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THE STRUCTURE OF SYMMETRY GROUPS
OF ALMOST PERFECT ONE FACTORIZATIONS

DELLA DUNCAN AND EDWIN IHRIG

ABSTRACT. The concept of j-perfection of a one factor-
ization is introduced. A one factorization is perfect if and
only if it is 2-perfect. We call 3-perfect one factorizations
almost perfect one-factorizations (or APOFs). First we give
some general results concerning the automorphism groups of
j-perfect one factorizations, and then we classify all APOFs
which have more than one automorphism of order two with
fixed points. Several structure theorems for the automorphism
groups of APOFs are also given.

0. Introduction. Let Γ be an undirected simple connected graph
with vertex set V . A one factor (or perfect matching) of Γ is a subgraph
of Γ in which each vertex in V has degree one. A one factorization
F of Γ is a collection of one factors of Γ so that each edge of Γ
occurs in exactly one of the one factors in F . Associated with any
one factorization F is its group of automorphisms, Aut(F), which is
the collection of all the permutations of V which transforms any one
factor in F in to another one factor in F .
Given any finite group G, Cameron has shown there is a one factor-

ization of K2n (the complete graph on 2n vertices) which has G as its
automorphism group. This result is a consequence of an analogous re-
sult by Mendelson given for Steiner triple systems (see [7]). We provide
the details here in Section 4 for easy reference. This result means that
there are unlikely to be any strong structure results that apply to the
automorphism groups of a general one factorization.

However, in contrast to this situation, it has been discovered that
one factorizations with extra structure can have automorphism groups
with a very restricted form. An example of this are perfect one
factorizations. A perfect one factorization (POF) is a one factorization
in which the union of any two distinct one factors is connected. There
are a number of very restrictive theorems governing the nature of the
automorphism groups of POFs. See [8] for an overview. For example,
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any nonsolvable subgroup of an automorphism group of a POF must
have cardinality that divides |V |−2 evenly and can have at most three
elements of order 2 (see [3] and [4]). Also, one of its elements of order
two must be central. So, in any case, the radical of this group is
nontrivial. This means, for example, that no semi-simple group can
occur as the subgroup of the automorphism group of a perfect one
factorization.

Another illustrative result is the following: Hartman and Rosa [2]
showed that for each n, K2n has a one factorization with an automor-
phism group which acts transitively on the vertices. A POF can have
a vertex transitive group if and only if n is prime (see [5]). Moreover,
given any group, G, of odd order, one can construct a one factorization
on K2|G| which has an automorphism group that acts transitively on
the vertex set and has G as a subgroup (with G ⊕ Z2 acting simply
transitively on the vertex set). In contrast to this, a POF on K2n with
a vertex transitive automorphism group must have Aut(F) isomorphic
to [Z2p]Zk where Zk is a subgroup of the cyclic group Z∗

p, the group
of multiplicative units in Zp. In particular any subgroup G of Aut(F)
must be two step solvable, i.e., [G,G] must be abelian.

The natural question which arises is whether there is some way to
relax the perfect condition of a POF without losing all the structure
which is imposed by this condition. One can also ask whether there is
some way to preserve some of the structure while still looking at one
factorizations on graphs which are more general than K2n. The first
step is to try to identify a useful, but weaker, condition than the perfect
condition. It turns out that there is a series of conditions stretching
from the POF condition down to no extra condition at all. We call
this condition j-perfect. A one factorization is called j-perfect if the
union of any j distinct one factors is connected. A POF is 2-perfect.
Any one factorization is |V |/2-perfect. j-perfection describes a simple
graph theoretical property of the one factorization which makes itself
felt in the structure of the automorphism group. The main purpose
of this paper is to initiate the study of how this property affects the
structure of Aut(F).
There is another property which gives direct control over the structure

of the automorphism group in a more direct way. Its disadvantage is
that, unlike j-perfection, it does not appear to have a simple graph
theoretical interpretation. However, we are able to show that j-
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perfection gives information about this property, so it serves the role
of being an intermediate property in the analysis of the structure of
Aut(F). We call this property j-irreducibility, and it relies on the
concept of subspace introduced by Cameron [1]. Let S be a subset
of the vertex set. We call S a subspace if any one factor that has a
single edge connecting two vertices of S has all its edges connecting
either two vertices in S or two vertices in V − S. We call a one
factorization j-irreducible if any subspace with more than j vertices
must be the whole vertex set. One of the things that makes this a useful
concept is that the set of fixed points of an automorphism is a subspace.
Thus j-irreducibility gives control over the fixed point structure of the
automorphism group. As with j-perfection, we have a spectrum of
conditions. Any POF on K2n is 2-irreducible, and, in fact, a j-perfect
one factorization on K2n is j-irreducible. Every one factorization
is n-irreducible where n = |V |/2, and the relationship between j-
perfection and j-irreducibility is that a j-perfect one factorization is
(j + |V | − |F| − 1)-irreducible. See Proposition 1.1.

In Section 1 we will explore some of the basic relationships between
j-perfection, j-irreducibility and the cycle structure of the elements of
Aut(F). We also explore some basic properties of automorphisms that
fix every one factor of F . Knowledge of these automorphisms enables
one to gain information by contrasting the action of the automorphism
group on the vertices with its action on the one factors.

In Section 2 we study some special automorphisms that are crucial to
the understanding of Aut(F). We call these automorphisms modified
one factor symmetries. They are automorphisms of order two with
exactly two fixed points. The key idea is that if you connect an
edge between the fixed points, and connect every other vertex to its
image under the automorphism, then you will obtain a one factor of
F . It is then possible to construct parts of F using knowledge about
Aut(F) alone. We finish this section by giving some applications of
these basic results. We specialize to 3-perfect one factorizations, which
we call almost perfect one factorizations, or APOFs. Theorem 2.3
gives a detailed description of APOFs with a one factor transitive
Aut(F) which has a modified one factor symmetry. This result does
not assume the graph is K2n but only assumes it satisfies a condition
called involution completeness. It is interesting that under these
circumstances that the APOF is forced to be a POF, and, in fact,
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very specific POFs on very specific graphs. Also in this section we are
able to give some solvability results (Corollary 2.6 and Theorem 2.4).

Section 3 concerns another type of automorphism of order two. These
automorphisms have no fixed points, and they satisfy the property that
if every vertex is connected to its image by an edge, the resulting one
factor is in F . These are called one factor symmetries. Section 4
gives the details of Cameron’s result mentioned in the beginning of this
introduction.

1. Preliminaries. We start with some notation, definitions and
basic results that will be needed to prove the results in the later
sections. Let n ≥ 3 be an integer.

1.1. Notation. (a) For any set S, |S| is the cardinality of S.

(b) Γ = (V,E) denotes an undirected simple connected graph with
vertex set V and edge set E. |V | will always be even and Γ regular,
and we assume Γ has a one factorization. Define n and r as follows

|V | = 2n

and

deg (Γ) = r.

(c) If X is a set, then SX = {f : X → X | f is one to one and onto}.
We use 1̂ to denote the identity function in SX .

(d) If T ⊂ SV , then 〈T 〉 denotes the subgroup generated by T . If
σ1, . . . , σn are elements of SV , then 〈σ1, . . . , σn〉 denotes the subgroup
generated by these elements.

(e) Let T ⊂ SV . Then FT = {x ∈ V | τ (x) = x ∀ τ ∈ T}. If τ ∈ SV ,
let Fτ = F{τ}.

(f) Let G ⊂ SV where G is a subgroup. Then Gv = {g ∈ G|g(v) = v}.
(g) Let G ⊂ SV . If g ∈ G then o(g) is the order of g.

Next we need the definitions of one factor along with j-perfect and
j-irreducible one factorizations.
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Definition 1.2. (a) σ ∈ SV is called a one factor of Γ if o(σ) = 2,
Fσ = 0 and {v, σ(v)} is an edge of Γ for each v ∈ V .

(b) F is called a one factorization of Γ if F ⊂ SV and

(i) Each element of F is a one factor of Γ.

(ii) If σ, σ′ ∈ F and σ �= σ′ then Fσσ′ = 0, i.e., two distinct one
factors have no edges in common.

(iii) ∪F = E where ∪F = {{v, σ(v)} : v ∈ V and σ ∈ F}.
Thus every edge of Γ is in some one factor.

(c) A one factorization F of Γ is called j-perfect if, whenever S ⊂ F
with |S| ≥ j, then 〈S〉 acts transitively on V . This is equivalent to
saying the union of any j distinct one factors is connected.

(d) F is called perfect (POF) if F is 2-perfect. The union of any two
distinct one factors forms a Hamiltonian circuit. F is called almost
perfect (an APOF) if F is 3-perfect.

(e) Let F be a one factorization of Γ. Let W ⊂ V . W is called a
subspace of V if whenever σ ∈ F and σ(W )∩W �= ∅ then σ(W ) = W .
See [1, p. 5].

(f) F is j-irreducible if whenever W is a subspace of V with |W | > j
then W = V .

The following result relates reducibility to j-perfect.

Proposition 1.3. (a) If F is j-perfect on Γ with deg (Γ) = r, then it
is (j+2n-1-r)-irreducible, and if j ≡ r mod 2, then it is (j+2n−2−r)
irreducible.

(b) Any one factorization is both n-perfect and n-irreducible.

(c) No one factorization is either 1-perfect or 1-irreducible.

(d) If χ(Γ) denotes the vertex chromatic number of Γ and F is j-
irreducible, then j ≥ 2n/χ(Γ).

Proof. We start with (a). Let W be a subspace with |W | >
j + 2n − 1 − r. We will show this forces W = V . Let x0 ∈ W ,
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and let N = {x ∈ V : {x0, x} is an edge of Γ}. Then |N | = r so

|N ∩W | = |N |+ |W | − |N ∪W | > j − 1.

Let x1, . . . , xj be distinct vertices in N ∩ W . Let σi, i = 1, . . . , j
be one factors in F so that σi(x0) = xi. These one factors exist since
xi ∈ N . Since W is a subspace, we have σi(W ) = W for each i. Let
G = 〈σ1, . . . , σj〉. We have GW = W . Since F is j-perfect, G acts
transitively on V so W = V .

To finish (a) consider when j ≡ r mod 2. Let k = (j + 2n − 1 − r)
which is odd. We have shown F is k-irreducible. Now let W be a
subspace with |W | > k − 1. Since no one factorization is 1-perfect,
with |V | > 2, we have j ≥ 2. Hence

|W |+ r ≥ k + r = j + 2n− 1 ≥ 2n+ 1.

Let x ∈ W , and let N = {y | {x, y} is an edge of Γ}. Then the above
equation shows N ∩W �= ∅. Let y ∈ W ∩N . Since y ∈ N there is a one
factor σ so that σ(x) = y. y ∈ W and W is a subspace so σ(W ) = W .
Hence |W | is even. Now |W | > k − 1 which is even. Thus |W | > k,
and W = V because F is k-irreducible.

Next we consider (b). Note that [1, p. 25, Theorem 2.2] shows any
one factorization on K2n is n-irreducible. The following proof for both
n-perfect and n-irreducible is similar to the one presented there. We
first show n-perfect. Let S be a collection of n one factors. Then
〈S〉{v | for any v ∈ V } has at least n + 1 vertices. Thus 〈S〉 can
have only one orbit since |V | = 2n and distinct orbits have empty
intersections.

To show F is n-irreducible, assume that W is a subspace with
|W | > n. Let σ ∈ F . W and σ(W ) must intersect since their
cardinalities are larger than n. Hence σ(W ) = W . This is true for
all σ ∈ F ; therefore 〈F〉W = W . But 〈F〉 acts transitively on V since
the union of all the one factors is the entire graph which is assumed to
be connected.

To show (c), observe that since no one factor is connected when n > 1,
and every subset W on V with two elements is a subspace. Thus, F
cannot be either 1-perfect or 1-irreducible.
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We finish with (d). Vertex color V with χ(Γ) colors so that no two
adjacent vertices have the same color. Let Si denote the collection of
vertices with color i. For at least one i we must have |Si| ≥ 2n/χ(Γ).
Si ∩ σ(Si) = ∅ for all σ ∈ F . Thus Si is a subspace for all i. So either
j ≥ |Si| or Si = V . If Si = V then χ(Γ) = 1 which is not possible since
Γ has an edge.

Corollary 1.4. (a) If Γ is K2n, then any j-perfect F is j-irreducible.

(b) An APOF on K2n is 2-irreducible.

Proof. To show (a) use Proposition 1.3(a) with r = 2n− 1.

In (b) let F be an APOF on K2n. Then F is 3-perfect and r = 2n−1
so 3 ≡ 2n − 1 mod 2. Therefore, by Proposition 1.3(b) we have F is
2-irreducible.

The following example illustrates that even perfect one factorizations
need not be n− 1 irreducible if the graph is not K2n.

Example. Let Γ be the cycle on 2n vertices; that is, let V = Z2n

and E = {{x, x + 1} : x ∈ Z2n}. Then the set of even vertices W is a
subspace of V for any one factorization of Γ since σ(W ) ∩W is empty
for any one factor.

Definition 1.5. Let F be a one factorization of Γ.

(a) Aut(F) = {τ ∈ SV | τ−1στ ∈ F ∀ σ ∈ F}.
(b) ι : Aut(F) → SF is defined by

ι(τ )(σ) = τ−1στ

where τ ∈ Aut(F) and σ ∈ F .

The structure of ker(ι) is of fundamental importance in the study of
the symmetries of one factorizations. Cameron calls elements of ker(ι)
strict automorphisms [1, p. 11] and shows that ker(ι) is isomorphic to
Zk

2 for some k when Γ = K2n (see [1, p. 11, Theorem 1.4]). In [1] it
is also shown that ker ι is trivial for POFs of K2n. The situation for



536 D. DUNCAN AND E. IHRIG

a general graph is more complicated. For example, ker ι = Dn for the
unique POF on the 2n cycle. The following result can be used for more
general graphs.

Theorem 1.6. Let K = ker(ι).

(a) Every nonidentity automorphism in K is fixed-point free.

(b) If τ ∈ K and o(τ ) is odd, then o(τ ) ≤ 2n/χ(Γ) where χ(Γ) is the
chromatic number of Γ.

(c) Let F be j-irreducible with j < n.

(i) If τ ∈ K, then o(τ ) ≤ j.

(ii) If K does not act transitively on V , then |K| ≤ j.

(iii) If K ′ is a proper subgroup of K, then |K ′| ≤ j.

(iv) If K is nilpotent, then |K| ≤ j.

(d) If F is 2-irreducible and K �= {1̂}, then n must be odd, deg (Γ)
must be n or n− 1, and K � Z2.

Proof. Parts (a) and (b) are proved for K2n in [1, p. 10, Theorem
1.3(i)]. Consider (a) in the more general case. Let τ ∈ K and τ (x) = x.
Since τ−1στ = σ for all σ in F we have that τ commutes with every
element of 〈F〉. Since Γ is connected 〈F〉 acts transitively on V .
So for any y ∈ V there exists g ∈ 〈F〉 such that gx = y. Thus
τ (y) = τ (gx) = gτ (x) = gx = y which implies τ = 1̂.

Next assume τ ∈ K with o(τ ) odd. Since K consists of fixed point
free automorphisms, each orbit of 〈τ 〉 has cardinality o(τ ). Thus we
have 2n/o(τ ) orbits. We claim no edge in Γ connects two vertices in
the same 〈τ 〉 orbit. Suppose we have an edge from x to y where x and
y are in the same orbit. Let σ be the one factor such that σ(x) = y. x
and y are in the same 〈τ 〉 orbit so τk(x) = y. Then

τ2k(x) = τk(y)
= τk(σ(x))
= στk(x)
= σ(y)
= x.
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Therefore τ2k has x as a fixed point. Hence τ2k = 1̂. Note that
τk �= 1̂ since τk(x) = y and x �= y. So τk has order two. But o(τ )
is odd which forces o(τ2k) to be odd which is a contradiction. Define
a vertex coloring of Γ with 2n/o(τ ) colors by using the same color for
all vertices in any one orbit of 〈τ 〉, but using different colors for each
orbit. Since no two vertices within an orbit are connected by an edge,
this gives a vertex coloring of Γ, and χ(Γ) ≤ 2n/o(τ ) completing (b).

We now show (c) starting with parts (ii) and (iii). Let K ′ be any
subgroup of K, not necessarily proper. Let W be a K ′ orbit. We claim
that W is a subspace. By (a) we have |K ′| = |W |. Let σ ∈ F and
x ∈ W be such that σ(x) ∈ W . Now let k ∈ K ′. The σ(kx) = kσ(x),
therefore σ(kx) ∈ W for all k ∈ K ′. But W is the K ′ orbit of x so
σ(W ) = W . Hence if |K ′| > j, then |K ′| = 2n. Both (ii) and (iii)
are clear since |K ′| = 2n implies K ′ acts transitively on V . No proper
subgroup K ′ of K can act transitively on V since K has trivial isotropy
subgroup so |K ′| < |K| ≤ |V |.
Next consider (iv). We can assume |K| = 2n since if |K| < 2n then

by (ii) |K| ≤ j. Let G be the Sylow 2-subgroup of K and H the
subgroup of index 2 in G. Since every Sylow subgroup of a nilpotent
group is normal, let K ′ be the product of H with all of the other Sylow
p-subgroups of K where p is an odd prime. K ′ is a subgroup of index
2 in K. By (iii) n = |K ′| ≤ j which is a contradiction completing (iv).
For (i) let τ ∈ K. If 〈τ 〉 is a proper subgroup of K, then (iii) implies
o(τ ) = |〈τ 〉| ≤ j. If 〈τ 〉 = K, then K is nilpotent and (iv) may be
applied.

We now consider (d). First we use (c) to show K � Z2. From (c)(i)
we know that every element of K must have order 2 or less. So K is an
elementary abelian 2-group and therefore nilpotent. Then by (c) (iv)
we have K � Z2. Now let τ �= 1̂ be an element of K. Then o(τ ) = 2.
We will show that τ has at most one edge in common with any one
factor σ ∈ F . Suppose not. Then there are vertices x and y with
σ(x) = τ (x), σ(y) = τ (y) and |W | = 4 where

W = {x, τ(x), y, τ (y)}.

We claim W is a subspace which will contradict the 2-irreducibility of
Γ. Let σ′ ∈ F so σ′(W ) ∩ W = W ′ �= ∅. τ leaves W invariant and
τ commutes with σ′, so τ leaves W ′ invariant. σ′ leaves W ′ invariant
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since σ′ has order two. Thus 〈τ, σ′〉 leaves W ′ invariant. We may
assume that |〈τ, σ′〉| = 4 for if not then τ = σ′ and clearly σ′(W ) = W .

Neither τ nor σ′ have fixed points. We claim that τσ′ has no fixed
points in W . If z ∈ W and τσ′(z) = z then σ′(z) = τ (z) but σ = τ
on W and this contradicts σ �= σ′. Therefore, 〈τ, σ′〉 has a trivial
isotropy subgroup when it acts onW . Thus 4 divides |W ′| which shows
W = W ′.

Next we show that all of the edges of τ , with one possible exception,
must be edges of Γ. Let {x, τ(x)} and {y, τ (y)} be distinct edges on τ
which are not in Γ. Let W = {x, y, τ(x), τ (y)}. Let σ ∈ F and a ∈ W
be such that σ(a) ∈ W . Again, let

W ′ = {a, σ(a), τ (a), τσ(a)}.
We have W ′ ⊂ W and W ′ is invariant under σ. Either |W ′| = 4 in
which case σ(W ) = W and W is a subspace or |W ′| = 2. In the
latter case as before we find τ (a) = σ(a) which shows τ|W has the edge
{a, σ(a)}. But τ has only two edges {x, τ(x)} and {y, τ (y)} in V neither
of which are edges of Γ by assumption. Thus |W ′| = 2 is not possible.

We can now show n is odd. Assume n is even. By the above, τ has
at least n − 1 edges from Γ. Let σ be a one factor containing one of
these edges. Since τ commutes with each one factor in F it permutes
the edges of σ under conjugation. τ fixes an edge of σ if and only if τ
shares that edge in common with σ. If n is even, then τ permutes an
even number of edges. Thus τ must fix an even number of edges and
must therefore have an even number of edges in common with the one
factor. But τ can have at most one edge in common with σ, giving
a contradiction. Since n is odd each one factor has an odd number of
edges. This means it must share exactly one edge with τ . τ has n edges
so there are either n or n− 1 one factors in Γ. Hence deg (Γ) is either
n or n − 1 depending on whether all the edges of τ are edges in Γ or
not.

Parts (a) and (b) in the following are generalizations of [6, Theorem
2.1].

Theorem 1.7. Let F be j-irreducible. Let τ ∈ Aut(F).
(a) If τ has at least j + 1 fixed points, then τ = 1̂.
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(b) If τ has a fixed point and τ commutes with at least j one factors
then τ = 1̂.

(c) |Aut(F)| divides 2n(gcd [(2n−1)(2n−2) · · · (2n−j), r(r−1) · · · (r−
j − 1)] where |V | = 2n and deg (Γ) = r.

Proof. The set of fixed points of τ form a subspace of V . See [1,
p. 64, Theorem 4.1]. This finishes (a).

Next consider (b). If τ commutes with σ and fixes x, then τ fixes
σ(x). Hence if τ commutes with j one factors σ1, . . . , σj then τ fixes
the j + 1 points

{x, σ1(x), . . . , σj(x)}.
By (a) τ = 1̂.

To prove (c) we first show that |Aut(F)| divides 2n(2n−1) · · · (2n−j).
Let

S = {(x0, . . . , xj) | xi are distinct elements of V }.
We have |S| = 2n(2n − 1) · · · (2n − j). Aut(F) acts on S by
τ (x0, . . . , xj) = (τ (x0), . . . , τ(xj)) for all τ in Aut(F). All of the or-
bits of Aut(F) have the same cardinality since the stability subgroup of
Aut(F) is trivial by (a). Aut(F) also divides 2n(r)(r−1) · · · (r− j+1)
since Aut(F) acts on

S′ = {(x, σ1, . . . , σj) | x ∈ V and σi distinct elements of F}
|S′| = 2nr(r − 1) · · · (r − j + 1)

and the stability subgroup of Aut(F) acting on S′ is trivial by (b).

The following result is a generalization of 3.4 in [3] which used
Γ = K2n.

Corollary 1.8. Let F be a 2-irreducible one factorization. Let
τ ∈ Aut(F).
(a) If |Fτ | = 2, then there is an integer k such that

(i) τ is a product of disjoint k cycles where k divides 2n− 2.
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(ii) ι(τ ) is a product of disjoint k cycles. Moreover, k divides r if
there is no edge connecting the fixed points of τ , and k divides r − 1 if
there is an edge connecting the fixed points of τ .

(b) If |Fτ | = 1, then there is an integer k so that

(i) τ is a product of disjoint k cycles where k divides 2n− 1.

(ii) ι(τ ) is a product of disjoint k cycles where k divides r. Hence
o(τ ) divides gcd (2n− 1, r).

Proof. We start with (a)(i). Let k be the length of the shortest cycle
in the disjoint cycle decomposition of τ . We will show that every cycle
has length k. Let i be the length of another cycle. Since τk has at least
k + 2 fixed points, by Theorem 1.2, τk = 1̂. Thus i divides k since k
was the smallest cycle length i = k. Since τ has exactly 2 fixed points,
we have 2n − 2 = kN where N is the number of disjoint cycles of τ .
Hence, k divides 2n− 2.

The proof of (a)(ii) is similar. Let m be the smallest cycle length
on ι(τ ). ι(τ )m has at least 2 fixed points, and τ has a fixed point.
Therefore ι(τ )m must be the identity, and the length of any other cycle
must dividem. Since τ has a fixed point, we have o(τ ) = m by Theorem
1.1(a), so m = k. Next observe that r − |Fi(τ)| = kN where N is the
number of disjoint cycles of ι(τ ). If σ ∈ Fι(τ), then τσ = στ so σ
leaves the fixed points of τ invariant. Hence, no such σ exists if there
is no edge connecting the fixed points of τ . Finally, consider the case
when there is an edge connecting the fixed points of τ ; then there is a
σ containing this edge. τστ also contains this edge so τστ = σ. Thus,
σ ∈ Fι(τ) and |Fι(τ)| = 1 as desired.

The only difference in the proof of (b) is that Fι(τ) = ∅. If σ existed
such that στ = τσ and τ (x) = x, then τ (σ(x)) = σ(τ (x)) = σ(x) and
τ would have two fixed points.

2. Modified one factor symmetries.

Definition 2.1. (a) τ is called a modified one factor symmetry of F
if τ ∈ Aut(F), o(τ ) = 2 and |Fτ | = 2.

(b) Let τ be a modified one factor symmetry of some F . Define στ
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as follows:
στ = (i, j)τ

where Fτ = {i, j}.

Definition 2.2. A graph Γ is called involution complete with respect
to F if for each τ ∈ Aut(F) with o(τ ) = 2 and |Fτ | = 2 and for each
x ∈ V with τ (x) �= x we have {x, τ(x)} is an edge of Γ.

Clearly K2n is involution complete with respect to any F . Below we
give a class of graphs which also satisfy this property.

Example. Let Γ be any graph (which need not be connected).
Suppose Γ contains two disjoint copies of Kn as a subgraph and
r < 3n/2 − 1. Then Γ is involution complete with respect to any
F .
To see this, let V = V1 ∪ V2 where the induced subgraph on Vi is

isomorphic to Kn for i = 1 and 2. Let τ ∈ Aut(F) with Fτ �= ∅. Any
automorphism of a one factorization of Γ must be an automorphism of
Γ, and τ ∈ Aut(Γ), together with Fτ �= ∅, will be the only properties
of τ we will use here. We will show τ (Vi) = Vi. Let x ∈ Fτ . Assume
without loss of generality that x ∈ V1. We have

|τ (V1) ∩ V2|+ n− 1 ≤ deg (x) < 3n/2− 1.

Hence |τ (V1)∩V2| < n/2 giving |τ (V1)∩V1| > n/2. Assume τ (V1)∩V2 �=
∅. Let y ∈ τ (V1)∩V2. Now y has every vertex in V2 as a neighbor and
also every vertex in τ (V1) as a neighbor since τ is a graph isomorphism.
Hence

3n/2− 1 > deg(y) ≥ (|V2 − {y}) ∪ (τ (V1) ∩ V1)| > n− 1 + n/2

which is a contradiction. Hence τ (V1) ∩ V2 = ∅ so τ (V1) = V1 which
implies τ (V2) = V2 as well.

The following result illustrates the usefulness of the property of
involution completeness.

Theorem 2.3. Let Γ be involution complete with respect to F , a one
factorization of Γ. Let τ ∈ Aut(F) be a modified one factor symmetry.
Then στ ∈ F .
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Proof. When n = 1 there is nothing to prove so let n ≥ 2 and x ∈ V
so that τ (x) �= x. There exists σ ∈ F such that σ(x) = τ (x) since
{x, τ(x)} is an edge of Γ. We will show σ = στ . First consider y ∈ V
such that τ (y) �= y. Then στ (y) = τ (y). We will show σ(y) = τ (y). We
know {y, τ (y)} is an edge. Hence there exists σ′ such that σ′(y) = τ (y).
We have

τσ′τ (y) = τσ′σ′(y) = τ (y) = σ′(y).

Therefore τσ′τ = σ′. Thus σ′ must leave the fixed point set of τ
invariant. Let Fτ = {i, j}. Then σ′(i) = j. Using the same argument
with y replaced by x we may also show σ(i) = j. Hence σ′(i) = σ(i).
Since σ and σ′ are one factors σ = σ′. Thus σ(y) = τ (y) = στ (y).
If y is a fixed point of τ then y is either i or j. Assume without loss
of generality y = i then σ(y) = σ(i) = j = (i, j)τ (i) = (i, j)τ (y). So
σ(y) = στ (y).

Corollary 2.4. Let Γ be involution complete with respect to F and
n > 4. Let τ and τ ′ be modified one factor symmetries of F .

(a) If στ = στ ′ then τ = τ ′.

(b) If Fτ = Fτ ′ then τ = τ ′.

(c) If ττ ′ = τ ′τ , then τ = τ ′.

Proof. Since στ = στ ′ then τ and τ ′ have at least n − 2 edges in
common. So ττ ′ has at least 2n − 4 > n fixed points since n > 4. So
ττ ′ is the identity because every one factorization is n-irreducible.

(b) follows from (a) since if Fτ = Fτ ′ then στ and στ ′ have an edge
in common so στ = στ ′ .

Next consider (c). Let Fτ = {a, b}. Then
τ ′σττ

′ = τ ′(a, b)ττ ′

= τ ′(a, b)τ ′τ
= [τ ′(a, b)τ ′](a, b)στ .

Thus (τ ′σττ
′)στ is a product of two 2 cycles. Since there are more than

4 vertices τ ′σττ
′στ must have a fixed point. Hence τ ′σττ

′ and στ have
an edge in common and τ ′σττ

′ = στ . Thus στ leaves the fixed points
of τ ′ invariant. Hence στ has an edge in common with στ ′ . Therefore
στ = στ ′ and (a) gives the result.
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Theorem 2.5. Let Γ be involution complete with respect to an
APOF F . Let n > 4. Let τ and τ ′ be two distinct modified one factor
symmetries. Then στ ∪ στ ′ is Hamiltonian.

Proof. Let Fτ = {a, b} and Fτ ′ = {a′, b′}. Let G = span {στ , στ ′}.
Then

G = span {(a, b)τ, (a′, b′)τ ′}.
This group has the same orbits in V as

G′ = span {(a, b), (a′, b′), τ, τ ′}.

G′ contains two distinct one factors στ and στ ′ . We will show it contains
a third one factor. In this case G′ and hence G will act transitively on
V , and στ ∪ στ ′ will be Hamiltonian. To find the third one factor note
〈τ, τ ′〉 � Dk where k = o(ττ ′), and Dk contains k elements of order
two which are either conjugate to τ or τ ′.

First suppose k ≥ 3; then 〈τ, τ ′〉, and hence G′ contains at least three
modified one factor symmetries. There exists τ̃ such that Fτ �= Fτ ′ �=
Fτ̃ . Suppose Fτ̃ = {i, j}. Then there exists g ∈ 〈τ, τ ′〉 such that

g(i, j)g−1 = (a, b)

or

g(i, j)g−1 = (a′, b′),

which implies (i, j) ∈ G′; therefore (i, j)τ̃ = στ̃ ∈ G′. HenceG′ contains
three one factors and the case where k ≥ 3 is finished.

When k = 2 we have ττ ′ττ ′ = 1̂ so ττ ′ = τ ′τ and the result follows
from Corollary 2.4(c).

Corollary 2.6. Let F be an APOF of K2n. Let τ and τ ′ be two
distinct modified one factor symmetries. Then στ ∪στ ′ is Hamiltonian.

Corollary 2.7. Let Γ be involution complete with respect to an
APOF F . Let n > 4. Let Aut(F) act transitively on the one factors.
If Aut(F) has a modified one factor symmetry then F is a POF.
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Proof. Since Aut(F) acts transitively on the one factors, and since
there is a modified one factor symmetry, every one factor arises from a
modified one factor symmetry. The result follows from Corollary 2.6.

Corollary 2.8. Let Γ be involution complete with respect to an
APOF F . Let n > 4. Let Aut(F) have two distinct modified one
factor symmetries. Then one of the following is true:

(a) F is the perfect one factorization GK2n of K2n (and 2n − 1 is
prime).

(b) F contains the n-modified one factor symmetries of GA2n (and
n is prime).

Proof. Let τ and τ ′ be the two modified one factorizations. Then, as
before, 〈τ, τ ′〉 � Dk where k = o(ττ ′′). By [3] we have two cases:

(a) k = 2n− 1. Thus we have 2n− 1 one factors and Γ = K2n, F is
perfect and by [3] F is GK2n and 2n− 1 is prime.

(b) k = n. Dn contains n elements of order two corresponding to the
n modified one factors of F . Suppose τi and τj are distinct modified
one factor symmetries. Then στi

∪ στj
is Hamiltonian. We see n is

odd since στi
στj

is a product of two distinct n cycles and if n is even
o((στi

στj
)2) = n/2 implying στi

στj
is a product of 4 disjoint n/2 cycles.

Similarly we see n must be prime.

It is possible to explicitly construct the one factors arising from two
modified one factors as in case (b) above. Without loss of generality
we let

τ0 = (3, 4) . . . (2n− 1, 2n)

τ1 = (1, 4)(3, 6) . . . ( ̂n, n+ 3) . . . (2n− 1, 2)

where ( ̂n, n+ 3) indicates this two cycle is deleted. Then

τ0τ1 = (1, 4, 6, . . . , n+ 1, n, n− 2, . . . , 3)
× (2, 2n− 1, 2n− 3, . . . , n+ 2, n+ 3, . . . , 2n).

Relabel the vertices with 0 through n− 1 corresponding to the vertices
in the first n cycle, and 0∗ through (n − 1)∗ the vertices in the
second cycle. Then τ0 = x1 . . . xk/2, x

∗
1, . . . , x

∗
k/2 where xi = (a, b)

and x∗
i = (a∗i , b

∗
i ) with a + b ≡ 0 mod n. τ1 = x1 · · ·xk/2, x

∗
1, . . . x

∗
k/2
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where a+ b ≡ 1 mod n. These are the n modified one factors of GA2n

(see [3]). We call the subgraph of K2n obtained from the one factors
associated with the above modified one factors Ln and the associated
one factorization GD2n. Another way to describe this one factorization
is in terms of the bipartite graph Kn,n. Ln is the complement of
Kn,n −σ where σ is any one factor of Kn,n. GD2n can then be defined
as follows. Identify the vertex set with Zn × {−1, 1}. For each g ∈ Zn

define a one factor which connects (g, 1) to (g,−1) and connects (x, ε)
to (2g − x, ε) for all x �= g and all ε.

Theorem 2.9. Let Γ be involution complete with respect to an APOF
F . Let n > 4. Let Aut(F) act transitively on the one factors. If
Aut(F) has a modified one factor symmetry, then F is one of the two
following POFs:

(a) Γ = K2n and F = GK2n where 2n− 1 is prime.

(b) Γ = Ln and F = GD2n where n is prime.

Proof. By Corollary 2.7, F is perfect. Since every one factor arises
from a modified one factor symmetry, we have τ, τ̃ ∈ Aut(F) such that
τ �= τ̃ . Then, for 〈τ, τ̃〉 � D2n−1 we have (a).

Suppose we have 〈τ, τ̃〉 � Dn. If there exists στ̂ such that τ̂ /∈ 〈τ, τ̃〉
then 〈τ, τ̃〉 and 〈τ, τ̂〉 would yield 2n − 1 modified one factors. Then
Γ = K2n and F = GK2n or GA2n both of which are not possible.
In GK2n we have 〈τ, τ̃〉 � D2n−1 and GA2n has only n modified one
factors. Hence the only possibility is Γ = Ln and F = GD2n.

The following example illustrates the necessity of the assumption
of the existence of a modified one factor symmetry. It was given by
Cameron in a slightly different form [1, p. 73].

Example. There is a one factor transitive APOF on K12 which is
not a POF. We call this one factorization PC12. The vertex set is
Z11 ∪{∞}. The one factorization is starter induced by using a Mullin-
Nemeth starter. The starter is

σ = (0,∞)(1, 2)(3, 6)(4, 8)(5, 10)(7, 9).

This one factorization has the property that the union of any two
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distinct one factors consists of two six cycles. The symmetry group,
PSL(2, 11), acts two transitively on the one factors.

Corollary 2.10. If F is an APOF on K2n, and if Aut(F) acts
2-transitively on F , one of the following holds:

(a) F is GK2n for 2n− 1 prime.

(b) F = PC12 on K12.

Proof. Since Aut(F) is 2 transitive we know that 2n − 2 divides
|Aut(F)|. This means AutF has an element of order 2. By [1, p. 118,
Theorem 6.6] we have that Aut(F) has a fixed point or F = PC12.
Therefore if F �= PC12 then Aut(F) contains a modified one factor
symmetry. The result follows from Corollary 2.10.

Corollary 2.11. Let Γ be involution complete with respect to an
APOF F . Let Aut(F) act transitively on the one factors. If n is odd
and F is not the unique perfect one factorization on K6, then Aut(F)
is solvable.

Proof. We start by considering the case in which n > 4. Let S
denote a Sylow 2-subgroup of Aut(F). Consider the action of S on V ,
the vertex set. If Si is not trivial, it contains an element of order two
which must be a modified one factor symmetry. Then use Theorem 2.9
to give the one factorizations explicitly. The symmetry group of GKp+1

is [Zp]Zp−1, and the symmetry group of GD2p is Z2 ⊕ [Zp]Zp−1. Both
groups are solvable.

Otherwise Si must be trivial for each i. Hence, each orbit of S has
the same number of elements as S. This means |S| divides 2n. Since n
is odd, we have |S| divides 2. Thus S = {1} or Z2. In either case, using
the Feit Thompson theorem (together with a theorem of Burnside in
the Z2 case) we have Aut(F) is solvable.
Now consider the case in which n ≤ 4. Since n is odd, and n = 1

is trivial, we must only consider n = 3. On K6 there is a unique
to within isomorphism one factorization, GK6, which is isomorphic to
GA6. The symmetry group is S5 which is not solvable. For any other
one factorization with n = 3 we have |F| ≤ 4. Thus ι(Aut(F)) ⊂ S4
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which is solvable. Also ker(ι) is a subgroup of D6 which is solvable.
This is true since the union of any two edge disjoint one factors will be
a Hamiltonian cycle and so ker(ι) will be a subgroup of the symmetry
group of a 6 cycle.

Theorem 2.12 Let Γ be involution complete with respect to F . Let
n be even.

(a) If Aut(F) contains a unique modified one factor symmetry, then
there is a subgroup G ⊂ Aut(F) so that |G| is odd and

Aut(F) = Z2 ⊕G

(b) Assume F is an APOF and n > 4. If Aut(F) has a modified one
factor symmetry, Aut(F) is solvable.

Proof. Assume Aut(F) has a unique modified one factor symmetry
τ with fixed point set {i, j}. Since τ is central in Aut(F) then Aut(F)
leaves {i, j} invariant. Hence Aut(F) leaves X = V − {i, j} invariant.
Let S be a Sylow 2-subgroup of Aut(F). Let k ∈ X. We claim Sk

is trivial. If not, it contains an element of order two which has k as
a fixed point. Hence, it is a modified one factor symmetry. But τ
does not fix k, so it cannot be τ . This contradicts τ being unique.
Therefore, every orbit of S on X has cardinality |S|. Thus, |S| divides
|X − {i, j}| = 2(n − 1). Hence, |S| divides 2. Thus S � Z2, which is
central, and hence normal. Also, since S � Z2, Aut(F) is solvable. Let
G be a Hall subgroup corresponding to the odd primes. Since G has
index 2, G is also normal. Thus Aut(F) � S ⊕G as desired.

For (b) if Aut(F) has two distinct modified one factors then by Corol-
lary 2.8 F is GK2n or contains the modified one factor symmetries of
GA2n. If F is GK2n, then AutF = [Z2n−1]Z2n−2 which is solvable.
Next consider the case when F contains the modified one factor sym-
metries of GA2n. Since Aut(F) will permute the modified one factor
symmetries of F among themselves, we have that Aut(F) will be a sub-
group of the group of automorphisms of these 1-factors. This group is
[Z2n]Zn−1 which is solvable. Hence AutF is solvable. Finally, if AutF
has only one modified one factor symmetry, then we may use part (a).
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3. One factor symmetries. Throughout this section we will
assume that n ≥ 3.

Definition 3.1. σ is called a one factor symmetry if σ ∈ F∩Aut(F).

Example. The following is an APOF on K8 with a one factor
symmetry. Let

σ0 = (1, 5)(2, 6)(3, 7)(4, 8)
σ1 = (1, 3)(2, 4)(5, 8)(6, 7), σ2 = (1, 4)(2, 3)(5, 7)(6, 8)

σ3 = (1, 8)(2, 7)(3, 4)(5, 6), σ4 = (1, 2)(3, 6)(4, 5)(7, 8)

σ5 = (1, 6)(2, 8)(3, 5)(4, 7), σ6 = (1, 7)(2, 5)(3, 8)(4, 6).

Note that σ0 is a one factor symmetry and the pairs {σ1, σ2}, {σ3, σ4},
{σ5, σ6} are not Hamiltonian. By the following

Lemma 3.2. Let τ be a one factor symmetry of an APOF F . Let
σ ∈ F . Then either σ commutes with τ or σ ∪ τ is a Hamiltonian
circuit.

Proof. Assume that τστ �= σ. We note that |{σ, τ, τστ}| = 3 since
we also know σ �= τ . Hence G = 〈σ, τ, τστ 〉 acts transitively on V since
F is an APOF. But we know G = 〈σ, τ 〉. Since 〈σ, τ 〉 acts transitively
on V , we know σ ∪ τ is connected, and hence a Hamiltonian circuit.

Theorem 3.3. Let n be even and n �= 4. If F is an APOF, then
any two one factor symmetries commute. Also F has at most two one
factor symmetries.

Proof. Let σ and σ̃ be one factor symmetries which do not commute.
Then σ ∪ σ̃ is a Hamiltonian cycle. Thus [3] σσ̃ is a product of two
disjoint n-cycles. Hence σσ̃σσ̃ is a product of four disjoint n/2 cycles
since n is even. Thus σ ∪ σ̃σσ̃ is not a Hamiltonian circuit. But σ̃σσ̃
is a one factor symmetry because it is the conjugate of a one factor
symmetry by a symmetry. Thus σ and σ̃σσ̃ must commute by the
lemma. Thus

σσ̃σσ̃ = σ̃σσ̃σ.
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This gives (σσ̃)4 = 1̃. We know 〈σ, σ̃〉 � Dk where k = o(σσ̃);
therefore, k\4. σ and σ̃ do not commute so o(σσ̃) �= 2 giving k = 4.
But, since σ ∪ σ̃ is Hamiltonian, we have 〈σ, σ̃〉 � Dn. Thus, n = 4.
Thus, we have shown that any two one factor symmetries commute
when n �= 4.

Now suppose we have three one factor symmetries σ, σ̃ and ˜̃σ. Let
G = 〈σ, σ̃, ˜̃σ〉. Then G is abelian, and every nontrivial element of G
has order two. Hence G � (Z2)k where k = 2 or 3. Since F is APOF,
G acts transitively on V . Thus |V | divides |G|. These numbers are
actually equal since G is abelian. Hence 2n = 8 or 4. Thus n = 4 or 2
as desired.

Lemma 3.4. Let n be odd. Let F be a 2-irreducible APOF. Then
any two one factor symmetries commute.

Proof. Suppose σ and σ̃ are both one factor symmetries which do
not commute. Let G = 〈σ, σ̃〉. We know G � Dn by Lemma 3.2 and
[3, Lemma 2.6]. Let τ = σσ̃. We have o(τ ) = n and σi = τ iσ are all
elements of order two which are conjugate to either σ or σ̃. Since each
σi is conjugate by a symmetry element to a one factor symmetry, we
have that each of the σi are one factor symmetries. Now let

W = {τk(v) | k = 1, . . . , n}

where v is some element of V . We claim W is a subspace. Let w ∈ W
and σ ∈ F such that σ(w) ∈ W . We need to show σ(x) ∈ W . If not,
then

σ(x) ∈ V \W = {τkσ(v) | k = 1, . . . , n}
since G acts transitively on V . Hence, σ(x) = σk(x) for some k. Both σ
and σk are one factors in F so σ = σk. This means σ(w) = σk(w) /∈ W
which is a contradiction. Now, since W is a subspace, we have |W | ≤ 2
by assumption since |W | = n < 2n and F is 2-irreducible. This means
n = 2 which is not possible. Hence any two one factor symmetries must
commute.

Corollary 3.5. Let n be odd. Let F be a 2-irreducible APOF. Then
F has at most 1 one factor symmetry.
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Proof. Let σ and σ̃ be two distinct one factor symmetries. By
Lemma 3.4 they commute. Since n is odd, both σ and σ̃ are odd
permutations. Hence, τ = σσ̃ is an even permutation and is a symmetry
of order two. If τ had no fixed points, then τ would be odd (see [3,
3.5]). Since σ and σ̃ commute with τ they must leave the fixed point
set of τ invariant. Thus both σ and σ̃ have an edge connecting these
two fixed points of τ . This contradicts the assumption that σ and σ̃ are
distinct one factors. Hence F cannot have two one factor symmetries.

4. Steiner triple systems. In this section we review the structure
of automorphism groups of one factorizations that arise from Steiner
triple systems and provide for easy access the details of the result of
Cameron that every finite group occurs as the automorphism group of
some one-factorization.

Definition 4.1. Let X be a set and B a collection of subsets of X.
(X,B) is called a Steiner triple system if

(a) S ∈ B implies |S| = 3.

(b) If T is a subset of X with |T | = 2, there is one and only one S ∈ B
so that T ⊂ S.

Given any Steiner triple system, there is a well-known technique for
constructing a one factorization of K|X|+1. This is given below.

Definition 4.2. Let (X,B) be a Steiner triple system. Define FB,
a one factorization on K|X|+1 as follows: Let V = X ∪ {∞}. For each
x ∈ X we define σx. In the case when x �= y, then

σx(y) = z ⇐⇒ {x, y, z} ∈ B.
In addition we specify that

σx(x) = ∞ and σx(∞) = x.

Then let FB = {σx : x ∈ X}.

Remark 4.3. We define

Aut(B) = {τ ∈ SX : τ (S) ∈ B whenever S ∈ B}.
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Define j : Aut(B) → Aut(FB) by j(τ )(∞) = ∞ and j(τ )(x) = τ (x) for
each x ∈ X. A simple calculation shows that

j(τ )σxj(τ )−1 = στ(x),

and hence j(τ ) ∈ Aut(FB) for each τ ∈ B.

Lemma 4.4.
j(Aut(B)) = Aut(FB)∞.

Proof. Let τ ∈ Aut(FB)∞. Since τ (∞) = ∞ we have τ (X) = X.
Define ρ = τ |X . Let S be in B. We must show ρ(S) ∈ B. Let

S = {x, y, z}.

We know that there is a t ∈ X so that

τσxτ
−1 = σt

since τ ∈ Aut(FB). Apply this equation to ∞ and use that τ (∞) = ∞
to find t = τ (x). Next apply this equation to τ (y) to find τ (z) =
σt(τ (y)). Thus

{τ (x), τ (y), τ (z)} = {t, τ (y), τ (z)} ∈ B

as desired.

Definition 4.5. A point x ∈ X is called a Steiner point, the union
of any two distinct one factors in F has a four cycle through x.

Theorem 4.6.
Aut(FB) � [(Z2)m]Aut(B)

where (Z2)m is isomorphic to ker ι defined in Definition 1.5.

Proof. We know that ker ι � (Z)m for some m by [1, p. 11, Theorem
1.4]. We also know ker ι is a normal subgroup of Aut(FB) and

ker ι ∩Aut(FB)∞ = 1̂.
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To complete the result we must only show that

Aut(FB) = (ker ι)Aut(FB)∞.

Let τ ∈ Aut(FB). We have that τ (∞) is a Steiner point. Hence, there
is a ρ ∈ ker ι so that ρ(∞) = τ (∞) by [1, p. 51, Theorem 3.5]. Hence
τ = ρ(ρ−1τ ) shows τ ∈ ker ιAut(FB)∞ as desired.

The following is an interesting corollary of an unpublished result
of Cameron’s relating the results presented above and a result by
Mendelsohn [7].

Theorem 4.7. Given any finite group G, there is an n and a one
factorization F of K2n such that

Aut(F) � G.

Proof. In [7], Mendelsohn shows that for any finite group G, there
is a Steiner triple system B which has G as its automorphism group.
Unfortunately, the potential presence of a nontrivial ker ι means that
Theorem 4.2 does not immediately follow from this result. In fact it is
necessary to examine Mendelsohn’s construction in detail to verify that
the ker ι is trivial. Fortunately, we need only single out one facet of
the Mendelsohn construction. Let X be the vertex set of B. We have
|X| = 2n − 1. Also there is a subset Y ⊂ X so that |Y | = 15 which has
the following properties:

(a) If |S ∩ Y | ≥ 2 and S ∈ B then S ⊂ Y .

(b) If |S ∩Y | ≤ 1 and S ∈ B then S is a block in the projective plane
Steiner triple system on (Z2)n − {0}. These blocks are of the form
H − {0} where H is any subgroup of Zn

2 with order 4.

(c) The blocks S ∈ B with S ⊂ Y form a special predetermined triple
system (Y,B′) given in [7, Table 1].

It should be noted that there are, in fact, many subsets Y as described
above. Now let x and y be in Y . (a) above shows that σx and σy both
leave Y ∪ {∞} invariant. We consider the cycle structure of σx ∪ σy.
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(b) says that outside of Y ∪ {∞}, both σx and σy act in exactly the
same way as one factors in (Z)n with

F ′ = {σ : σ ∈ Zn
2 and σ �= 0}.

The union of any two of these one factors consists of disjoint four cycles
so σx ∪σy consists only of disjoint four cycles outside of Y ∪{∞}. Now
let τ ∈ ker ι leave each one factor invariant. Thus τ leaves σx ∪ σy

invariant. Hence any cycle of σx ∪ σy of length larger than four inside
Y ∪ {∞} must remain inside Y ∪ {∞} after τ is applied to it.

Now using (c) we have that σx and σy when restricted to Y ∪ {∞}
are the same as the one factors coming from the original block design
(Y,B′). An explicit calculation shows that for each z ∈ Y there are x
and y ∈ Y so that z is part of a cycle longer than 4 in σx∪σy. Hence all
of Y ∪ {∞} is invariant under τ . This says that τ is an automorphism
of (Y,B′). But (Y,B′) is automorphism free, which means τ must fix
all the vertices in Y ∪ {∞}. However, the only transformation in ker ι
that has a fixed point is the identity. Hence ker ι = 1̂ as desired.
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