rn into itself such
that, for each x ∈ Sn, there is an integer k such that Tkx ∈ Sn.

The Banach Contraction Principle, Tarski Theorem and Brouwer
Theorem are extremely well-known and heavily-investigated theorems,
so it should not be surprising that they are quite robust with respect
to the sharing of the hypothesis. As a result, a sizable portion of this
paper consists of counterexamples. Nonetheless, there are, perhaps
somewhat surprisingly, positive results to be obtained from pursuing
this approach, particularly if we expand our investigations to include
maps possessing a natural relationship to the maps which share the
hypothesis.

As a final preliminary note, we add that the idea of ‘hypothesis-
sharing’ is not new and exists in diverse areas of mathematics. This
paper is concerned with ‘hypothesis-sharing’ for fixed-point theorems,
but it is certainly likely that an investigation of ‘hypothesis-sharing’ in
other areas could well prove fruitful.

1. Fixed-point theorems in abstract sets. We first investigate
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‘shared-hypothesis’ fixed-point theorems in abstract sets as a precursor
to a study of the Banach Contraction Principle. The following elemen-
tary example is illustrative.

Example 1. Let X = {1, 2, 3} with the usual metric, and let
M = 1/2. Define maps T1, T2, and T3 as follows:

T1(1) = T1(2) = 3 T1(3) = 1
T2(1) = T2(3) = 2 T2(2) = 3
T3(2) = T3(3) = 1 T3(1) = 2.

For every pair x 	= y there is a k such that Tkx = Tky, and so
d(Tkx, Tky) = 0 < Md(x, y), but no Tk has a fixed point.

Nonetheless, in Example 1, 1 is a fixed point of T3 T2 T1 (and of many
other products as well). This raises the following related question:
suppose that the hypothesis is shared by a collection of maps must
some member of the semi-group generated by the maps in the collection
have a fixed point? This paper will investigate this question in several
different settings. Throughout this paper, G will denote the semi-group
generated by the maps sharing the appropriate hypothesis.

The motivation for the results in this section actually comes from
considering the Banach Contraction Principle in certain discrete metric
spaces. Suppose that X is the integers, T1, . . . , TN maps of X into X,
and that there is an M ∈ (0, 1) such that, for each x, y ∈ X, there
is a k ∈ {1, . . . , N} with d(Tkx, Tky) ≤ Md(x, y). Since |x − y| ≥ 1,
iterating the process of choosing the appropriate Tk, in accordance with
the above condition, eventually produces a T ∈ G such that Tx = Ty.

This argument shows that, in a discrete metric space in which any two
points are separated by a minimum distance δ, Hypothesis 3 ensures
the existence of a unique fixed point. Operating on both x and Tx
with an appropriate power of T reduces the distance between them
by a factor of M . Continue this process until, for some integer k,
d(T kx, T kTx) < δ =⇒ T kx = T kTx, and so T kx is a fixed point of T .
This fixed point is unique, for if Tx = x and Ty = y, then Tnx = x for
all k and similarly for y. If x and y are distinct, Hypothesis 3 guarantees
the existence of an integer k such that T k reduces the distance between
x and y, resulting in the usual contradiction.
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If X is a discrete metric space in which any two points are separated
by a minimum distance δ, suppose that {Tn : n = 1, 2, . . . } is a com-
muting family of maps of X into X satisfying Hypothesis 5. Modifying
the above argument, start with the points x and Tkx, and construct a
T ∈ G such that Tx = TTkx. Therefore, Tx is a fixed point of Tk, and
we see that each Tk has a fixed point.

Theorem 1. Let X be a set and let T1, . . . , TN map X into
X. Assume that, for each x ∈ X and j ∈ {1, . . . , N}, there exists
an integer k ∈ {1, . . . , N} and positive integers p and n such that
T p

k T
n
j x = Tkx. Then some T in G has a fixed point.

Proof. Let x ∈ X. In order to avoid needlessly complicated subscripts
and superscripts, let W denote the semi-group of words formed by
concatenating the letters 1, . . . , N . Define a relation ∼ onW as follows.
If v, w ∈W , we say v ∼ w if

Ti1 · · ·Tin
x = Tj1 · · ·Tjp

x

where v = i1 . . . in and w = j1 . . . jp. Note that

(i) ∼ is an equivalence relation on W

(ii) v ∼ w and u ∈W =⇒ uv ∼ uw
(iii) uv ∼ w and v ∼ v′ =⇒ uv′ ∼ w.

Assume that there exist words s, t ∈W such that st ∼ t and s is not
the empty word. If s = i1 . . . in and t = j1 . . . jp, we see that Tj1 . . . Tjp

x
is a fixed point of Ti1 . . . Tin

. Therefore, to demonstrate the existence
of fixed points for operators in G, it suffices to show that nontrivial
solutions to st ∼ t exist.

Let k1 = 1. The hypothesis of the theorem enables us to find a
k2 ∈ {1, . . . , N} and positive integers n1 and p2 such that kp2

2 k
n1
1 ∼ k2.

If k2 = k1, then (kp2+n1−1
1 )k1 ∼ k1, and some T ∈ G has a fixed point.

Assume therefore that k2 	= k1.

Continue inductively, and assume that integers k1, . . . , kr belonging
to {1, . . . , N} and positive integers n1, . . . , nr−1 and p2, . . . , pr have
been chosen such that k1, . . . , kr are all distinct and kpj

j k
nj−1
j−1 ∼ kj

for 2 ≤ j ≤ r. The hypothesis of the theorem insures that we can
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find kr+1 ∈ {1, . . . , N} and positive integers pr+1 and nr such that
k

pr+1
r+1 k

nr
r ∼ kr+1.

We now assert that, if kr+1 = kq for some integer q with 1 ≤ q ≤ r,
then some T ∈ G must have a fixed point. For then

kq ∼ kpr+1
q knr−1

r kr

∼ kpr+1
q knr−1

r kpr
r k

nr−1
r−1

∼ kpr+1
q knr+pr−1

r k
nr−1−1
r−1 kr−1

∼ · · · ∼
∼ kpr+1

q knr+pr−1
r · · · knq+1+pq+1−1

q+1 knq−1
q kq.

So kq ∼ vkq and some T ∈ G has a fixed point. We therefore proceed
on the assumption that k1, . . . , kr+1 are all distinct. This assumption
only remains valid until r = N , at which point it is no longer possible
to choose a different kr+1. This completes the proof.

A consequence of Theorem 1 is that, under the assumptions of
Hypothesis 2, if X is a discrete metric space of finite diameter D in
which any two points are separated by at least δ, then some T ∈ G has
a fixed point. Choose an integer p such that DMp < δ. If T1, . . . , TN

are the given maps, then given any two points x and y in X, there is
a map T = Tk1 · · ·Tkn

such that Tx = Ty and n ≤ p. If we consider
the subsemi-group H consisting of all those members of G which are
composites of at most p of the T1, . . . , TN (obviously, repetitions are
allowed), then using the members of H as the maps in Theorem 1 yields
the desired result for H and hence for G.

Consider the defining equality of Theorem 1: T p
k T

n
j x = Tkx. This can

be regarded as an equality of the form T p
k y = T q

kx where the pair (x, y)
belongs to some subset S ofX×X and q = 1. Two immediate questions
arise is it possible to ‘thin out’ the subset S, thereby reducing the
‘number’ of equalities that must be satisfied in order to guarantee a
fixed point, and can one guarantee fixed points if the equalities satisfied
use a value of q other than 1?

The answer to the second question is regrettably negative, as allowing
more flexibility in the choice of q would obviously generate more fixed-
point theorems. Let X be the integers, and define Tx = Sx = x + 1.
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Then TSx = T 2x and STx = S2x for all x, but clearly no operator in
the semi-group generated by S and T has a fixed point.

The answer to the first question is more encouraging, as the con-
structive exhaustion argument of Theorem 1 can easily be modified
to handle other situations. One such result is given in the following
theorem.

Theorem 2. Let X be a set, and let T1, . . . , TN map X into X.
Let H be the subsemi-group of G consisting of operators which are
concatenations of at least n members of {T1, . . . , TN}, repetitions being
allowed. Suppose that, for any x ∈ X and S, T ∈ H, k ∈ {1, . . . , N}
exists such that TkTx = TkSx. Then some T ∈ G has a fixed point.

Proof. We use the word and ∼ notation of the proof of Theorem
1. Let k1 = 1. The hypothesis guarantees the existence of an
integer k2 ∈ {1, . . . , N} such that k2kn+1

1 ∼ k2k
n
1 . If k2 = k1, then

k1k
n+1
1 ∼ kn+1

1 ; as in Theorem 1 this would guarantee the existence of
a fixed point for some T ∈ g. We therefore assume k2 	= k1.

Assume inductively that kjkj−1 . . . k2k
n
1 ∼ kjk

n
1 for 2 ≤ j ≤ p and

that k1, . . . , kp are distinct. The hypothesis guarantees the existence
of an integer kp+1 ∈ {1, . . . , N} such that kp+1kp · · · k2kn

1 ∼ kp+1k
n
1 .

If kp+1 = k1, then kn+1
1 ∼ k1kp · · · k2kn

1 . Since k2kn+1
1 ∼ k2k

n
1 ,

by properties (i) and (iii) of ∼ cited in Theorem 1, we see that
kn+1
1 ∼ k1kp · · · k2kn+1

1 . Again, this would guarantee the existence
of a fixed point for some T ∈ G, so we assume kp+1 	= k1.

If kp+1 = kq for some integer q with 2 ≤ q ≤ p, then kqkp · · · k2kn
1 ∼

kqk
n
1 ∼ kq · · · k2kn

1 , the last equivalence coming from the inductive
hypothesis. Consequently,

kqkp · · · kq+1(kq · · · k2kn
1 ) ∼ kq · · · k2kn

1

again ensuring the existence of a fixed point for some T ∈ G. We
therefore assume that k1, . . . , kp+1 are distinct. As in Theorem 1, this
situation can only occur if p ≤ N , and the theorem is proved.

In Theorem 2, the equality TkTx = TkSx can be interpreted as using
the maps Tk to generate the needed equalities for pairs of the form
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(Tx, Sx). As might be expected, if we use the (infinitely many) maps
from G to generate the equalities rather than the (finitely many) maps
T1, . . . , TN , fixed points are no longer guaranteed, much as the example
given at the start of the paper (Tx =

√
(x2 + 1) on [0,∞)) shows that

the Banach Contraction Principle is no longer valid when we use the
infinitely many maps Tn rather than the single map T .

Example 2. Let X be the positive integers. Define Tx = x+ 1, and
define Sx = x+ 1 if x = 2n for some integer n, and Sx = x+ 2 for all
other x. Let G be the semi-group generated by S and T . Obviously, no
map from G has a fixed point. However, given any two integers x > y,
it is possible to find an operator U ∈ G such that Ux = Uy. U will
have the form S T i S T j · · ·S T k and is constructed as follows: choose
p so large that 2p+1−2p > x−y and 2p+1 > x. Let k = 2p+1−x. Then
ST kx− ST ky = (x− y) − 1. Applying ST k to both x and y therefore
decreases the distance between the points x and y by 1. Continuing this
process results in a U of the form described above such that Ux = Uy.

2. The Banach Contraction Principle. We have already
observed that if X is a discrete metric space of finite diameter and
separation, then Hypothesis 2 applied to the Banach Contraction
Principle will yield maps in G with fixed points. The following theorem
describes a situation in which a shared hypothesis results in fixed points
for some maps in G.

Theorem 3. Let X be a complete metric space, M ∈ (0, 1), and
assume that T1, . . . , TN are commuting maps of X into X such that
there is a constant Mk > 0 for which d(Tkx, Tky) ≤Mkd(x, y). Assume
that, for each x, y ∈ X, there is an integer k ∈ {1, . . . , N} such that
d(Tkx, Tky) ≤ Md(x, y). If the product

∏N
k=1Mk < 1/M , then some

T ∈ G has a unique fixed point.

Proof. Let T = T1T2 . . . TN , and let r = M
∏N

k=1Mk < 1. We can
assume without loss of generality that each Mk ≥ 1; otherwise, Tk is
a strict contraction and the result is trivially true by the Banach Con-
traction Principle. Let x, y ∈ X and choose k such that d(Tkx, Tky) ≤
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Md(x, y). By commutativity, T = T1 · · ·Tk−1Tk+1 · · ·TNTk, and so

d(Tx, Ty) ≤M1d(T2 · · ·Tk−1Tk+1 · · ·TNTkx,

· T2 · · ·Tk−1Tk+1 · · ·TNTky)
≤ · · · ≤M1 · · ·Mk−1Mk+1 · · ·MNd(Tkx, Tky)
≤M1 · · ·Mk−1Mk+1 · · ·MNMd(x, y)
≤ rd(x, y),

since we have assumed eachMk ≥ 1. Therefore T is a strict contraction,
and the Banach Contraction Principle applies.

Note that in Theorem 3 the hypothesis d(Tkx, Tky) ≤ Mkd(x, y) is
only used for those points x, y ∈ TjX and so each Tk only needs to
satisfy d(Tkx, Tky) ≤Mkd(x, y) on each TjX.

Observe that the example given at the beginning of this paper, Tx =√
(x2 + 1) on [0,∞) is a contraction such that for each x, y ∈ [0,∞),

there exists an N such that n ≥ N =⇒ d(Tnx, Tny) ≤ Md(x, y).
This example obviously limits the extent to which Theorem 3 can be
improved.

Theorem 3 involves a restrictive Lipschitz condition on the maps. If
only one map is involved, as is the case with Hypothesis 1, a stronger
result can be obtained.

Definition 1. A map T of a metric space into itself is said to be
strongly continuous if, for any ε > 0, there exists δ > 0 such that

n∑

k=1

d(xk, yk) < δ =⇒
n∑

k=1

d(Txk, T yk) < ε.

The concept of strong continuity is motivated by absolute continuity
on the real line. Maps satisfying Lipschitz conditions are easily seen to
be strongly continuous. Note that the composite of strongly continuous
maps is strongly continuous.

Theorem 4. Let X be a complete metric space, M ∈ (0, 1), and let
T : X → X be strongly continuous. Assume there is an integer N such
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that, if x, y ∈ X, d(T kx, T ky) ≤ Md(x, y) for some integer k ≤ N .
Then T has a unique fixed point.

Proof. As in the standard proof of the Banach Contraction Principle,
we show that, for any x ∈ X, {Tnx : n = 1, 2, . . . } forms a Cauchy
sequence. Once this is done, the proof is essentially complete, as the
limit y of that sequence will be a fixed point. If z is any other fixed
point, choose n ≤ N such that d(Tny, Tnz) ≤ Md(y, z). The usual
argument shows that y = z.

Let n1 = 1. We are assured of the existence of an integer n2 such
that d(Tn2x, Tn2−1x) ≤ Md(Tx, x) where n2 − n1 ≤ N . Now choose
an integer n3 such that d(Tn3x, Tn3−1x) ≤ Md(Tn2x, Tn2−1x) ≤
M2d(Tx, x) and n3 − n2 ≤ N . Continuing inductively, we construct a
sequence of integers {nk : k = 1, 2, . . . } such that nk+1 − nk ≤ N and
d(Tnkx, Tnk−1x) ≤Mk−1d(Tx, x).

Since T, T 2, . . . , TN are strongly continuous, choose δ > 0 such that∑n
k=1 d(xk, yk) < δ → ∑n

k=1 d(T
pxk, T

pyk) < 1 for p ≤ N . Choose J
so large that

∑∞
k=J M

k−1d(Tx, x) < δ. Observe that, if np < k < np+1,
then d(T kx, T k−1x) = d(T qTnpx, T qTnp−1x), where 1 ≤ q ≤ N . Then,
for j > J ,

j∑

k=1

d(T kx, T k−1x) =
J−1∑

k=1

d(T kx, T k−1x) +
j∑

k=J

d(T kx, T k−1x).

We take a closer look at the second term on the right.

j∑

k=J

d(T kx, T k−1x) =
N∑

q=0

∑

p
J≤np≤j

d(T qTnpx, T qTnp−1x).

For q = 0, ∑

p
J≤np≤j

d(Tnpx, Tnp−1x) < δ.

For q = 1, 2, . . . , N ,
∑

p
J≤np≤j

d(T qTnpx, T qTnp−1x) < 1.



746 J.D. STEIN, JR.

Therefore,

j∑

k=1

d(T kx, T k−1x) <
J−1∑

k=1

d(T kx, T k−1x) + δ +N.

Consequently, the partial sums of the series
∑∞

k=1 d(T
kx, T k−1x)

form a bounded monotonic sequence, and thus the series converges,
completing the proof.

3. Fixed-point theorems in partially-ordered sets. A major
result in the theory of partially-ordered sets is the Tarski Fixed-Point
Theorem [1, p. 115], which states that any isotone function on a
complete lattice has a fixed point. The following example shows that
the Hypothesis 1 version of the Tarski Theorem fails.

Example 3. Let I denote the unit interval [0, 1], which is a complete
lattice under the usual operations of upper and lower bound. Let Q
denote the rationals. Let Q1 = [0, 1/3) ∩ Q, I1 = [0, 1/3)\Q, Q2 =
[1/3, 2/3) ∩ Q, I2 = [1/3, 2/3)\Q, Q3 = [2/3, 1] ∩ Q, I3 = [2/3, 1]\Q.
I is clearly the disjoint union of all these sets. Define T : I → I as
follows

Tx = (x+ 5)/4π, x ∈ Q1

Tx = (x+ 16)/6π, x ∈ Q2

Tx = (x+ 1)/2π, x ∈ Q3

Tx = (3x+ 4)/6, x ∈ I1
Tx = (3x− 1)/6, x ∈ I2
Tx = (3x+ 1)/6, x ∈ I3.

Note that T (I) consists solely of irrational numbers and that T is
linear on each of the six disjoint subsets whose union is I. Furthermore,

T : Q1 −→ (1/3, 1/2) T : Q2 −→ (5/6, 1) T : Q3 −→ (1/6, 1/3)
T : I1 −→ (2/3, 5/6) T : I2 −→ (0, 1/6) T : I3 −→ (1/2, 2/3).

We now show that, if x < y, then either Tx < Ty, T 2x < T 2y, or
T 3x < T 3y. Since T is monotone increasing on each of the six disjoint
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subsets, if x and y both belong to the same one of these six disjoint
subsets, then Tx < Ty. The other 18 possible cases in which x < y are
tabulated below.

x ∈ Q1, y ∈ Q2 =⇒ T 2x < T 2y

x ∈ I1, y ∈ I2 =⇒ T 3x < T 3y

x ∈ Q1, y ∈ Q3 =⇒ T 2x < T 2y

x ∈ I1, y ∈ I3 =⇒ T 3x < T 3y

x ∈ Q2, y ∈ Q3 =⇒ T 2x < T 2y

x ∈ I2, y ∈ I3 =⇒ T 3x < T 3y

x ∈ I1, y ∈ Q1 =⇒ T 3x < T 3y

x ∈ Q1, y ∈ I1 =⇒ Tx < Ty

x ∈ I2, y ∈ Q2 =⇒ Tx < Ty

x ∈ Q2, y ∈ I2 =⇒ T 2x < T 2y

x ∈ I3, y ∈ Q3 =⇒ T 2x < T 2y

x ∈ Q3, y ∈ I3 =⇒ Tx < Ty

x ∈ I1, y ∈ Q2 =⇒ Tx < Ty

x ∈ Q1, y ∈ I2 =⇒ T 2x < T 2y

x ∈ I1, y ∈ Q3 =⇒ Tx < Ty

x ∈ Q1, y ∈ I3 =⇒ Tx < Ty

x ∈ I2, y ∈ Q3 =⇒ Tx < Ty

x ∈ Q2, y ∈ I3 =⇒ T 3x < T 3y.

We now show that T has neither fixed nor periodic points. Since Tx is
always irrational, clearly no rational number can be a fixed or periodic
point of T . Restricted to I1, I2 or I3, Tn is a composite of linear maps
with rational coefficients. On any one of these three subsets, Tn must
have the form Tnx = ax+ b, where both a and b are rational, and both
a and b lie in (0, 1). Therefore, if T has an irrational number x as a fixed
or periodic point, x = Tnx = ax+b. Solving for x, x = b/(1−a), which
is a rational number. Therefore, T has no fixed or periodic points.

Nonetheless, it is possible to prove a weaker version of the Tarski
Theorem for finitely many functions.
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Theorem 5. Let L be a complete lattice, and let T1, . . . , TN map
L into L. Suppose that (i) the Tk commute, (ii) each Ti is isotone on
each TjL and (iii) for each x, y ∈ L with x ≤ y, there is an integer
k ∈ {1, . . . , N} such that Tkx ≤ Tky. Then some T ∈ G has a fixed
point.

Proof. Let T = T1T2 · · ·TN . If x, y ∈ L, then there is an in-
teger k ∈ {1, . . . , N} such that Tkx ≤ Tky. By commutativity,
T = T1 · · ·Tk−1Tk+1 · · ·TNTk. Since Tkx ≤ Tky, by hypothesis
(ii), TNTkx ≤ TNTky. Repeated applications of hypothesis (ii) to
T = T1 · · ·Tk−1Tk+1 · · ·TNTk shows that T is isotone on L. The Tarski
Fixed-Point Theorem shows that T ∈ G has a fixed point.

Note that, in Theorem 5, hypothesis (ii) does not imply that TiTj

is isotone on L (which would enable us to apply the Tarski Theorem
to the isotone map TiTj on the complete lattice L). Also, TjL is in
general not a complete lattice (as in Example 3) which would enable
us to apply the Tarski Theorem to the isotone map Ti on the complete
lattice L. The maps in Example 3 satisfy every hypothesis of Theorem
5 except commutativity.

Theorem 5 is provable because the hypotheses enable a composite
of the Tk to satisfy the Tarski Theorem. We also saw this idea in
conjunction with the Banach Contraction Principle.

Using hypotheses and methods similar to those of Theorems 1 and 2
enable us to prove a shared hypothesis fixed-point theorem for isotone
maps on arbitrary partially-ordered sets.

Theorem 6. Let X be a partially-ordered set, and let T1, . . . , TN be
isotone maps of X into X. Suppose that, for each x, y ∈ X, there is an
integer k ∈ {1, . . . , N} such that Tkx ≤ Tky. Then maps S, T ∈ G and
u, v ∈ X exist such that Tu ≤ u and v ≤ Sv. If each Tk is one-to-one,
then some T ∈ G has a fixed point.

Proof. Let x ∈ X and k1 = 1. Choose k2 ∈ {1, . . . , N} such that
Tk2x ≤ Tk2(Tk1x). If k2 = k1, then Tk1x ≤ Tk1(Tk1x), and so S and v
would exist such that v ≤ Sv. Therefore, assume k2 	= k1.



PROCEDURE FOR FIXED-POINT THEOREMS 749

We proceed by induction. Assume that distinct integers k1, . . . , kp

have been chosen such that

Tkp
x ≤ Tkp

Tkp−1x ≤ · · · ≤ Tkp
Tkp−1 · · ·Tk1x.

Choose kp+1 ∈ {1, . . . , N} such that Tkp+1x ≤ Tkp+1Tkp
x. The

isotonicity of Tkp+1 ensures that

Tkp+1x ≤ Tkp+1Tkp
x ≤ · · · ≤ Tkp+1Tkp

· · ·Tk1x.

If kp+1 = kq for 1 ≤ q ≤ p, then Tkq
Tkp

· · ·Tkq+1Tkq
x ≥ Tkq

x, and so S
and v would exist such that v ≤ Sv. Assuming that k1, . . . , kp+1 are
distinct is only possible if p ≤ N . So S ∈ G and v ∈ X exist such that
v ≤ Sv. The existence of T ∈ G and u ∈ X follow from reversing all
the inequalities in the above proof.

Now assume that each Tk is one-to-one, and that v ∈ X and S ∈ G
satisfy v ≤ Sv. Choose k ∈ {1, . . . , N} such that Tk(Sv) ≤ Tkv. Since
Tk is isotone, Tkv ≤ Tk(Sv) =⇒ Tk(Sv) = Tkv. Since Tk is one-to-one,
Sv = v.

Example 2, with the usual order on the integers, shows that the
conclusion of Theorem 6 does not hold under the hypothesis that, for
each x, y ∈ X, there is a map U ∈ G such that Ux ≤ Uy. Notice that
each map in G is one-to-one.

The basic idea of Example 3, linear maps with rational coefficients on
the irrationals, can be modified to show that the Hypothesis 6 version
of the Tarski Theorem also fails.

Example 4. Let I = [0, 1], and let Q denote the rationals. For
n = 1, 2, . . . , define

an = 1−5/(π(n+1)), bn = 1/(π(n+1)), Tn = anx+bn, x∈I ∩Q
αn = 1−3/(2(n+1)), βn = 1/(n+1), Tn = αnx+βn, x∈I\Q.

The choice of coefficients insures that Tn : I → I\Q and that Tn is
increasing on I ∩Q and I\Q. Note also that

0 < bn < βn lim
n→∞βn = lim

n→∞ bn = 0

0 < an < αn < 1 lim
n→∞αn = lim

n→∞ an = 1.
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We now show that {Tn : n = 1, 2, . . . } satisfy Hypothesis 6, i.e., given
x < y, there is an integerN = N(x, y) such that n ≥ N =⇒ Tnx < Tny.
If both x and y are rational or if both x and y are irrational, then
Tnx < Tny for all n. Also, since an < αn and bn < βn, if x < y and
x ∈ I ∩Q, y ∈ I\Q, then

Tnx = anx+ bn < any + bn < αny + βn = Tny.

The only remaining case is x < y, x ∈ I\Q, y ∈ I∩Q. Choose N1, N2

and N3 such that

n ≥ N1 =⇒ βn − bn < (y − x)/3
n ≥ N2 =⇒ αn − an < (y − x)/3y
n ≥ N3 =⇒ αn > 3/4.

Then, if n ≥ max(N1, N2, N3),

βn − bn + (αn − an)y < 2(y − x)/3 < 3(y − x)/4 < αn(y − x).

Therefore, βn − bn − any < −αnx, and so

Tnx = αnx+ βn < any + bn = Tny.

The same argument as used at the end of Example 3 shows that no
composite of the {Tn : n = 1, 2, . . . } has any fixed points, as the image
under any composite of a rational is irrational, and any composite of
the {Tn : n = 1, 2, . . . } restricted to the irrationals is a linear map with
rational coefficients, which can only have rational fixed points.

However, it is possible to obtain a fixed-point theorem when Hypoth-
esis 6 is in force. We need to introduce several definitions, which are
lattice analogs of the standard concepts of inferior and superior limits.

Definition 2. Let {an : n = 1, 2, . . . } be a sequence of elements in
a complete lattice. Then

lim inf
n→∞ an =

∞∨

N=1

∞∧

n=N

an

lim sup
n→∞

an =
∞∧

N=1

∞∨

n=N

an.
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We state without proof the following elementary properties of lim inf
and lim sup.

(i) If an ≤ bn for all but finitely many n,then

lim inf
n→∞ an ≤ lim inf

n→∞ bn(i.a)

lim sup
n→∞

an ≤ lim sup
n→∞

bn(i.b)

(ii)

lim inf
n→∞ an+1 = lim inf

n→∞ an lim sup
n→∞

an+1 = lim sup
n→∞

an

Theorem 7. Let L be a complete lattice. Assume that {Tn : n =
1, 2, . . . } are maps of L into L such that, for every x ≤ y there exists
an N such that n ≥ N =⇒ Tnx ≤ Tny. Define Sx = lim infn→∞ Tnx.
Then S has a fixed point. If there is a T : L → L such that, for every
x ≤ y, there exists an N such that n ≥ N =⇒ Tnx ≤ Tny, define
Qx = lim infn→∞ Tnx.

Then, not only does Q have a fixed point, but so does TQ. Analogous
results hold when lim inf is replaced by lim sup.

Proof. Suppose that x ≤ y. Property (i.a) above shows that Sx ≤ Sy.
By the Tarski Theorem, S has a fixed point.

By property (ii), for any x ∈ L,

QTx = lim inf
n→∞ TnTx = lim inf

n→∞ Tn+1x

= lim inf
n→∞ Tnx

= Qx.

If u is a fixed point of Q, which exists by the first portion of the proof,
then QTu = Qu = u, and therefore TQTu = Tu, and so Tu is a fixed
point of TQ.

4. The Brouwer Fixed-Point Theorem. The Schauder-
Tychonoff theorem [3, p. 456], which generalizes the Brouwer Fixed-
Point Theorem, states that every continuous map of a compact convex
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subset of a locally convex linear topological space has a fixed point. We
define a class of results which we call Schauder-Tychonoff Theorems.

Definition 3. Let A be a subset of a set X, and let F be a collection
of maps of X into itself which is closed under composition. A Schauder-
Tychonoff Theorem of class (X,A, F ) states that any T ∈ F which
maps A into A must have a fixed point in A.

If a Schauder-Tychonoff Theorem of class (X,A, F ) exists, it is possi-
ble to obtain a shared hypothesis fixed-point theorem under conditions
similar to those present in Theorems 3 and 6.

Theorem 8. Assume that a Schauder-Tychonoff Theorem of class
(X,A, F ) exists. Let T1, . . . , TN belong to F , and assume (i) the Tk

commute, (ii) Tjx ∈ A =⇒ TiTjx ∈ A, and (iii) for each x ∈ A, there
is an integer k ∈ {1, . . . , N} such that Tkx ∈ A. Then some T ∈ G
has a fixed point in A.

Proof. Once again, let T = T1T2 · · ·TN . Let x ∈ A, and choose
k such that Tkx ∈ A. Then Tx = T1 · · ·Tk−1Tk+1 · · ·TNTkx. But
Tkx ∈ A =⇒ TNTkx ∈ A =⇒ · · · =⇒ Tx ∈ A. By the Schauder-
Tychonoff theorem for (X,A, F ), T has a fixed point.

Theorems 3, 5 and 8 have common assumptions commuting maps,
the shared hypothesis and some restriction concerning the products of
the maps. It is not clear whether this represents a possible limit to
which shared hypothesis fixed-point theorems can be extended or is
simply an artifact of a method of proof that is effective in all three
cases.

We turn our attention back to the Brouwer Theorem. The first result
is that the Hypothesis 2 version of the Brouwer Theorem fails even in
dimension 1.

Example 5. Let I denote the unit interval [0, 1]. Define Tx =
x + 1/5, and let Sx = x − π/5. If x ∈ [0, 4/5], then Tx ∈ [0, 1], and
if x ∈ (4/5, 1], then Sx ∈ [0, 1]. Since S and T commute, for any
nonnegative integers n and k, TnSkx = x + (n − kπ)/5. Therefore,
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the only solutions to TnSkx = x occur when n − kπ = 0, and so the
irrationality of π shows that this can only occur if n = k = 0. Therefore,
not only do S and T have no fixed points, but no member of G has a
fixed point.

Shared hypothesis versions of the Brouwer Theorem can, however, be
proved in dimension 1. As a matter of fact, Hypothesis 3 is enough
to guarantee a fixed point for a continuous T : R1 → R1. Suppose
that, for each x ∈ [0, 1], there is an integer n such that Tnx ∈ [0, 1],
and assume that T has no fixed point. If T (0) > 0, then the function
f(x) = Tx−x satisfies f(0) > 0. Moreover, f(x) > 0 for all x, otherwise
the Intermediate Value Theorem shows that f(x) = 0 for some x, and
x is therefore a fixed point of T .

Consequently, Tx > x for all x. Therefore, T (1) > 1 and T 2(1) =
T (T (1)) > T (1) > 1. Continuing inductively, Tn(1) > 1 for all n,
contradicting the existence of an integer n for which Tn(1) ∈ [0, 1].
Similarly, the assumption that T (0) < 0 leads to the conclusion that
Tx < x for all x, and hence that Tn(0) < 0 for all n. Therefore, T
must have a fixed point.

A similar, but shorter, argument shows that Hypothesis 6 yields fixed
points in dimension 1. Suppose that Tn : R1 → R1, and to each
x ∈ [0, 1], there is an integer N such that n ≥ N =⇒ Tnx ∈ [0, 1].
We can therefore find an integer k such that both Tk(0) ∈ [0, 1] and
Tk(1) ∈ [0, 1]. If 0 or 1 is a fixed point of Tk we are done, so assume
Tk(0) > 0 and Tk(1) < 1 and apply the Intermediate Value Theorem
to f(x) = Tkx− x as before.

However, the above result fails in higher dimensions, even if Hypoth-
esis 6 is satisfied.

Example 6. Define Tn : R2 → R2 on vertical strips S1 =
{(x, y) : x < 1 − 1/n}, S2 = {(x, y) : 1 − 1/n ≤ x < 1 − 1/2n},
S3 = {(x, y) : 1−1/2n ≤ x < 1}), and S4 = {(x, y) : 1 ≤ x}. The value
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of Tn(x, y) is defined as follows

Tn(x, y) = (1, 0), (x, y) ∈ S1

Tn(x, y) = (1, 2n(x− 1) + 2), (x, y) ∈ S2

Tn(x, y) = (2n(1 − x), 2n(2n+ 1)2(x− 1)(x− (1 − 1/2n))y + 1),
(x, y) ∈ S3

Tn(x, y) = (0, 1), (x, y) ∈ S4.

To verify that this is indeed a counterexample, we must check that
each Tn is continuous, that if ‖(x, y)‖ ≤ 1, there exists an N such that
n ≥ N =⇒ ‖Tn(x, y)‖ ≤ 1, and finally that no Tn has a fixed point.

Obviously, Tn is continuous in the interior of each of the four vertical
strips, and it is easy to verify that Tn is constant on each of the vertical
boundaries and that the values of these constants guarantee continuity
along the boundaries.

Note that Tn maps both S1 and S4 into the unit circle. If ‖(x, y)‖ ≤ 1
and x < 1, then (x, y) ∈ S1 for all but finitely many n, and if x = 1,
then (1, 0) ∈ S4 for all n.

Finally, to see that Tn has no fixed points, observe that because the
x coordinate of the point Tn(x, y) is 1 in S1 and S2, and because the x
coordinate of the point Tn(x, y) is 0 in S4, the only fixed points must
be in S3. In order for Tn(x, y) = (x, y), we must have 2n(1 − x) = x
and so x = 2n/(1 + 2n). However, the value of the y coordinate of the
point Tn(2n/(1+2n), y) can be seen to be y+1, and so Tn has no fixed
points.
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