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ON THE LOCAL CAUCHY PROBLEM
FOR HAMILTON JACOBI EQUATIONS
WITH A FUNCTIONAL DEPENDENCE

ZDZIS�LAW KAMONT

ABSTRACT. The Cauchy problem for a nonlinear func-
tional differential equation is considered. A theorem on the
existence of classical solutions defined on the Haar pyramid is
proved. The method of differential inequalities is used.

Differential equations with a deviated argument and differ-
ential integral equations can be obtained by specializing given
operators.

1. Introduction. We will denote by C(X,Y ) the class of all
continuous functions from X into Y where X and Y are metric spaces.
We will use vectorial inequalities with the understanding that the
same inequalities hold between their corresponding components. For
y = (y1, . . . , yn) ∈ Rn, we put ‖y‖ = |y1| + · · · + |yn|. Let E be the
Haar pyramid

E = {(x, y) ∈ R1+n : x ∈ [0, a], −b+M x ≤ y ≤ b−M x},

where b, M ∈ Rn
+, R+ = [0,+∞), b = (b1, . . . , bn), M = (M1, . . . ,Mn)

and b−Ma > 0. Write

E0 = [−r0, 0]× [−b, b] where r0 ∈ R+, E∗ = E0 ∪ E
and

Ex = E∗ ∩ ([−r0, x]×Rn), Ẽx = E ∩ ([0, x]×Rn)

where 0 ≤ x ≤ a. Suppose that f : E × C(E∗, R) × Rn → R and
ϕ : E0 → R are given functions. Consider the Cauchy problem

∂xz(x, y) = f(x, y, z,∇yz(x, y)),(1)
z(x, y) = ϕ(x, y) on E0,(2)
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where ∇yz = (∂y1z, . . . , ∂yn
z). In the paper we consider classical

solutions of the above problem, i.e., functions u ∈ C(Ec, R), 0 < c ≤ a,
having partial derivatives ∂xu, ∇yu on Ẽc and satisfying equation (1)
on Ẽc and initial condition (2). We assume that the operator f satisfies
the following Volterra condition: for every point (x, y) ∈ E there is a
set E[x, y] such that

(i) E[x, y] ⊂ Ex,

(ii) if z, z̄ ∈ C(E∗, R) and z(t, s) = z̄(t, s) for (t, s) ∈ E[x, y], then
f(x, y, z, q) = f(x, y, z̄, q), q = (q1, . . . , qn) ∈ Rn.

Note that the Volterra condition means the following property of the
operator f : the value of f at the point (x, y, z, q) depends on (x, y, q)
and on the restriction of the function z to the set E[x, y] only.

Example 1.1. Consider the equation with a deviated argument

(3) ∂xz(x, y) = F (x, y, z(x, y), z(α(x, y), β(x, y)),∇yz(x, y))

where F : E × R2 × Rn → R, α : E → R, β : E → Rn and
(α(x, y), β(x, y)) ∈ E0 ∪ E for (x, y) ∈ E. We assume that −r0 ≤
α(x, y) ≤ x on E. Equation (1.3) can be derived from (1.1) by putting

f(x, y, z, q) = F (x, y, z(x, y), z(α(x, y), β(x, y)), q).

Then E[x, y] = {(x, y), (α(x, y), β(x, y))}.
For the above F consider the differential-integral equation

(4) ∂xz(x, y) = F (x, y, z(x, y),
∫ b−Mx

−b+Mx

z(x− r0, s) ds,∇yz(x, y)).

Then

E[x, y] = {(t, s) : t = x− r0, s ∈ [−b+Mx, b−Mx]} ∪ {(x, y)}.

Recently numerous papers were published concerning initial problems
for nonlinear functional differential equations or systems. The first
group of results ([21], [22]) is connected with global initial problems
for equations

(5) ∂xz(x, y) = G(x, y, z,∇yz(x, y))
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(or adequate hyperbolic systems) where the variable z represents the
functional argument. Existence results for (5) can be characterized
as follows: theorems have simple assumptions and their proofs are
very natural ([21], [22]). Unfortunately a small class of functional
differential equations is covered by this theory. The results given in
[21], [22] are not applicable to differential-integral equations of the
Volterra type and to equations with a deviated argument.

There are a lot of papers concerning initial value problems for equa-
tions

(6) ∂xz(x, y) = H(x, y, (V z)(x, y),∇yz(x, y))

where V is an operator of the Volterra type and H is defined on
finite-dimensional Euclidean space. The main assumptions in existence
theorems for (6) concern the operator V . They are formulated in the
form of norm inequalities in appropriate function spaces ([3], [10]).
These inequalities are linear, which is the main shortcoming of the
theory.

A new model of a functional dependence in partial differential equa-
tions is proposed in [8], [11].

The formulation is as follows.

Let B = [−r0, 0]× [−τ, τ ] where r0 ∈ R+ and τ = (τ1, . . . , τn) ∈ Rn
+.

For a function z : [−r0, a]×Rn → R and for a point (x, y) ∈ [0, a]×Rn

we define a function z(x,y) : B → R by

(7) z(x,y)(t, s) = z(x+ t, y + s), (t, s) ∈ B.
Suppose that F : [0, a]×Rn×C(B,R)×Rn → R and ψ : [−r0, 0]×Rn →
R are given functions. Consider the initial problem global with respect
to y

∂xz(x, y) = F (x, y, z(x,y),∇yz(x, y))(8)
z(x, y) = ψ(x, y) on [−r0, 0]×Rn.(9)

Several differential equations, differential equations with a deviated ar-
gument, differential-integral equations and functional differential equa-
tions with operators of Volterra type can be derived from (8) by spe-
cializing the operator F . The paper [11] contains a survey of results
for problems (8), (9).
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More detailed comparisons between different models of functional
dependence are presented in [11].

Generalized solutions of nonlinear systems in the Cinquini-Cibrario
sense ([5]) were considered in [14], [15]. Existence results for the
Cauchy problem were obtained in these papers by using iterative
methods. All these results are global with respect to y.

Initial-boundary value problems for differential-integral equations
were considered in [16]. The method of semi-groups of linear operators
is used. The functional dependence in equations considered in [16]
concerns the first variable only. The spatial variable in the unknown
function appears in a classical sense.

For further bibliography on hyperbolic functional differential prob-
lems, see the survey paper [11].

Now we present relations between local and global (with respect to
y) initial problems for differential and functional differential equations.

Let E be the Haar pyramid, and suppose that F̃ : E × R1+n → R
and ϕ̃ : [−b, b]→ R are given functions. Consider the Cauchy problem
without the functional dependence

(10)
∂xz(x, y) = F̃ (x, y, z(x, y),∇yz(x, y)),
z(0, y) = ϕ̃(y) for y ∈ [−b, b].

We now formulate the following assumptions on F̃ and ϕ̃.

Assumption H̃. Suppose that

1) the function F̃ of the variables (x, y, p, q) and its partial derivatives

∇yF̃ = (∂y1 F̃ , . . . , ∂yn
F̃ ), ∂pF̃ , ∇qF̃ = (∂q1F̃ , . . . , ∂qn

F̃ )

are continuous on E ×R1+n and

|∂qi
F̃ (x, y, p, q)| ≤Mi on E ×R1+n for 1 ≤ i ≤ n,

where the constants (M1, . . . ,Mn) appear in the definition of E,

2) the functions F̃ , ∇yF̃ , ∂pF̃ are bounded and ∇yF̃ , ∂pF̃ ,∇qF̃
satisfy the Lipschitz condition with respect to (y, p, q) on E ×R1+n,
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3) the function ϕ̃ together with its derivatives (∂y1 ϕ̃, . . . , ∂yn
ϕ̃) =

∇yϕ̃ are continuous on [−b, b] and ∇yϕ̃ satisfies the Lipschitz condition.

Lemma 1.2. If Assumption H̃ is satisfied, then exactly one solution
ũ exists of problem (10) on Ẽc for sufficiently small c ∈ (0, a]. The
solution ũ is of class C1 and ∇yũ satisfies the Lipschitz condition with
respect to y on Ẽc. Moreover, the solution ũ depends continuously on
given functions.

We only give the main ideas of the proof.

The proof of the existence of a solution of (10) is divided into two
steps.

(i) Assume additionally that F̃ and ϕ̃ are of class C2 on E×R1+n and
[−b, b], respectively. Consider the characteristic system corresponding
to (10)

y′(x) = −∇qF̃ (x, y(x), p(x), q(x)),

p′(x) = F̃ (x, y(x), p(x), q(x))−
n∑

i=1

qi(x)∂qi
F̃ (x, y(x), p(x), q(x)),

q′(x) = ∇yF̃ (x, y(x), p(x), q(x)) + q(x)∂pF̃ (x, y(x), p(x), q(x))

and its solutions ỹ(·, η), p̃(·, η), q̃(·, η), η ∈ [−b, b] satisfying the initial
conditions

y(0) = η, p(0) = ϕ̃(η), q(0) = ∇yϕ̃(η), η ∈ [−b, b].
Let us denote by

t̃(·, η) = [t̃ij(·, η)]i,j=1,... ,n

the characteristics of the second order corresponding to (10). They are
solutions of a system of ordinary differential equations and satisfy the
initial conditions

tij(0) = ∂yi
∂yj
ϕ̃(η), 1 ≤ i, j ≤ n, η ∈ [−b, b].

The righthand sides of the system are polynomials of the second order
with respect to tij . Details can be found in [17], [19].
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We next claim that the equation y = ỹ(x, η) can be solved with
respect to η. Let η = η̃(x, y) be this solution. Define ũ(x, y) =
p̃(x, η̃(x, y)). Then there is a c ∈ (0, a] such that
(a) ũ is of class C2 on Ẽc,

(b) ∇yũ(x, y) = q̃(x, η̃(x, y)), ∂yi
∂yj
ũ(x, y) = t̃ij(x, η̃(x, y)), 1 ≤ i,

j ≤ n on Ẽc,

(c) ũ is the solution of (10) on Ẽc,

(d) the functions q̃(·, η), t̃(·, η) are bounded.
(ii) Now we consider the original assumptions on F̃ and ϕ̃. Let

{F̃ (k)} and {ϕ̃(k)} be sequences of functions uniformly convergent to
F̃ and ϕ̃ and satisfying (i). Let us denote by {ũ(k)} the sequence
of solutions of corresponding initial problems. All these solutions are
given on Ẽc with c ∈ (0, a] sufficiently small and independent on k.
There exists a subsequence {ũ(ki)} and a function ũ such that
ũ = lim

i→∞
ũ(ki), ∂xũ = lim

i→∞
∂xũ

(ki), ∇yũ = lim
i→∞

∇yũ
(ki),

uniformly on Ẽc. This ũ satisfies all the conditions of the lemma.

Uniqueness and continuous dependence of the solution ũ on given
functions can be proved using classical theorems on differential inequal-
ities.

Thus we see that initial problems for nonlinear equations have the
following property: the proof of the existence of solutions of problem
(10) (or adequate hyperbolic systems) and the existence results for the
Cauchy problem which is global with respect to y ([17]) are based on
the same ideas.

The situation is completely different for equations (or systems) with
a functional dependence. Let us see why. We will consider equations
involving a generalized Hale operator.

It follows from (7) that z(x,y) : B → R is the restriction of the
function z to the set [x − r0, x] × [y − τ, y + τ ] and this restriction
is shifted to the set B. If τ �= 0, then there is an (x, y) ∈ E such that
([x− r0, x]× [y − τ, y + τ ]) �⊂ E0 ∪ E. Therefore, the formulation (8),
(9) is not suitable for the local Cauchy problem considered in the Haar
pyramid and, consequently, the results of papers [8], [14], [15] are not
applicable to problems (1), (2).
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Until now there have not been any results on the existence of classical
or generalized solutions to problems (1), (2). The aim of this paper
is to prove a theorem on the existence of classical solutions of the
problem. Uniqueness theorems with nonlinear estimates with respect
to the functional variable can be found in [1], [4], [9], [12].

The proof of the existence of a solution to problem (1), (2), is based
on the following idea. We construct the set Xc which is the closed
subset of the Banach space consisting of all functions z ∈ C(Ẽc, R),
0 < c ≤ a. For u ∈ Xc consider the initial problem

(11)
∂xz(x, y) = f(x, y, ũ,∇yz(x, y)),

z(0, y) = ϕ(0, y) for y ∈ [−b, b],

where ũ(x, y) = u(x, y) on Ẽc and ũ(x, y) = ϕ(x, y) on E0. Let ṽ(·;u)
denote the solution of (11). We formulate sufficient conditions for the
existence and uniqueness of the solution ṽ(·;u) of the above problem.
We consider the operator U defined on Xc as follows: Uu = ṽ(·;u). We
prove that, under suitable assumptions of f and ϕ, there is a 0 < c ≤ a
such that U : Xc → Xc and U has exactly one fixed point ū on Xc.
Let v̄ : Ec → R be a function given by v̄ = ū on Ẽc and v̄ = ϕ on E0.
This v̄ is the classical solution of (1), (2). We use the ideas introduced
in [19] for hyperbolic systems and generalized Cauchy problems.

Write Ω0 = E×Rn and suppose that G : Ω0 → R and ω : [−b, b]→ R
are given functions. Consider the nonlinear equation

(12) ∂xz(x, y) = G(x, y,∇yz(x, y))

with the initial condition

(13) z(0, y) = ω(y) for y ∈ [−b, b].

The above method of the proof of the existence result for (1), (2) is
based on the theorem on the existence of the solution of problem (12),
(13) and on the estimates of the partial derivatives of the solution and
the Lipschitz coefficients for the derivatives.

Now we state the auxiliary theorem.
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Theorem 1.3. Suppose that

(i) the function G of the variables (x, y, q) is continuous and bounded
on Ω0,

(ii) the derivatives ∇yG, ∇qG exist on Ω0 and ∇yG, ∇qG ∈
C(Ω0, R

n),

(iii) there are P, P0 ∈ R+ such that

‖∇yG(x, y, q)‖ ≤ P ,
‖∇yG(x, y, q)−∇yG(x, ȳ, q̄)‖ ≤ P0[‖y − ȳ‖+ ‖q − q̄‖],
‖∇qG(x, y, q)−∇qG(x, ȳ, q̄)‖ ≤ P0[‖y − ȳ‖+ ‖q − q̄‖],

and
|∂qi

G(x, y, q)| ≤Mi, i = 1, . . . , n,

on Ω0,

(iv) the function ω : [−b, b]→ R is of class C1 on Rn and

‖∇yω(y)‖ ≤ J, ‖∇yω(y)−∇yω(ȳ)‖ ≤ J‖y − ȳ‖ on [−b, b].

Under these assumptions the unique solution v : Ẽδ → R of problems
(12), (13) exists, where

δ = min
{
a,

1
P0(1 + J)

}
.

Moreover, the solution v satisfies the conditions

‖∇yv(x, y)−∇yv(x, ȳ)‖ ≤ Γ(x)‖y − ȳ‖,
‖∇yv(x, y)−∇yv(x̄, y)‖ ≤ [P + P ∗Γ(x)]|x− x̄|

and
‖∇yv(x, y)‖ ≤ J + Px

on Ẽδ where

Γ(x) =
P0(1 + J)x+ J
1− P0(1 + J)x

, P ∗ =
n∑

j=1

Mj .
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We only give the main ideas of the proof of the theorem.

(i) First we assume additionally that G and ω are of class C2 on
Ω0 and [−b, b] respectively. Then the assumptions on the Lipschitz
condition for ∇yG,∇qG and ∇yω mean that adequate derivatives of
the second order are bounded. Let us denote by

ỹ(·, η), p̃(·, η), q̃(·, ) t̃(·, η) = [t̃ij(·, η)]i,j=1,... ,n

the solution of the system of ordinary differential equations consisting
of the characteristic system

y′(x) = −∇qG(Q(x)),

p′(x) = G(Q(x))−
n∑

i=1

qi(x)∂qi
G(Q(x)),

q′(x) = ∇yG(Q(x))

where Q(x) = (x, y(x), p(x), q(x)) and the system

(14)

t′ij(x) =
n∑

k,r=1

∂qk
∂qr
G(Q(x))tki(x)trj(x) + ∂yi

∂yj
G(Q(x))

+
n∑

k=1

[∂qk
∂yi
G(Q(x))tkj(x) + ∂qk

∂yj
G(Q(x))tki(x)],

1 ≤ i, j ≤ n,
satisfying the initial conditions

y(0) = η, p(0) = ω(η), q(0) = ∇yω(η),
t(0) = [∂yi

∂yj
ω(η)]i,j=1,... ,n,

where η ∈ [−b, b]. It follows that the equation y = ỹ(x, η) has a unique
solution with respect to η : η = η̃(x, y) and η̃ is of class C1 on Ẽδ.
Write v(x, y) = p̃(x, η̃(x, y)), (x, y) ∈ Ẽδ. Then

∇yv(x, y) = q̃(x, η̃(x, y)),

[∂yi
∂yj
v(x, y)]i,j=1,... ,n = t̃(x, η̃(x, y)) on Ẽδ
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and v is the solution or problem (12), (13). Moreover, v is of class C2

on Ẽδ. Write

β(x, η) = max
1≤j≤n

n∑
k=1

|t̃kj(x, η)|.

It follows from (1.14) that β satisfies the differential inequality

D−β(x, η) ≤ P0[β(x, η) + 1]2 and β(0, η) ≤ J,

where D− is the lefthand lower Dini derivative with respect to x. Let
ω̃ denote the solution of the problem

ζ ′(x) = P0[ζ(x) + 1]2, ζ(0) = J.

Then β(x, η) ≤ ω̃(x). Since ω̃(x) = Γ(x) it follows that β(x, η) ≤ Γ(x)
and consequently

(15) ‖∇y∂yj
v(x, y)‖ ≤ Γ(x) on Ẽδ.

In a similar way we prove that

(16) ‖∇yv(x, y)‖ ≤ J + Px on Ẽδ.

It is easily seen that

‖∇y∂xv(x, y)‖ ≤ ‖∇yG(x,∇yv(x, y)‖

+
n∑

i,k=1

|∂qk
G(x, y,∇yv(x, y))∂yi

∂yk
v(x, y)|.

According to (15), we have

(17) ‖∇y∂xv(x, y)‖ ≤ P + P ∗Γ(x) on Ẽδ.

(ii) Now consider the original assumptions on G and ω. There are
sequences {G(k)} and {ω(k)} such that
(a) F (k) and ω(k) satisfy all the assumptions of Theorem 1.3.

(b) F (k) and ω(k) are of class C2 on Ω0 and [−b, b], respectively.
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(c) limk→∞G(k) = G uniformly on Ω0 and limk→∞ ω(k) = ω uni-
formly on [−b, b].
Let {v(k)} be the sequence of solutions of adequate differential prob-

lems. The functions v(k) are defined on Ẽδ and satisfy (15) (17). There
is a subsequence {v(ki)} and a function v such that

lim
k→∞

v(ki) = v, lim
k→∞

∂xv
(ki) = ∂xv, lim

k→∞
∇yv

(ki) = ∇yv

uniformly on Ẽδ. This v satisfies all the conditions of Theorem 1.3.

Lemma 1.4. Suppose that all the assumptions of Theorem 1.3 are
satisfied and

1) [G(0, y, q)| ≤ J on [−b, b]×Rn,

2) the derivative ∂xG exists on Ω0 and

|∂xG(x, y, q)| ≤ P0 on Ω0.

Then the solution v of problems (12), (13), satisfies the conditions

|∂xv(x, y)| ≤ J + Px
and

|∂xv(x, y)− ∂xv(x, ȳ)| ≤ [P + P ∗Γ(x)]‖y − ȳ‖,
|∂xv(x, y)− ∂xv(x̄, y)| ≤ [P + P ∗(P + P ∗Γ(x))]|x− x̄|

on Ẽδ.

We give comments on the proof of the lemma. Let us first consider
a reduced form of the lemma. Suppose that G and ω are of class C2.
Write u = ∂xv. Then

|∂xu(x, y)| ≤ P0 +
n∑

i=1

Mi|∂yi
u(x, y)| on Ẽδ

and |u(0, y)| ≤ J for y ∈ [−b, b]. It follows from a theorem on partial
differential inequalities on the Haar pyramid ([23, Theorem 73.1], see
also [13, Theorem 9.2.1]) that

(18) |∂xv(x, y)| ≤ J + Px on Ẽδ.
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It is easily seen from (1.12) that

(19) ‖∇y∂xv(x, y)‖ ≤ P + P ∗Γ(x)

and

(20) |∂x∂xv(x, y)| ≤ P + P ∗(P + P ∗Γ(x))

on Ẽδ.

We can now proceed analogously to step (ii) of the proof of Theorem
1.3. Details are omitted.

Remark 1.5. First order partial functional differential equations
find applications in different fields of knowledge. Differential-integral
systems have been proposed ([2]) as simple mathematical models
for the nonlinear phenomenon of harmonic generation of laser radia-
tion through piezoelectric crystals for nondispersive materials and of
Maxwell-Hopkinson type. Systems of differential equations containing
operators acting on an unknown density of populations in dependence
on their age, size, and DNA content, are considered in [18]. An equa-
tion with a deviated argument ([6]) describes a density of households
at time t, depending on their estates, in the theory of the distribution
of wealth. Another system of integral-differential equations appears in
mathematical biology in order to investigate an age-dependent epidemic
of a disease with vertical transmissions [7]. The paper [20] deals with
integral differential equations motivated by applications in the theory
of screening of granular bodies.

2. Function spaces. We will denote by ‖ ‖(x;0) the supremum norm
in the space C(Ex, R).

For any x ∈ [0, a] we consider the following subspaces of the space
C(Ex, R). Let C0.L(Ex, R) be the class of all z ∈ C(Ex, R) such that

[|z|](x;L) = sup
{ |z(t, s)− z(t̄, s̄)|
|t− t̄|+ ‖s− s̄‖ : (t, s), (t, s̄) ∈ Ex

}
.

We will use the symbol ‖ ‖(x;0.L) to denote the norm in the space
C0.L(Ex, R), and we put

‖z‖(x;0.L) = ‖z‖(x;0) + [|z|](x;L).
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Let us denote by C1(Ex, R) the class of all continuous functions z :
Ex → R such that the derivatives ∂xz, ∇yz exists on Ex and ∂xz ∈
C(Ex, R), ∇yz ∈ C(Ex, R

n). For z ∈ C1(Ex, R), we put

‖z‖(x;1) = ‖z‖(x;0) + ‖∂xz‖(x;0) + ‖∇yz‖(x;0),

where
‖∇yz‖(x;0) = max{‖∇yz(t, s)‖ : (t, s) ∈ Ex}.

Let C1.L(Ex, R) denote the class of all functions z ∈ C1(Ex, R) such
that ‖z‖(x;1.L) < +∞ where

‖z‖(x;1.L) = ‖z‖(x;1) + [|∂xz|](x;L) + [|∇yz|](x;L)

and

[|∇yz|](x;L) = sup
{‖∇yz(t, s)−∇yz(t̄, s̄)‖

|t− t̄|+ ‖s− s̄‖ : (t, s), (t̄, s̄) ∈ Ex

}
.

If x = 0, then C(Ex, R) is the space of all initial functions for
problems (1), (2). For simplicity of notation we use the symbols ‖ · ‖0,
‖ · ‖0.L, ‖ · ‖1, ‖ · ‖1,L to denote the norms in the spaces

C(E0, R), C0.L(E0, R), C1(E0, R), C1.L(E0, R),

respectively. The symbol ‖ · ‖0 will also denote the supremum norm in
the space C(E0, R

n).

Let us denote by CL(Ex, R) the set of all linear and continuous
operators defined on C(Ex, R) and taking values in R. The norm in
the space CL(Ex, R) will be denoted by ‖ · ‖CL;x.

We will prove that, under suitable assumptions on f and ϕ and for
sufficiently small c ∈ (0, a] there exists a solution z̄ of problems (1), (2)
such that z̄ ∈ C1.L(Ec, R).

3. Existence of classical solutions. We start with the formulation
of assumptions on f and ϕ. Write Ω = E × C(E∗, R)×Rn.
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Assumption H[f ]. Suppose that

(i) the function f : Ω → R is continuous and there exists a
nondecreasing function α : R+ → R+ such that

‖f(x, y, z, q)‖ ≤ α(‖z‖(x;0)) on Ω,

(ii) for each P = (x, y, w, q) ∈ E × C1(Ex, R) × Rn the following
derivatives exist

∂xf(P ), ∇yf(P ) = (∂y1f(P ), . . . , ∂yn
f(P )),

∇qf(P ) = (∂q1f(P ), . . . , ∂qn
f(P ))

and the functions ∂xf , ∇yf , ∇qf are continuous on E×C1(E∗, R)×Rn,

(iii) for each P ∈ E ×C1(Ex, R)×Rn the Frechet derivative ∂zf(P )
and ∂zf(P ) ∈ CL(Ex, R) exist,

(iv) there exist positive constants C0, C1, C such that for each
P ∈ E × C1(Ex, R)×Rn, we have

|∂xf(P )|, ‖∇yf(P )‖ ≤ C0 + C1‖z‖(x;1), ‖∂zf(P )||)CL;c ≤ C,

and
|∂qi

f(P )| ≤Mi for i = 1, . . . , n,

(v) there exists a nondecreasing function β : R+ → R+ such that
for

(x, y, q), (x, ȳ, q̄) ∈ E ×Rn, z ∈ C1.L(Ex, R), h ∈ C1(Ex, R)

we have

‖∇yf(x,y, z, q)−∇yf(x, ȳ, z + h, q̄‖
≤ β(‖z‖(x;1.L))[‖y − ȳ‖+ ‖h‖(x;1) + ‖q − q̄‖],

‖∇qf(x,y, z, q)−∇qf(x, ȳ, z + h, q̄)‖
≤ β(‖z‖(x;1.L))[‖y − ȳ‖+ ‖h‖(x;1) + ‖q − q̄‖]

and

‖∂zf(x,y, z, q)− ∂zf(x, ȳ, z + h, q̄)‖CL;x

≤ β(‖z‖x;1.L)[‖y − ȳ‖+ ‖h‖(x;1) + ‖q − q̄‖].
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Assumption H[ϕ]. Suppose that

(i) the function ϕ : E0 → R is of class C1 and ‖∂xϕ‖0 ≤ B1,
‖∇yϕ‖0 ≤ B1,

(ii) there is a B2 ∈ R+ such that [|∂xϕ|](0;L) ≤ B2, [|∇yϕ|](0;L) ≤ B2.

Assumption H[ϕ, f ]. If r0 > 0, then the consistency condition

∂xϕ(0, y) = f(0, y, ϕ,∇yϕ(0, y))

is satisfied for y ∈ [−b, b].

Remark 3.1. It is important in Assumption H[f ] that we have
assumed the local Lipschitz condition for the derivatives ∇yf , ∇qf ,
∂zf on some special function spaces.

Let us consider the simplest assumptions. Suppose that there is an
L such that

(21) ‖∇yf(x, y, z, q)−∇yf(x, ȳ, z + h, q̄)‖
≤ L[‖y − ȳ‖+ ‖h‖(x;0) + ‖q − q̄‖]

and that suitable inequalities for the derivatives ∇qf , ∂zf are satisfied.

Of course, our results are true under the above stronger assumptions.
Now we show that the formulation (v) of AssumptionH[f ] is important.
More precisely, we show that there is a class of nonlinear equations
satisfying (v) of Assumption H[f ] and not satisfying (21).

Example 3.2. Suppose that F : E × R1+n → R, α : E → R,
β : E → Rn are given functions, and consider the equation with a
deviated argument

(22) ∂xz(x, y) = F (x, y, z(α(x, y), β(x, y)),∇yz(x, y)).

Assume that the functions F, α, β are continuous and that

(i) there are the derivatives ∇yF , ∂pF , ∇qF , the functions ∇yF ,
∂pF , ∇qF are continuous, and there are L0, L̃ ∈ R+ such that

‖∇yF (P )‖, |∂pF (P )|, ‖∇qF (P )‖ ≤ L0
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for P = (x, y, p, q) ∈ E × R1+n and that these derivatives satisfy the
Lipschitz condition with respect to (y, p, q) with the constant L̃,

(ii) for (x, y) ∈ E we have

(α(x, y), β(x, y)) ∈ E0 ∪ E and α(x, y) ≤ x,

(iii) the derivatives ∇yα and ∇yβ exist as continuous functions, and
C̃, C ∈ R+ exist such that

‖∇yα(x, y)‖ ≤ C̃, ‖∇yβ(x, y)‖ ≤ C̃
where

∇yβ(x, y) = [∂yi
βj(x, y)]i,j=1,... ,n,

and the derivatives ∇yα, ∇yβ satisfy the Lipschitz condition with
respect to y with the constant C.

Put f(x, y, z, q) = F (x, y, z(α(x, y), β(x, y)), q). Then equation (1) is
equivalent to (22). We consider the function ∇yf only. It follows that,
for z ∈ C1(Ex, R), we have

∂yi
f(x, y, z,q) = ∂yi

F (Q) + ∂pF (Q)

·
[
∂xz(Q0)∂yi

α(x, y) +
n∑

j=1

∂yj
z(Q0)∂yj

z(Q0)∂yi
βj(x, y)

]

where Q = (x, y, z(α(x, y), β(x, y)), q) and Q0 = (α(x, y), β(x, y)).

For (x, y, q), (x, ȳ, q̄) ∈ E ×Rn and z ∈ C1.L(Ex, R), h ∈ C1(Ex, R),
we get

‖∇yf(x,y, z, q)−∇yf(x, ȳ, z + h, q̄)‖
≤ L̃[1 + C̃(‖∂xz‖(x;0) + ‖∇yz‖(x;0)]2‖y − ȳ‖
+ L̃[1 + C̃(‖∂xz‖(x;0) + ‖∇yz‖(x;0))](‖h‖(x;0) + ‖q − q̄‖)
+ L0[2C̃2([|∂xz|](x;L) + [|∇yz|](x;L))

+ C(‖∂xz‖(x;0) + ‖∇yz‖(x;0))]‖y − ȳ‖
+ L0C̃[‖∂xh‖(x;0) + ‖∇yh‖(x;0)].

It follows from the above considerations that condition (v) of Assump-
tion H[f ] is satisfied. We see at once that the function ∇yf does not
satisfy the global Lipschitz condition (21).
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Theorem 3.3. If Assumptions H[f ], H[ϕ], H[ϕ, f ] are satisfied,
then c ∈ (0, a] exists such that problem (1), (2) has exactly one classical
solution ū on Ec.

Proof. Let us denote by C(Ẽc, R;λ) where c ∈ (0, a], the Banach
space of all continuous functions from Ẽc into R with the norm

‖z‖[λ] = sup{‖z(x, y)‖ exp(−λx) : (x, y) ∈ E∗
c }

where λ > C. Let W be the set of all functions u : Ec → R such that

(i) u is of class C1,

(ii) u(x, y) = ϕ(x, y) on E0.

For u ∈W denote by u|Ẽc
the restriction of u to the set Ẽc. Let W ∗

denote the set of all functions u|Ẽc
where u ∈ W . Let X be the class

of all functions z belonging to W ∗ and satisfying the conditions

‖∇yz(x, y)‖ ≤ M̃, |∂xz(x, y)| ≤ M̃,(23)

‖∇yz(x, y)−∇yz(x̄, ȳ)‖ ≤ S0|x− x̄|+ (2B2 + 1)‖y − ȳ‖,
(24)

‖∂xz(x, y)− ∂xz(x̄, ȳ)‖ ≤ S1|x− x̄|+ S0‖y − ȳ‖,
(25)

on Ẽc, where

M̃ = 2B1 +
C0 + C1B0

C1a+ C + C1
,

S0 = CM̃ + 2P (B2+1), S1 = (P+CM̃)(P+1)+P 2(2B2+1)

and
P = C0 + C1(M̃a+B0 + 2M̃).

Let c denote the constant defined by

c = min
{
a,

1
2K(1 +B2)

,
1

2(C1a+ C + 2C1)

}
,

where

K = max{(M̃ + 1)β(S)[M̃ + 1 + S0 + 2B2 + 1], C(2B2 + 1)},
S = M̃a+B0 + 2M̃ + 2B2 + 1 + 2S0 + S1.
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The set X is a closed subset of the Banach space C(Ẽc, R;λ).

Let u be an arbitrary element of X. Consider the initial problem (1),
(2), where

G(x, y, q) = f(x, y, ũ, q) on Ω0

and

ω(y) = ϕ(0, y) on [−b, b](26)

and ũ(x, y) = u(x, y) on Ẽc, ũ(x, y) = ϕ(x, y) on E0. We will prove that
a unique solution z(·;u) of problem (1), (2), (26) exists on Ec, and this
solution satisfies (23) (25). We will use Theorem 1.3 and Lemma 1.4.

Since u ∈ X, then we have

‖ũ‖(x;1) ≤Ma+B0 + 2M̃, ‖ũ‖(x;1.L) ≤ S.

For the function G given by (26) we have

∂yj
G(x, y, q) = ∂yj

f(x, y, ũ, q) + ∂zf(x, y, ũ(x,y), q)(∂yj
ũ),

where i = 1, . . . , n, and

∂xG(x, y, q) = ∂xf(x, y, ũ, q) + ∂zf(x, y, ũ, q)(∂xũ),
∇qG(x, y, q) = ∇qf(x, y, ũ, q).

It follows from Assumption H[f ] that

|∂xG(x, y, q)|, ‖∇yG(x, y, q)‖ ≤ P + CM̃,
|∂qi

G(x, y, q)| ≤Mi, i = 1, . . . , n,

and

‖∇yG(x, y, q)−∇yG(x, ȳ, q̄)‖
≤ β(S)[(M̃+S0+2B2+1)‖y−ȳ‖+ ‖q−q̄‖] + C(2B2+1)‖y−ȳ‖
≤ K[‖y − ȳ‖+ ‖q − q̄‖].

Let

Γ̃(x) =
K(1 +B2)x+B2

1−K(1 +B2)x
.
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It follows from Theorem 1.3 and Lemma 1.4 that

(i) problem (1), (2) and (26) have a unique solution z(·;u) on Ẽc,

(ii) the solution satisfies the conditions:

(27)
‖∇yz(x, y;u)−∇yz(x̄, ȳ;u)‖

≤ [P + CM̃ + P Γ̃(x)]|x− x̄|+ Γ̃(x)‖y − ȳ‖.

(28)
|∂xz(x, y;u)− ∂xz(x̄, ȳ;u)| ≤ [(P+CM̃)(P+1) + P 2Γ̃(x)]|x−x̄|

+ [P+CM̃+P Γ̃(x)]‖y−ȳ‖

and

(29) |∂xz(x, y;u)|, ‖∇yz(x, y;u)‖ ≤ B1 + (P + CM̃)x

on Ẽc. Estimates (27), (28) and the condition Γ̃(c) = 2B2 + 1 imply

(30) ‖∇yz(x, y;u)−∇yz(x̄, ȳ;u)‖ ≤ S0|x−x̄|+ (2B2+1)‖y−ȳ‖

and

(31) |∂xz(x, y;u)− ∂xz(x̄, ȳ;u)| ≤ S1|x− x̄|+ S0‖y − ȳ‖.

For all x ∈ [0, c] we have

B1 + (P + CM̃)x ≤ B1 + (C0 + C1B0)c+ M̃ [C1a+ 2C1 + C]c ≤ M̃.

Then by (29) we get

(32) |∂xz(x, y;u)|, ‖∇yz(x, y;u)‖ ≤ M̃ on Ẽc.

Let U be the operator defined on X in the following way: for u ∈ X
we put

(Uu)(x, y) = z(x, y;u) on Ẽc.

It follows from (30) (32) that the function Uu satisfies (23) (25) and
therefore U : X → X.
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Now we prove that U is a contraction. Let u, v ∈ X and ṽ(x, y) =
v(x, y) on Ẽc, ṽ(x, y) = ϕ(x, y) on E0. It follows from Assumption
H[f ] that

|∂x[z(x, y;u)−z(x, y; v)]| ≤ C‖u−v‖[λ] exp(λx)

+
n∑

j=1

Mj |∂yj
[z(x, y;u)−z(x, y, v)]|

on Ẽc and
z(0, y;u)− z(0, y, v) = 0 on [−b, b].

By the comparison theorem for hyperbolic differential inequalities [13],
[23], we get

|z(x, y;u)− z(x, y, v)| ≤ C

λ
‖u− v‖[λ] exp(λx) on Ẽc,

and hence
‖Uu− Uv‖[λ] ≤ C

λ
‖u− v‖[λ].

Since C < λ, then by the Banach fixed point theorem, it follows that
there exists z̄ ∈ x such that z̄ = Uz̄. Let ū(x, y) = z̄(x, y) on Ẽc,
ū = ϕ(x, y) on E0. This ū is the solution of problem (1) and (2),
satisfying all the conditions of our theorem.

Remark 3.4. As particular cases of (1) and (2), we obtain the Cauchy
problem for equations with a retarded argument (3) and for differential-
integral equations (4). It is easy to see that Theorem 3.3 can be
extended on the following systems of functional differential equations

∂xzi(x, y) = fi(x, y, z,∇yzi(x, y)), i = 1, . . . , k,

with the initial condition z(x, y) = φ(x, y) on E0 where

f = (f1, . . . , fk) : E × C(E∗, Rk)×Rn −→ Rk, φ : E0 −→ Rk

and z = (z1, . . . , zk).
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