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1. Introduction. The correspondence between Diophantine ap-
proximation and Nevanlinna theory, observed by Osgood and Vojta [2],
[7], has motivated many recent works. Furthermore, the Diophantine
approximation over function fields also has recently attracted atten-
tion because of its correspondence to Nevanlinna theory with moving
targets. In [8], Julie Wang obtained an effective version of Roth’s theo-
rem over function fields by adapting the method of Steinmetz in proving
Nevanlinna’s conjecture with slowly moving targets in Nevanlinna the-
ory. We note that the Thue-Siegel-Roth theorem over function fields
was proved by Uchiyama [6] in 1961, with a proof similar to the one
for number fields, hence is ineffective. To state Wang’s result we recall
some definitions. Let C be an irreducible nonsingular algebraic curve
of genus g over an algebraically closed field k of characteristic zero. Let
K be the function field of C'. For a nonzero element f € K, we define
the height as h(f) = > pc —min{0,vp(f)}, where vp(f) is the order
of f at the point P of C. Let t be a nonconstant function in K; we
denote by, for every y € K, ¢y = (dy/dt). Julie Wang’s result is stated
as follows:

Theorem [8]. Let S be a finite set of points in C. Suppose that
t,a1,...,aq are S-units and that f is a nonzero element of K. Let L(r)
be the vector space over k spanned by ai’ coeagt with ny, ..o yng >0
andny +---+ng=r. Let f1,...,0By be a base of L(r) and by,... by,
abase of L(r+1). If fB1,..., fBn,B1,.-. ,bm are linearly independent
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over k, then

Z Zmax{o, vp(f—aj)}

PeS j=1
(29—2+2#S + h(t))+(q—1)*D _h(a:).

i=1

< m+nh(f>+ (m+n—1)(m+n)

n

Note that, in the above inequality, although the coefficient ((m +
n)/n) — 2 as r — oo, the coefficient ((m +n — 1)(m + n)/n) actually
tends to co as  — oo. Furthermore, the term (2g—2+2#S+h(t)); thus
the coefficient ((m +n — 1)(m + n)/n) plays an important role for the
general function field K. The purpose of this paper is, among others,
to improve on this term. We shall establish a new version of effective
Roth’s theorem over function fields that the coefficient before the term
(29 — 2 + 2#S + h(t)) is 1, as conjectured. However, unfortunately,
the price paid is where the coefficient before the term h(f) is increased
to [¢/2] + 1 rather than 2. Therefore, our theorem can be viewed
as a supplement to Julie Wang’s theorem. Also our theorem may be
called an effective Thue’s theorem over function fields, since it really
corresponds to Thue’s theorem in a number field. The following is the
statement.

Theorem. Let C be an irreducible nonsingular algebraic curve of
genus g over an algebraically closed field k of characteristic zero. Let
K be the function field of C'. Let S be a finite set of points in C. Let
ai,...,aq be distinct elements in K and f a nonzero element in K.
Suppose that t is an S-integer. Then either

Z Zmax{o,vp(f —aj;)}

PcS j=1
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2. Proof of the theorem. To prove the theorem, we shall construct
a nonzero differential polynomial of the form Q(y,y") = ¢1(y)y’ — d2(y)
over K such that Q(a;,a}) = 0, 1 < j < g, where ¢; and ¢y are
polynomials in y of degree at most [¢/2 — 1] and [¢/2 + 1]. Since
the number of coefficients which can occur in ¢; and ¢; is at least
(q/2 —1+1/2) +(¢/2+ 1+ 1/2) = ¢+ 1, and the conditions of
Q(aj,a;) =0,1 < j < gq, are only ¢ linear homogeneous conditions,
such nontrivial Q(y,y’) can be constructed. Q(y,y’) has the form
Qy, ) = (moy2 + - + ma_2)y’ — (noy + -+ + nq), where d <
[¢/2] + 1. To prove the theorem, we first consider the case that
Q(f, f') # 0. We have the following lemma.

Lemma 1. Assume that mg # 0 and Q(f, f') #0. Then

Z Zmax{o,vp(f —aj;)}

Pes j=1

< ([a/2) + Dh(f) + #S + Y max {O’U<£>}

pPeC dtp

+ @+ 17 (hlas) + h(ah)) + (@ = 1)* Y h(ai).

i=1 i=1

Proof of Lemma 1. For a vector x = (xg, ... ,Zm), we define
vp(x) = min{vp(xg),... ,vp(Tm)}

For the differential polynomial Q(y,y’), we then define vp(Q) = vp(x)
where the components of x are the coefficients of @@ and define the

height h(Q) = =3 pcvp(x). That is,
h(Q) = - min{vp(mo), ... ,vp(ma_z),vp(no),... ,vp(na)}.
PeC

Without loss of generality, we may assume that mg = 1; thus, we always
have vp(Q) < 0. Since the coefficients of Q(y,y’) are determined by
solving linear equations (moa‘;_2+. . .+md_2)a;_ _ (noa?—l—- fng) =0,
I<j=<gq

2.1) hQ) < dq(Zm(aj) n h(a;-»).

j=1
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Let S be a nonempty set of finitely many points in C. Let T = {P €
S| vp(f —aj) >0 for some j} and ap = max;,; max{0,vp(a; — a;)}.
Since a; — aj = (f —a;) — (f — a;), we have

vp(a; — aj) > min{vp(f —a;),vp(f —aj)}.

Thus, for every P € T,

> wp(f —a;) Svp(f —aupy) + Y, max{0,vp(a; — aup)},

J=1 J#n(P)

where pu(P) € {1,2,... ,q} such that vp(f —a,p)) = maxi<j<qvp(f—
a;). Hence, for every P € T,

(2.2) > vp(f—a;) < Joax. vp(f —aj)+ (¢ —ap.
i=1 ==

For P € T, and for the index j, 1 < j < g, with vp(f —a;) > 0, since
Q(aj,a;) = 0, by Taylor’s expansion formula, we have the following
finite sum

1
Qy,y') = (y—a;)Q1(az,a})+(y' —a;)Q2(a;, q;) + 5(?/—%)2@11 (aj,a})

1
+ (y—a;j)(y' —aj)Qiz(ay, a;‘)+§(y_aj)3Q111(ajv ay)+---,

where )1, respectively @2, represents the partial derivative with respect

to the first variable, respectively the second variable. Since f’ — a

(d(f — a;)/dtp)(dt/dtp)~t, where tp is a local parameter of a point
P e Cand vp(d(f — a;)/dtp) > vp(f —a;) =1, vp(Q(f, [) =
vp(f—aj)—1-max{0,vp(dt/dtp)}+vp(Q)+dmin{0,vp(a;),vp(a)}.
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Thus, by (2.2),

S max{0,vp(f - a))

j=1PeS

=> > vp(f—a)

PeT j=1
(2.3) <ZUP f 1) +#T+Zmax{0 vp<dotlt>}
PET PeT P
— Z vp(Q) —d Z Z min{0, vp(a;),vp(aj)}
PeT PeT 1<j<q
+@-1)) ar.
Pes

Since —d} per Z1§qumin{0aUP(aj)aUP(a;')} < d21gqu(h(aj) +
h(a})), (2.3) becomes

j=1PeS
< Z ’UP + #T
PeT
(2.4) + max § 0,vp dt - vp(Q)
dtp
PeT PeT
+d Z + (q -1 Z ap
1<j<q Pes

We now consider the case where P ¢ T. Let Too = {P ¢ T | vp(f) <
0}. For P € T, v(df /dtp) > vp(f) —1 > 2vup(f). Since

,df (dt\7!
7= air)
and Q(f, f') = (mof*% + -+ +ma—2)f' — (nof* + - +na),

(25)  wp(QUf. ) = dup(f) +vp(Q) —maX{O P(ﬁi)}



728 M. RU

for P € Ts. On the other hand, if P ¢ T, then vp(df/dtp) > 0.
Thus,

26)  op(@(f f) > — max {o op ( - ) } T+ (@),

for P ¢ T,,. Combining (2.4), (2.5) and (2.6),

Z Z max{0,vp(f —a;)} + Z dvp(f)
j=1Pes

PeT
<> vp(Q(f )
pPeC
+ Z max{O ’Up(di;)} — Z p(Q) +#T
PeC pPeC
+d Y (hlaj)+h(d))+(g—1) ) ap.
1<j<q pes
Since
— Y dvp(f) < dh(f),
PeTy

Y pec vP(Q(f, f')) = 0 by the sum formula and h(Q) == pc vrP(Q),

we have

q

Z Z max{0,vp(f —a;)}

j=1PeS
dt
gdh(f)+#8+2max{0v< )}+h(Q)
dtp
pPeC
+d Z (a;)+h(ay))+(g—1) Zap
1<5<q PeS

Using d < [¢/2] + 1, as well as (2.1) and

ZQP— Zmax{o vp(a; —aj)}

PeS PesS

<Y hlai—ay) < (a—1)> hlas),

i#£] i=1
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we have
q
Z max{0,vp(f —a;)}

j=1PeS
dt
< ([¢/2) + Dh(f) + #5 + PZGC max {O(E)}
q+12z ) (g—1)? E h(a;).
Jj=1

i=1

This finishes the proof of Lemma 1. a

Lemma 2. Ift is an S-integer, then

Z max{O,vp<dCi—7;>} <29 —2+4+#S+h(t).

pPeC

Proof of Lemma 2. By Riemann-Roch’s theorem, noticing that ¢ is

an S-integer,

pPeC
dt dt
T ) g2
vp (£)<0 dtp PeC dtp
> Z (vp(t) — 1) —|—Zmax 0,vp dt
- dtp
’Up(t)<0 pPeC

V

|
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Hence

Zmax{o,vp(dci—i)}§2g—2+#5+h(t). u]

PeC
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Lemma 3. An element t € K exists such that t ¢ k and
dt
g max {O,vp (—) } < 3g.
dtp
PeC

Proof of Lemma 3. By Riemann’s theorem, fix a point Py € C, the
elements ¢t € K having vp,(t) > —g — 1, vp(t) > 0 if P # P, form a
vector space of dimension greater than or equal to 2. Choosing such an
element t ¢ k, let tp be a local parameter of P € C' by Riemann-Roch,

dt dt dt
29—2: Z ’UP(E) = Vp, (E) + Z maX{O,vp<E>}

pPeC PeC

dt
>—g—2+ Z max{O,vp(E>}.

PeC

dt
Z max {O,vp (d—) } < 3g.
PeC tp

Combining Lemmas 1, 2 and 3, we have obtained the following
statement: If mg # 0 and Q(f, f') # 0, then

Z Z max{0,vp(f —a;)}

j=1PeS
(2.7) < ([q/2] + 1)A(f) + min{2g — 2 + 2#S + h(¢),3g}
(a1 Y _(hlag) + b)) + (a = 1) 3 _h(ai).

Our next step is to deal with the case Q(f, f/) = 0. In this case we
have
(mof* 2+ +ma2)f — (nof*+ -+ +nq) =0.
We write M(X) = moX9 2+ -+ mg_o, N(X) = ngX?+ - + ng.

Fix a point P € C' at the moment. We first consider the case where

(2.8) vp(M(f)) 2 vr(Q).
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Since f satisfies the equation
mof*? + -+ ma_sf + (ma—2 — M(f)) =0,

whose coefficients have valuation > vp(Q), it follows from the Gauss
lemma that

(2.9) vp(f) 2 vp(Q) — vp(mo).

Since f' = (df /dtp)(dt/dtp)~1, observing that vp(Q) — vp(mg) < 0,

up(f') > 2(0p(Q) - vp (o)) — max {o,vp(ﬂ) }

dtp

The differential equation Q(f, f/) = 0 implies that
(2.10)

op(N(f)) = vp(M(f)) + 2(0p(Q) — vp(my))) — max {o, op (di—i) }

The resultant R of M (X), N(X) may be written as
(2.11) R=MX)V(X)+ NX)W(X),

where V(X), W(X) are certain polynomials defined in terms of deter-
minants. In particular, V, W are of respective degrees < d — 1, d — 3,
and

vp(V),vp(W) = (2d — 3)vp(Q).
Now since vp(mof) > vp(Q) by (2.9), it follows, using the Gauss lemma
again, that
vp(mg~ V() = (24 =3+ d = 1)op(Q),
and also,
vp(m§*W(f)) > (2d - 3+d - 3)vp(Q).
Thus, (2.10) and (2.11) yield

dt

op(mE1R) > vp(M(f)) + (3d — 4)op(Q) — max {o,vp(E> }
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whence
vp(M(f)) < —(2d = 3)vp(Q) + (d — 1)(vp(mo) — vP(Q))
(2.12) +vp(R)+max{O,vp(ﬂ)}.

dtp

Now if (2.8) does not hold, then since vp(mg) > vp(Q) and since
vp(R) > (2d — 2)vp(Q), (2.12) is still true.

Now we want to estimate the height h(f) by using (2.12). If
vp(mof2) < min{vp(mif4=2),... ;up(ma_2)}. Thenvp(mofi=2)=
vp(M(f)) and (d —2)vp(f) = vp(M(f)) — vp(mo). If vp(mofi=?) >
min{vp(my f43),... ,up(m4_2)}, then vp(mofd’Q) > vp(m;fi-279)
for some i, 1 < ¢ < d — 2. Then vp(f*) > vp(m;) — vp(mg) >
vp(Q) —vp(mgp), whence vp(f) > vp(Q) —vp(mp) and (d—2)vp(f) >
(d—2)(vp(Q) —vp(mp)). So in any case, we have

(d —2) min{0,vp(f)} > min{(d — 2)(vp(Q) — vp(mo)),
vp(M(f)) —vp(mo)}-

Using the sum formula for md~2M(f)~', we obtain

(d=2)h(f) = —(d—2) Y min{0,vp(f)}

PeC

<= 3" max{(d - 2)vp(Q) — vp (M), (d - 3)op(mo)}.

pPeC
Applying (2.12) and once again the sum formula, we get

(d—2)h(f) < ) max {_ (3d - 5)vp(Q) + (d — 1)

PeC
- (vp(mo) —vp(Q)) +v(R)

+ max {o, vp (;Z—i) } (3- d)vp(mo)}

= Z max {— (4d — 6)vp(Q) + max {0, vp (%) }

pPeC

—vp(R)+ (4 - 2d)vp(m0)}.



A WEAK EFFECTIVE ROTH’S THEOREM 733

Recall that, by Lemmas 2 and 3, > p.omax{0,vp(dt/dtp)} <
min{2g — 2 + #S5 + h(t),3g} and note that

—vp(R) + (4 — 2d)up(mo) < —(2d - 2)0p(Q) + (4 — 2)0p(Q)
= (6 - 4d)vp(Q).

It then follows that

(d—2)h(f) < Z ((6 —4d)vp(Q) + max {O,UP <di_i> })

PeC
< (4d — 6)h(Q) + min{2g — 2 + #S + h(t),3g},

and, if d — 2 > 0, then also, using (2.1),

h(f) < (d—2)""((4d — 6)h(Q) + min{2g — 2 + #S + h(t), 3g})
<(qg+1)3

J

(h(a;) + h(a;)) + min{2g — 2+ #S + h(t),3¢g}.
1

If d —2 < 0, then either M(X) = mg # 0 or M(X) = 0. If
M(X) = mg # 0, then the differential equation Q(y,y’) = 0 is either
linear or Ricatti. In the case that Q(y,y’) = 0 is linear, then any three
solutions z, z1, 2o have

zZ— 2z
22 — 21 B
with ¢ € k, whence vp(z — 21) = vp(z2 — z1). In particular, since
Q(f, ') =0, Q(aj,a}) = 0, we have, for 2 < j < g,

vp(f —aj) =vp(ar — aj).

In this case (2.7) trivially holds. If the differential equation is Ricatti,
then as is well known, any four solutions of the Ricatti differential
equation have a constant cross ratio. Again, since f,a;, 1 < j < g are
all the solutions,

f—aj/ag—aj
f—a1l az —ay

with ¢ € k so, for 3 < j <gq,

:C’

vp(f —aj) +vplas —ar) = vp(f —a1) + vp(az — a;).
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Thus, in this case (2.7) also holds trivially. If M(X) = 0, then
Q(f, f)) = 0 implies that ngf? +---+mng = 0, so by the Gauss lemma,
h(f) < h(Q). This finishes the proof of our theorem.
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