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COEXISTENCE OF CENTERS AND LIMIT
CYCLES IN POLYNOMIAL SYSTEMS

ROBERT E. KOOIJ AND ANDRÉ ZEGELING

ABSTRACT. In this paper we consider polynomial systems
on the plane with coexisting centers and limit cycles. We
prove that cubic systems which are symmetric with respect to
a line which is not invariant have either zero or exactly two
limit cycles. The same result is proved for rationally reversible
cubic systems. New configurations of coexisting centers and
limit cycles in cubic systems are presented. Also an example
of an integrable quartic system with a unique limit cycle and
a center is given. As a bonus we construct a septic system
with 57 limit cycles.

1. Introduction. It is a well-known result that a quadratic system
with a center has no limit cycles, see Ye [20]. However, Borukhov
[3] and Dolov [6] gave examples of quartic and cubic systems with
both centers and limit cycles. In this paper we give new configurations
of coexisting centers and limit cycles in polynomial systems. The
existence of centers in the examples for cubic systems is proved by
using a symmetry principle. In Section 3 we derive some results for
cubic systems symmetric with respect to a line, also known as time-
reversible systems. The main result is that these systems, if the line
is not invariant, have either zero or two limit cycles (Theorem 3.1).
Using the results of Section 3, we present in Section 4 an example
of a cubic system with three centers and two limit cycles where each
limit cycle surrounds exactly one singularity. In a similar fashion in
Section 5 an example is given of a cubic system with one center and
two limit cycles where each limit cycle surrounds three singularities.
In Section 6 we show that all rationally reversible cubic systems have
either zero or two limit cycles (Theorem 6.1). This generalizes the result
of Section 3. In Section 7 we give an example of a quartic system with
a unique limit cycle and center. Here the existence of the center is not
proved using a symmetry principle but by calculating the first integral

Received by the editors on November 4, 1997, and in revised form on August 6,
1998.

AMS Mathematics Subject Classification. 34C05, 58F14.

Copyright c©2000 Rocky Mountain Mathematics Consortium

621



622 R.E. KOOIJ AND A. ZEGELING

of the system explicitly. We conclude the paper with some remarks
about systems symmetric with respect to two lines. It is indicated how
to construct a septic system with 44 limit cycles, five centers and one
periodic annulus. We show that for an appropriate perturbation of this
system, 13 additional limit cycles appear, bifurcating from the closed
orbits surrounding the five centers. The number 57 thus obtained is
the largest lower bound for the number of limit cycles in septic systems
found so far.

2. The example of Dolov. The cubic system considered by Dolov
in [6] reads

(2.1)
ẋ = x2(−1 + ε+ y)− y + y2 = P,

ẏ = x− x3 = Q,

where ε ∈ R.

Note that the phase portrait of system (2.1) is symmetric with respect
to the y-axis because P (−x, y) = P (x, y) and Q(−x, y) = −Q(x, y).
Systems like system (2.1) which are invariant with respect to reflection
with respect to a straight line and reversion of time, are known as time-
reversible systems, see Sevryuk [18]. Probably the first example of such
systems was given by Poincaré [15].

For ε = 0, system (2.1) has the following singularities for x ≥ 0 :
O(0, 0) a center, A(1,−1) a saddle, B(1, 1) a first order stable weak
focus and C(0, 1) a saddle. The fact that B(1, 1) is a first order stable
weak focus follows from the first Poincaré-Lyapunov constant, see [1],
being negative.

Notice that O is a center because of the symmetry principle, see, for
instance, Ye [20]. By using the direction of the vector field on the
line segment AC and the Dulac function D(x, y) = exp((y − 1)/(1 −√
2))|2y+(1−√

2)x2+1+
√
2|2/(

√
2−1) to prove that there are no limit

cycles for x > 0, we can construct the phase portrait of system (2.1)
with ε = 0, see Figure 2.1.

If in system (2.1) we take 0 < ε � 1, then the singularityB(1,
√
1− ε)

is unstable, hence system (2.1) has a unique small-amplitude limit cycle
around B by the Andronov-Hopf theorem. If we assume that B is
surrounded globally by at most one limit cycle, then the corresponding



CENTERS AND LIMIT CYCLES IN POLYNOMIAL SYSTEMS 623

y

x

FIGURE 2.1. System (2.1), ε = 0.
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FIGURE 2.2. System (2.1), 0 < ε � 1.
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phase portrait is as drawn in Figure 2.2. In the next section it is shown
(Theorem 3.1) that the above assumption on the number of limit cycles
surrounding B is correct.

3. Cubic systems with line symmetry. Imitating Dolov [6]
we consider cubic systems which are symmetric with respect to a line.
Without loss of generality, we can assume that the line of symmetry
is x = 0. If the system ẋ = P (x, y), ẏ = Q(x, y) is symmetric with
respect to x = 0, then there are two possibilities:

(i) P (−x, y) = P (x, y), Q(−x, y) = −Q(x, y), or

(ii) P (−x, y) = −P (x, y), Q(−x, y) = Q(x, y).

For case (ii) x = 0 is a straight line solution of the system and we do
not consider this case because we want to use the symmetry to prove
the existence of centers on the line of symmetry. Obviously a center
cannot be part of a real straight line solution.

The general cubic system that satisfies the symmetry conditions (i)
reads

(3.1)
ẋ = (a00 + a01y + a02y

2 + a03y
3 + x2(a20 + a21y))/2,

ẏ = x(b10 + b11y + b12y
2 + b30x

2).

In order to study the closed orbits of system (3.1) in the half plane
x > 0, we can apply the transformation x2 = u, (dt/dτ ) = (1/x),
reducing system (3.1) to

(3.2)

du

dτ
= a00 + a01y + a02y

2 + a03y
3 + u(a20 + a21y),

dy

dτ
= b10 + b11y + b12y

2 + b30u.

It can be assumed that b30 �= 0 because for b30 = 0 all singularities
of system (3.2) are located on a straight line solution and then system
(3.2) has no closed orbits. Under this assumption we can apply the
change of variables b10 + b11y+ b12y

2 + b30u = ξ, which reduces system
(3.2) to

(3.3)

dy

dτ
= ξ,

dξ

dτ
= c00 + c10y + c20y

2 + c30y
3 + ξ(c01 + c11y).
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In system (3.3) we recognize a cubic Liénard system with linear damp-
ing, a system extensively studied by Dumortier and Rousseau [8] and
Dumortier and Li [7].

The main result of [7], [8] is the following:

Lemma 3.1. The cubic Liénard system with linear damping has at
most one limit cycle. If it exists it is hyperbolic.

Remark 3.1. Limit cycles in the cubic Liénard system with linear
damping surround either one, two or three singularities.

Using Lemma 3.1 we can obtain the following result.

Theorem 3.1. If a cubic system is symmetric with respect to a line
that is not invariant, then the system has either zero or exactly two
limit cycles. If the limit cycles exist they are hyperbolic.

Proof. Because system (3.1) is equivalent to system (3.3) for x > 0 it
follows from Lemma 3.1 that system (3.1) has at most one limit cycle
for x > 0. The proof is completed by using the symmetry of system
(3.1).

4. An example of a cubic system with three centers and two
limit cycles. Consider the following system

(4.1)
ẋ = y(1− 2x2 − (1/4)y2),
ẏ = x(−1 + (1/4)x2 + y2).

It is easy to draw the phase portrait of system (4.1), see Figure 4.1.

Notice that system (4.1) is symmetric with respect to both the x-
and the y-axis and hence system (4.1) has at least five centers. Next
consider the system

(4.2)
ẋ = y(1− 2x2 − (1/4)y2) + λy2 = P,

ẏ = x(−1 + (1/4)x2 + y2) = Q,

with 0 < λ � 1.



626 R.E. KOOIJ AND A. ZEGELING

y

x

FIGURE 4.1. System (4.1).
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FIGURE 4.2. The flow on BC and CB.
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System (4.2) is still symmetric with respect to the y-axis but the
symmetry with respect to the x-axis has been broken. In fact, it is
easy to show that A(2, 0) is a first order stable weak focus of system
(4.2).

To study the relative positions of the separatrices of the saddles of
system (4.2), we note that (P 2+Q2)(∂θ/∂λ) = −xy2(−1+(1/4)x2+y2),
where θ = arctan(Q/P ). Denote the intersections of P and Q in the
first and the fourth quadrant as B and C, respectively. We can use
the properties of semi-complete families of rotated vector fields, see
Perko [14], to follow the movement of the separatrices of B and C, as
λ increases from zero. For the saddle connection BC, λ rotates the
vector field (4.2) in a counterclockwise direction whereas for the saddle
connection CB, λ rotates the vector field (4.2) in a clockwise direction,
see Figure 4.2.

If we transform system (4.2) to a cubic Liénard system by putting
x2 = u, (dt/dτ ) = (1/x), then the results of Dumortier and Rousseau
[8] can be used to show that system (4.2) has no closed orbits for
x > 0. It follows that the phase portrait of system (4.2) is as drawn in
Figure 4.3.

Finally consider the system

(4.3)
ẋ = y(1− 2x2 − (1/4)y2) + λy2,

ẏ = x(−1 + (1/4)x2 + y2) + µxy,

with 0 < µ � λ � 1.

Because for system (4.3) the focus A(2, 0) has changed its stability,
there will be a unique limit cycle in the vicinity of A(2, 0) by the
Andronov-Hopf theorem. For sufficiently small µ the relative positions
of the separatrices of system (4.2) will not be affected. The phase
portrait of system (4.3) is given in Figure 4.4. It is easy to check
that, due to symmetry of system (4.3) with respect to the y-axis, apart
from the three centers on the y-axis, system (4.3) also has a family of
closed orbits surrounding five singularities and a family of closed orbits
surrounding all nine singularities.
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FIGURE 4.3. System (4.2).
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FIGURE 4.4. System (4.3).
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5. An example of a cubic system with one center and limit
cycles surrounding three singularities. Consider the cubic system

(5.1)
ẋ = (1/2)y(y2 − 1),
ẏ = x(10− 10x2 − y2).

It is easy to draw the phase portrait of system (5.1), see Figure 5.1.
Notice that the phase portrait of system (5.1) is symmetric with
respect to both the x- and the y-axis. It is important to notice that
the homoclinic orbit passing through the saddle A(1, 0) is completely
situated in the half plane x > 0. This may be checked by computing the
first integral of system (5.1) or by integrating system (5.1) numerically.

Next consider the system

(5.2)
ẋ = (1/2)y(y2 − 1)− (1/2)λ,
ẏ = x(10− 10x2 − y2 + µy),

where λ, µ ∈ R.

In order to study system (5.2) for x > 0 we make the transformation
x2 = u, (dt/dτ ) = (1/x) to obtain

(5.3)

du

dτ
= y3 − y − λ,

dy

dτ
= 10− 10u− y2 + µy.

System (5.3) is equivalent to a system studied by Dumortier and
Rousseau [8]. In fact, for λ = µ = 0, system (5.3) corresponds to
the phase portrait that belongs to the origin of the bifurcation diagram
in [8], Figure 8. It follows from the results of [7], [8] that there exists
λ and µ with 0 < λ2 + µ2 � 1 such that system (5.3) has a unique
hyperbolic limit cycle surrounding three singularities. Furthermore, λ
and µ can be chosen in such a way that the limit cycle is arbitrarily
close to the homoclinic orbit situated in the half plane u > 0 that exists
for λ = µ = 0. Consequently, because system (5.2) is symmetric with
respect to the y-axis, there exist values of λ and µ such that system
(5.2) has one center and exactly two limit cycles. Furthermore, each
limit cycle surrounds three singularities and is hyperbolic. The problem
that remains concerns the relative positions of the separatrices of the
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FIGURE 5.1. System (5.1).

saddles on the y-axis. If we choose to bifurcate an unstable limit cycle
in system (5.3), then three generic positions for the separatrices exist,
see Figure 5.2.

For given parameter values λ and µ we have to use numerical methods
to determine which of the three generic positions of the separatrices
occurs. The results of a numerical study of system (5.2) with λ = .15
and µ = .25 reveal that the relative positions of the separatrices for
these parameter values are as given in Figure 5.2c.

b)a) c)

FIGURE 5.2. Possible separatrix configurations for system (5.2).
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6. Rationally reversible cubic systems. We have seen that
all the systems in the previous sections are time-reversible, i.e., these
systems are invariant under reflection with respect to a straight line
and reversion of time. The notion of time-reversible systems can be
generalized to rationally reversible systems, see ŻoFla̧dek [21].

A rationally reversible system V at a center O admits some rational
noninvertible map Φ : R2 → R2 and a polynomial vector field V ′ on
R2 such that

(i) Φ∗V and V ′ ◦ Φ are collinear,

(ii) the curve of noninvertibility ΓΦ of Φ passes throughO and there is
a neighborhood U ⊂ R2 of O such that the boundary of Φ(U) contains
a part of the curve Γ′ = Φ(ΓΦ), the vector field V ′ is tangent to Γ′ at
Φ(O) from the outside of Φ(U) and V ′(Φ(O)) �= 0.

Under such conditions the point O must be a center because the real
trajectories of V are the preimages of compact pieces of trajectories of
V ′ lying in Φ(U).

The following lemma, proved by ŻoFla̧dek, shows that for cubic sys-
tems there are 17 classes of rationally reversible systems.

Lemma 6.1. Any rationally reversible cubic vector field V (x, y) is
reversible by means of one of the following 17 pairs (Φ, V ′), Φ = (X,Y ),
where we choose some special coordinates (x, y), T1 = x + y + f ,
T2 = ax2+bxy+cy2+dx+ey+1 and η = xy−ay2+2x+2(1+a)y+1−a,
denoted in Table 6.1.

Remark 6.1. In class 3 there are additional restrictions on the
parameters, see [21], but we will not use them here.

It is the aim of this section to prove the following generalization of
Theorem 3.1.

Theorem 6.1. If a cubic system is rationally reversible, then the
system either has zero or two limit cycles. If the limit cycles exist they
are hyperbolic.
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TABLE 6.1. Cases which lead to rationally reversible cubic systems.

Class (X, Y ) (dX/dt)/(dY/dt)

1 (x2, y) (k+lX+mY +nY 2+pXY +qY 3)/(r+sX+tY +uY 2)

2 (x, (y2/(x+y))) (k+lX+mX2)/(Y (n+pX)+qY 2)

3 (x, (y2/(xy+ax2+bx+1))) (k+lX+mX2)/(n+pX+(q+rX)Y +sXY 2)

4 (T1x, (T1/y)) (kX+lY +mXY )/(Y (n+pY +qY 2))

5 (T1x, (T1/y)) X(kX+lY +mXY )/(Y (kX+lY +nXY +pY 2+qXY 2))

6 (T1x, (T1/y)) (X(k+lY +mY 2)+nY 2)/(Y (k+pY +qY 2+rY 3))

7 (T1x, (T1/y)) X(k+lX)/(Y (k+mX+nY +pXY ))

8 (T1x, (T 2
1 /y)) X(k+lX)/(2Y (k+mX+nY ))

9 (T1x, (T 2
1 /y)) (kX+lY +mXY )/(2Y (k+pY ))

10 (T1x, (T 3
1 /y)) X(k+lX)/(3Y (k+mX+nY ))

11 ((T 2
1 /x), (T1/y)) 2X(kY +lX+mXY )/(Y (kY +nX+pY 2+qXY +rXY 2))

12 ((T 2
1 /x), (T1/y)) 2X(kY +lX+mY 2+nXY +pXY 2)/(Y 2(k+qY +rY 2))

13 ((T 3
1 /x), (T 2

1 /y)) 3X(kY +lX)/(2Y (kY +mX+nY 2))

14 ((T 3
1 /x), (T 2

1 /y)) 3X2(kY +lX+mY 2)/(2Y 2(kX+nXY +pY 2))

15 ((T 4
1 /x), (T 2

1 /y)) X(kX+lY 2)/(Y 3(m+nY ))

16 ((T 2/x), (T2/y)) (X(kX+lY )+X2(mX+nY ))/(Y (kX+lY )+Y 2(pX+qY ))

17 ((x3/y), (x2/η)) 3kX2(1+3Y )/(kY (2X+3XY −9Y 2))

It follows from the definition that for every class of rationally re-
versible systems the curve of noninvertibility splits the plane into two
regions whose phase portraits have the same topology. Therefore we
can prove Theorem 6.1 by showing that all the systems in the third
column of Table 6.1 have either no, or at most one, hyperbolic limit
cycle. For convenience’s sake we will denote by Si the system in the
third column of Table 6.1 for class i. Note that class 1 corresponds to
time-reversible systems studied in the previous sections. In fact, S1 is
equivalent to system (3.2).

Proof of Theorem 6.1. First we will show that the systems S2, S3, S4,
S6, S7, S8, S9, S10, S12 and S15 have no limit cycles. All these systems
have in common that if they possess real singularities then they belong
to a real straight line solution. Obviously such singularities cannot be
surrounded by limit cycles.
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Because closed orbits of system S5 cannot intersect the X- and
Y -axes, we may apply the transformation U = X, V = (X/Y ),
(dt/dτ ) = (V/U2), reducing S5 to the linear system

dU

dτ
= kV + l +mU,

dV

dτ
= (m− n)V − p− qU.

Obviously, a linear system has no limit cycles.

The transformation U = X, V = (X/Y ), (dt/dτ ) = (V/U) reduces
both system S11 as well as S13 to a quadratic system with a straight line
solution U = 0. It is well known that such systems admit at most one
hyperbolic limit cycle, see Rychkov [17] and Coppel [5]. In fact, it can
be shown that system S13 has no limit cycles at all by applying Dulac’s
criterion with Dulac function |X|−1/3|Y |−3. We can also use Dulac’s
criterion with Dulac function |X|−2/3|Y |−3 to prove that system S17

has no limit cycles.

By the change of variables U = (1/X), V = (1/Y ), (dt/dτ ) = −V 2U ,
system S14 reduces to

dU

dτ
= 3mU + 3kUV + 3lV 2,

dV

dτ
= 2pU + 2nV + 2kV 2.

This is a quadratic system whose second order terms 3kUV + 3lV 2

and 2kV 2 have a common factor V = 0. It was proved by Coppel
[5] that quadratic systems satisfying this property have at most one
hyperbolic limit cycle. System S16 can be transformed to the same type
of quadratic system by the change of variables U = X, V = (X/Y ),
(dt/dτ ) = (V/U2).

Because system S1 has already been dealt with in Section 3, the proof
is finished.

7. An example of an integrable quartic system with one
center and one limit cycle. In Sections 2 5 we have proved the
existence of centers in the given examples by using the symmetry
principle. In this section an integrating factor is used to prove the
existence of a center.

This idea has been used by Dolov [6] as well. He gave an example
of an integrable quintic system with coexisting center and limit cycle.



634 R.E. KOOIJ AND A. ZEGELING

Here we will show that such coexistence can also occur for quartic
systems.

Consider the following system:

(7.1)

ẋ = −2y(x2 + y2)(x− 2) + (x− y)(x2 + 2y2 − 1)(x− 2) = P,

ẏ = x(x2 + y2)(x− 2) + (x+ y)(x2 + 2y2 − 1)(x− 2)

− 7
10

(x2 + 2y2 − 1)(x2 + y2) = Q.

It may be checked that system (7.1) has the following algebraic invari-
ant curves: C1 = 0, C2 = 0, C3 = 0, C4 = 0, where C1 = x2 + 2y2 − 1,
C2 = x+ iy, C3 = x− iy, C4 = x− 2. It is easy to verify that system
(7.1) has an integrating factor µ(x, y) = (1/(C1C2C3C4)). For more
details on the relation between integrating factors and the existence of
algebraic invariant curves we refer to [11]. A tedious calculation shows
that the only finite singularities of system (7.1) are A(0, 0) and B(3, 1).
A simple calculation reveals that A is an unstable focus and B is a
center because in a neighborhood of B the integrating factor µ(x, y) is
a regular function. Using the integrating factor µ(x, y) we can find the
first integral H∗(x, y) of system (7.1):

H∗(x, y) =
{
H(x, y) exp(sgn (y)π) if x ≥ 0,
H(x, y) exp(−sgn (y)π) if x < 0,

where H(x, y) = (x2+2y2−1)(x−2)−7/5(x2+y2) exp(−2 arctan(y/x)).
From the fact that µ(x, y) is an integrating factor, it can be proved

that C1 = 0 is the unique limit cycle of system (7.1). Suppose
on the contrary that there is another limit cycle γ. Then in the
neighborhood of γ there is a closed curve C, consisting of the part
of a trajectory of system (7.1) between two consecutive intersection
points with a transversal cut out by this part of the trajectory. Now
apply Green’s theorem to the annulus D between C and γ to obtain∮

γ
(µP, µQ) ·n ds+ ∮

C
(µP, µQ) ·n ds+ ∫∫

D
div (µP, µQ) dx dy, where n

is the unit outward normal to the region. This leads to a contradiction
since the first and last integrals vanish and the second does not.

In addition it can be shown that the characteristic exponent of
C1 = 0, given by h =

∮
C1=0

div (P,Q) dt satisfies h < 0. This shows
that C1 = 0 is hyperbolic and stable, see for instance [1].
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8. A septic system with 57 limit cycles. A number of papers
have appeared which focused on the estimation of a lower bound for the
number of limit cycles for polynomial systems of degree n, i.e., systems
of the following form:

(8.1)

dx

dt
=

n∑
i+j=0

aijx
iyj ,

dy

dt
=

n∑
i+j=0

bijx
iyj .

This is of course part of the sixteenth problem in the list posed by
Hilbert [9]. The Hilbert number H(n) is defined as the supremum of
the number of limit cycles in (8.1), as the coefficients in the righthand
sides vary.

The following estimations of H(n) are known:

−H(n) ≥ 1
2
(n2 + 5n− 20− 6 · (−1)n) : Otrokov [13]

−H(n) ≥ 1
2
(n2 + n− 2) : Il’yashenko [10]

−H(n) ≥ integer part of (1/4)(n+ 2)(n− 1) :
Basarab-Horwath and Lloyd [2]

−H(2k − 1) ≥ 4k−1(2k − (35/6)) + 3 · 2k − (5/3) :
Christopher and Lloyd [4].

It should be noted that the relative positions for the limit cycles for
the above estimations are all different.

Christopher and Lloyd [4] exploited the idea of using systems sym-
metric with respect to both x- and y-axis, i.e., systems of the following
form:

(8.2)

ẋ = y/2
n∑

i+j=0

aijx
2iy2j ,

ẏ = x/2
n∑

i+j=0

bijx
2iy2j .
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FIGURE 8.1. System (8.3).

Starting with a cubic system with three limit cycles, they obtain a septic
system which is symmetric with respect to both coordinate axes and
with three limit cycles in each quadrant. Next they perturb this system,
staying within the class of septic systems, such that from the closed
orbits surrounding the five centers a total of 13 limit cycles appear.
Hence, they obtain 25 limit cycles. By repeating this procedure they
obtain the lower bound mentioned above. We will now show that if we
start with a cubic system with 11 limit cycles, then the same method
can be applied. This will lead us to the following result.

Theorem 8.1. Let H(7) denote the maximum possible number of
limit cycles for septic systems. Then H(7) ≥ 57.

Proof. Li Jibin and Huang Qiming [12] gave the following example
of a cubic system with 11 limit cycles:

(8.3)
ẋ = y(1− y2) + µx(x2 − 3y2 − λ),
ẏ = −x(1− 2x2) + µy(x2 − 3y2 − λ),

0 < µ � 1, λ ≈ −4.8, see Figure 8.1.
The 11 limit cycles lie within the region |x| < k, |y| < k, where k > 1

is sufficiently large.
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Through the change of variables x = u2−k, y = v2−k, (dt/dτ ) = 2uv,
system (8.3) becomes

(8.4)

du

dτ
= v(v2 − k)(1− (v2 − k)2)

+ µv(u2 − k)((u2 − k)2 − 3(v2 − k)2 − λ)
dv

dτ
= −u(u2 − k)(1− 2(u2 − k)2)

+ µu(v2 − k)((u2 − k)2 − 3(v2 − k)2 − λ).

Since (du/dτ ) = vP (u2, v2), (dv/dτ ) = uQ(u2, v2), (8.4) is symmetric
with respect to both u = 0 and v = 0.

Therefore, all 11 limit cycles in (8.3) are mapped onto each quadrant
in (8.4) and hence (8.4) has 44 limit cycles. In addition, anti-saddles
situated at u = 0 or at v = 0 are centers. Therefore, (8.4) has centers
at (0, 0), (0,±√

k), (±√
k, 0).

Now we add a perturbation to (8.4); we will add the term µηvR1(u)
in (du/dτ ), where η � µ, such that the 44 limit cycles in (8.4) persist,
and R1(u) = a1u+ a3u

3 + u5:

(8.5)

du

dτ
= v(v2 − k)(1− (v2 − k)2)

+ µv(u2 − k)((u2 − k)2 − 3(v2 − k)2 − λ) + µηvR1(u),
dv

dτ
= −u(u2 − k)(1− 2(u2 − k)2)

+ µu(v2 − k)((u2 − k)2 − 3(v2 − k)2 − λ).

Note that (8.5) is still symmetric with respect to v = 0 because
du/dτ = vP̃ (u, v2), dv/dτ = Q̃(u, v2).

It is also important to note that for µ = 0 system (8.5) is Hamiltonian.
Therefore limit cycles bifurcating from the closed orbits in system (8.5)
with µ = 0 surrounding the center (0,

√
k) correspond with zeros of the

following Pontryagin-integral, see [16]:

I(h) =
∮

γh

v(u2 − k)((u2 − k)2 − 3(v2 − k)2 − λ) dv

+ η

∮
γh

v(a1u+ a3u
3 + u5) dv

= I1(h) + ηI2(h),
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FIGURE 8.2. System (8.6).

where γh denotes a closed orbit of the unperturbed system, correspond-
ing to a compact component of the Hamiltonian.

Notice that, due to symmetry I1(h) ≡ 0. By applying Stokes’
Theorem it follows that I2(h) =

∫∫
Vh
v(a1 + 3a3u

2 + 5u4) du dv, where
Vh is the region enclosed by γh. Notice that the closed orbits γh under
consideration do not intersect v = 0.

Therefore it is easy to see that it is possible to choose a1, a3,
0 < a1 � −a3 � 1, such that I2(h) has two simple zeros, see also
[4]. Then (8.5) has two limit cycles around (0,

√
k). By symmetry

there will also be two limit cycles around (0,−√
k). Therefore system

(8.5) has, at least, 44 + 4 = 48 limit cycles.

Now we add another perturbation to (8.5); we will add the term
µηρR2(v) in (dv/dτ ), where ρ � η such that the 48 limit cycles in
(8.5) persist, and R2(v) = b1v + b3v

3 + b5v
5 + v7:

(8.6)

du

dτ
= v(v2 − k)(1− (v2 − k)2)

+ µv(u2 − k)((u2 − k)2 − 3(v2 − k)2 − λ) + µηvR1(u),
dv

dτ
= −u(u2 − k)(1− 2(u2 − k)2)

+ µu(v2 − k)((u2 − k)2 − 3(v2 − k)2 − λ) + µηρR2(v).
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Limit cycles bifurcating from the closed orbits surrounding the centers
at v = 0 correspond with zeros of the following integral:

J(h) =
∮

γh

v(u2 − k)((u2 − k)2 − 3(v2 − k)2 − λ) dv

+ η

( ∮
γh

vR1(u) dv + ρ

∮
γh

R2(v) du
)

= J1(h) + ηJ2(h) + ηρJ3(h).

Notice that J1(h) ≡ 0, J2(h) ≡ 0, due to symmetry. Furthermore,
J3(h) = − ∫∫

Vh
(b1 + 3b3v2 + 5b5v4 + 7v6) du dv.

It is possible to choose b1, b3, b5, 0 < −b1 � b3 � −b5 � 1, such
that J3(h) has three zeros for each family of closed orbits surrounding
the centers on the u-axis. Then system (8.6) has, at least, 48 + 9 = 57
limit cycles, see Figure 8.2.
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