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MODULES OVER DOMAINS LARGE
IN A COMPLETE DISCRETE VALUATION RING

W. MAY AND P. ZANARDO

ABSTRACT. We consider a class of domains R containing
a maximal ideal N such that R is not complete with respect
to the N-adic topology, but T = RN is a complete DVR. Such
domains are called T -large because of the way to construct
them. We characterize a T -large domain R to be of the form
R = T ∩ V , where V is a mildly restricted valuation domain
of Q, the field of fractions of T . We show that the completion

V̂ of V has infinite rank as a V -module. We investigate
finite rank torsion-free modules M over a T -large domain R
which are Hausdorff in the N-adic topology. Making use of
known results on V -modules, we obtain the following results:
there exist indecomposable torsion-free Hausdorff R-modules
of any fixed rank n; every cotorsion-free Hausdorff R-algebra
of rank n is the endomorphism algebra of a torsion-free module
of rank 3n; the Krull-Schmidt theorem fails, that is, there exist
finite rank torsion-free Hausdorff R-modules which admit non-
isomorphic decompositions into indecomposable summands.

Introduction. In his 1962 book [6], Nagata exhibited the first
example of a noncomplete discrete valuation ring R such that [Q̂ : Q]
< ∞, where Q, Q̂ are the field of fractions of R and its completion R̂,
respectively. The DVR’s satisfying this property were called Nagata
valuation domains in [9].

Recently the second author [9] and Arnold and Dugas [1] investigated
torsion-free modules of finite rank over Nagata valuation domains R.
In particular, in [9] it was proved that if [Q̂ : Q] = 2, then every
finite rank torsion-free indecomposable R-module has rank ≤ 2; in [1]
it is shown that [Q̂ : Q] = 3 implies that every finite rank torsion-free
indecomposable R-module has rank ≤ 3, while if [Q̂ : Q] ≥ 4, then there
exist finite rank torsion-free indecomposable R-modules of arbitrarily
large rank. It is worth noting that the Krull-Schmidt theorem holds for
finite rank torsion-free modules over Nagata valuation domains since
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they all are henselian rings, and therefore we can apply Lemma 14 of
[8].

In fact Vámos in [8] had previously studied nonhenselian valuation
domains R such that [Q̃ : Q] < ∞, where Q̃ denotes the field of
fractions of a maximal immediate extension R̃ of R. Inter alia, he
proved that every finite rank torsion-free indecomposable R-module
has rank ≤ 2 ([8, Theorem 10]), and that the Krull-Schmidt theorem
holds for finite rank torsion-free R-modules. Further investigations on
finite rank torsion-free modules over nonhenselian valuation domains,
especially concerning the failure of the Krull-Schmidt theorem, have
been made by Goldsmith and the first author in [3] and by the authors
in [5].

In the present paper we consider the limit situation of a certain
noncomplete domain R, whose completion R̂ is a DVR, and R, R̂ have
the same field of fractions, i.e. [Q̂ : Q] = 1. Note that R cannot be a
valuation domain in this case.

Our starting point is the following result by the second author and
Zannier ([10, Theorem 7]): let T be a domain, complete with respect
to the M-adic topology where M is a maximal ideal of T ; then there
exists a subring R of T satisfying the following: 1) N = M ∩ R is a
maximal ideal of R, 2) R is not local, 3) T = RN, 4) T is the completion
of R in its N-adic topology.

In the first section we recall the way to construct such an R for any
given T (cf. [10]); because of this construction we shall say that R is a
T -large domain. We are interested in the case where T is a complete
DVR; in this case we characterize a T -large domain R to be of the form
R = T ∩ V where V is a mildly restricted valuation domain of Q, the
field of fractions of T (Proposition 2). Also, a T -large domain R has
exactly two maximal ideals, namely P = P∩R and N = M∩R where P
and M are the maximal ideals of V and T , respectively; nevertheless, it
can have any admissible Krull dimension (Proposition 3). We also show
that the valuation domain V cannot be complete in the topology of the
valuation; in fact if V̂ denotes the completion of V , then rankV V̂ = ∞;
as a consequence we also have that rankV Ṽ = ∞ where Ṽ is any
maximal immediate extension of V (Proposition 4).

The second section is devoted to the study of finite rank torsion-free
modules M over a T -large domain R = T ∩V . We confine ourselves to
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R-modules M which are Hausdorff in the N-adic topology and carry
over results on V -modules to these modules. In Proposition 7 we show
that there exist indecomposable torsion-free R-modules of any fixed
rank n (which is different from the above case of those Nagata valuation
domains such that [Q̂ : Q] = 2 or 3; see [9] and [1]).

In Theorem 8 we make use of Theorem 1 of [3] to prove a “Corner
type” result: every cotorsion-free Hausdorff R-algebra A of finite rank n
is the R-endomorphism algebra of a torsion-free Hausdorff R-module M
of rank 3n. Finally in Theorem 10 we adapt the arguments developed
in Theorem 2 of [3], showing that the Krull-Schmidt theorem fails for
finite rank torsion-free R-modules: more precisely, for every n > 0
there exists a Hausdorff R-module N of rank > n which admits two
non-isomorphic direct decompositions into indecomposable summands.
This result provides another dramatic difference from the cases of both
Nagata valuation domains ([9] and [1]) and the nonhenselian valuation
domains studied by Vámos in [8].

Section 1. For general facts about valuation domains and their
modules, we refer to the books by Schilling [7] and by Fuchs and Salce
[2].

We recall the construction and the properties of the domains R in
which we are interested, as described in the proof of Theorem 7 in [10].

Let T be a local domain, not a field, with maximal ideal M. We
assume that T is Hausdorff and complete in the M-adic topology. We
choose an x ∈ T \M in such a way that x ≡ 1 mod M and the family of
subrings F = {B ⊂ T : x ∈ B and 1/x /∈ B} is nonempty. It is worth
recalling a possible choice of x. If χ(T ) = 0 and χ(T/M) = p > 0
(the eterocharacteristic case), we let x be any prime number such that
x ≡ 1 mod (p); then x ∈ Z, 1/x /∈ Z, so that Z ∈ F . If χ(T ) = χ(T/M)
(the equicharacteristic case), then T contains a field L and any nonzero
z ∈ M is transcendental over L; in this case we set x = 1 + z; then
L[x] ∈ F , since 1/x /∈ L[x], x being transcendental over L. Let now
R ⊂ T be a maximal element of F . Note that R is a proper subring
of T since 1/x ∈ T , T being local. Let P be a maximal ideal of R
containing the nonunit x of R; let N = M ∩ R. Then R satisfies the
following properties (see [10]):
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A. R is integrally closed in T .

B. If z ∈ T \ M, then either z ∈ R or 1/z ∈ R.

C. P and N are distinct and are the only maximal ideals of R; in
particular, any r ∈ R \ (P ∪ M) is a unit of R.

D. πM(R) = T/M where πM : T → T/M is the canonical map.

E. T = RN.

F. For all n ∈ N, we have Nn = R∩(Mn), that is, the N-adic topology
of R coincides with the topology induced on R by the M-adic topology
of T ; R is a dense subset of T , with respect to the M-adic topology; T
is the completion of R in its N-adic topology.

A subring R of T constructed in the way described above will be
called T -large.

Remark. It is important to observe that the apparently technical
hypothesis x ≡ 1 mod M cannot be weakened in the construction of the
T -large domain R. Actually, it is not enough to choose x /∈ M and take
a maximal element of the family F = {S ⊂ T : x ∈ S and 1/x /∈ S} to
get a T -large domain. Let us in fact consider the following example:
T = Q[[t]] (formal power series in the indeterminate t) and R =
Zp + tQ[[t]] (formal power series with constant term in Zp, the integers
localized at the prime p). It is known that R is a valuation domain,
hence certainly not a T -large domain; on the other hand, setting x = p,
R is a maximal element of the family G = {S ⊂ T : x ∈ S, 1/x /∈ S}.
In fact if f ∈ T \ R, then the constant term of f has to lie in Q \ Zp

from which it readily follows that 1/p ∈ R[f ]. But R[1/p] = T ; thus
we get that R is a maximal subring of T , whence obviously maximal in
G. Note that here x = p /∈ tQ[[t]] = M, but p �≡ 1 mod M.

From now on we shall consider T to be a valuation domain, complete
in the M-adic topology. This implies that T is a DVR, so that M is
principal; we shall denote by π a fixed generator of M; R, P, N, x will
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maintain the same meaning as above. Finally, we shall denote by Q
the common field of fractions of T and R.

We want to give a description of the T -large domain R in terms of
intersection of two valuation domains, which is more useful for our
purposes.

Let us first show some further properties of R which may be used in
the sequel.

G. π can be chosen in R, more precisely in N not in P; for such a
choice we have N = πR.

Proof. Since T = RN we can write π in the form π = σ/t, where
σ, t ∈ R and t /∈ N = R ∩ M. If now σ /∈ P, we replace π with σ. If
σ ∈ P, let us pick an element α ∈ R such that α ∈ N \P; α does exist
in view of (C). If α is a generator of πT we replace π with α. Otherwise,
let β = α+σ; then π ∈ σT and π /∈ αT imply π ∈ βT ; moreover, α /∈ P
and σ ∈ P imply β /∈ P. Thus πT = βT and β ∈ N \ P which shows
the first part of our statement. Let us now pick any z ∈ N ⊆ πT where
π ∈ N\P. We have z = πkλ, where k > 0 is a suitable integer and
λ ∈ T \ πT . In view of (B) either λ ∈ R or 1/λ ∈ R. In the first case
we have z ∈ πR, whence N ⊆ πR as desired. If on the contrary λ /∈ R,
then by (C), 1/λ ∈ P since it is not a unit of R and 1/λ /∈ N ⊆ πT .
We then get πk = z/λ ∈ P, whence π ∈ P, impossible. The desired
conclusion follows.

H. P = Rad (x).

Proof. Let b ∈ P; then in view of (G), b = πhc where c ∈ P \ πR.
Then 1/c ∈ T \ R so that R � R[1/c] ⊂ T . The maximality of R
implies that 1/x ∈ R[1/c] so that

(1) 1/x = a0 + a11/c + · · ·+ ar1/cr, ai ∈ R.

By (1) we readily get cr ∈ xR so that br ∈ xR too. Since b ∈ P was
arbitrary, we conclude that P ⊆ Rad (x). The converse inclusion is
trivial.
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Proposition 1. In the above notation, V = RP is a valuation
domain and R = V ∩ T .

Proof. In view of (G) any element z of R \ P can be written in the
form z = πku where k is a positive integer and u is a unit of R. It
follows that any element w of V = RP can be written in the form
w = πhα where h is an integer, possibly negative, and α ∈ R \ πR.
If w ∈ PV , then necessarily α ∈ P. Let then πhα, πmβ be arbitrary
elements of PV where α, β ∈ P \ πR. Since α/β ∈ T \ πT , by (B)
we see that either α/β ∈ R or β/α ∈ R; let us assume that α/β ∈ R.
Then πh−m(α/β) ∈ RP = V . It follows that, given two elements of
PV , necessarily one divides the other and this is enough to ensure that
V is a valuation domain. If now z ∈ V ∩T , we have z = πtγ with t ∈ Z,
γ ∈ R \ πR, since z ∈ V ; since z ∈ T , too, we must have t ≥ 0, whence
z ∈ R. This shows that R ⊇ V ∩ T so that R = V ∩ T as desired.

From the above proposition we deduce further properties of R.

I. The ideal P1 = ∩nxnR is prime in R.

Proof. Since V is a valuation domain, it is known that ∩nxnV is a
prime ideal of V . It is then enough to show that P1 = (∩nxnV ) ∩ R;
we will prove that xnR = xnV ∩ R. Let xnv = r where v ∈ V and
r ∈ R: we have to show that v ∈ R. In fact, if v ∈ V \ R, we can
write v = α/πh where α ∈ R \ πR, h > 0; it follows that xnα ∈ πR,
impossible, since x, α /∈ πR.

J. R is a maximal subring of T if and only if P1 = ∩nxnR = {0}.

Proof. (⇒). Let us suppose that P1 �= {0}; we shall show that
R[1/x] �= T so that R is not a maximal subring. Let us choose b ∈ P1,
b �= 0. We can write b = πhc with c /∈ πR. Now c ∈ P1 since
π /∈ P1 ⊂ P and P1 is a prime ideal. Then 1/c ∈ T and we will verify
that 1/c /∈ R[1/x] from which our assertion will follow. In fact from
1/c ∈ R[1/x], it readily follows that xm ∈ cR for a suitable positive
integer m, so that xm ∈ P1 = ∩nxnR, which is a plain contradiction.
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(⇐). By the properties of R, for every v ∈ T \R we have 1/x ∈ R[v];
therefore, to show that R is a maximal subring of T , it is enough to
check that R[1/x] = T . Since T is a local ring it is plainly sufficient
to show that every unit u of T not in R lies in R[1/x]. In view of
(B) we must have 1/u ∈ P \ N. By contradiction, let us assume that
u /∈ R[1/x]; in particular, for no integer k we have xk ∈ (1/u)R which
shows that x /∈ Rad (1/u). Therefore P � Rad (1/u) and, on the other
hand, Rad (1/u) �⊆ N since 1/u /∈ N. Thus a prime ideal of R must
exist, say J containing 1/u, properly contained in P and not containing
x. To conclude we show that necessarily J ⊆ ∩nxnR = P1 so that
P1 �= {0}, which is our required contradiction. In fact let b ∈ J; as
usual let us write b = πhc with c /∈ πR; c ∈ J since π /∈ P ⊇ J, and it
suffices to show that c ∈ P1. Assuming that c ∈ xkR, let us verify that
then c ∈ xk+1R too. We have c = xkd where d ∈ J since x /∈ J. Now
both x and d lie in P \ N so that as a consequence of (B), one divides
the other in R; but x /∈ dR ⊆ J and so d ∈ xR, whence c ∈ xk+1R.
The desired conclusion follows.

We shall see in the following that it is possible that P1 = {0} so that
R can be a maximal subring of T . However, as we have seen in the
above remark, not every maximal subring of a complete DVR T is a
T -large domain.

The following result completes the description of T -large domains in
terms of intersections of valuation domains.

Proposition 2. Let V be a valuation domain of Q with maximal
ideal P. Then V ∩ T = R is a T -large domain if and only if V is not
contained in T and P is a radical ideal.

Proof. (⇒). If V is contained in T , then V ∩ T = V = R is local and
so it cannot be a T -large domain. Let us now assume that V �⊆ T ; of
course then T �⊆ V since T is a DVR; therefore we can invoke Theorem
11.11 of [6, p. 38]. R has exactly two distinct maximal ideals, P = P∩R
and N = M ∩ R, and we have RP = V , RM = T . If P is not a radical
ideal, then P is the union of a strictly ascending chain of prime ideals
of V ; therefore, also P = P ∩ R is the union of a strictly ascending
chain of prime ideals of R since V is a localization of R. Then P cannot
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be a radical ideal in R, whence R does not satisfy property (H) and so
it is not a T -large domain.

(⇐). Since V �⊆ T , again by Theorem 11.11 of [6], we have that P =
P∩R and N = M∩R are the only maximal ideals of R and they do not
coincide. Let us now choose y ∈ V such that RadV (y) = P. We may
assume that y ∈ R; in fact if y /∈ T , then 1/y ∈ M \ V , whence 1+ 1/y
is a unit of T not in V , whence (1 + 1/y)−1 = y/(1 + y) ∈ V ∩ T = R.
Moreover, RadV (y/(1 + y)) = RadV (y) = P since 1 + y is a unit of V .
We may also assume that y ∈ R \ N. If y = πky′ with y′ ∈ R \ N, we
have RadV (y′) = RadV (y) since π is a unit of V . Now if y ∈ R \ N
and RadV (y) = P, it is easily seen that RadR(y) = P ∩ R = P. In
fact for any w ∈ P there exists a k > 0 such that wk ∈ yV , whence
wk/y ∈ V ∩ T (since y is a unit in T ) and therefore wk ∈ yR which
shows that P ⊆ RadR(y). Finally, let us pick z ∈ N \ P; then y + z is
a unit in R since y + z /∈ N ∪ P. Let us set x = y/(y + z) ∈ R. Then
RadR(x) = RadR(y) = P and x ≡ 1 mod N. To conclude that R is a
T -large domain, it suffices to show that R is maximal with respect to
the property of not containing x. Let u ∈ T \ R; possibly substituting
u by 1 + u, we may assume that u is a unit of T . We must show that
1/x ∈ R[u]. Since u ∈ T \ M and u /∈ R, then u /∈ V so that 1/u ∈ P.
It follows that 1/u ∈ P = RadR(x), whence (1/u)k ∈ xR for a suitable
k, and so 1/x ∈ ukR ⊆ R[u] as desired.

Using the above characterization, we are able to show that a T -large
domain R can have any admissible Krull dimension. We need first the
following well-known lemma on valuation domains.

Lemma. Let L be a field, {xα : α < γ} a set of indeterminates over
L indexed by the ordinal γ; then there exists a valuation domain V of
the field L(xα : α < γ) of Krull dimension γ; P0 = x0V is the maximal
ideal of V , and the set {Pα : α < γ} of nonzero prime ideals of V is
well-ordered by the opposite inclusion.

Proof. We consider the group G = ⊕α<γZα where Zα
∼= Z for

all α. We endow G with the anti-lexicographic order, i.e. the vector
(cα)α<γ ∈ G cα ∈ Z, is positive if and only if the element of its support
with the largest index is positive. For α < γ let eα be the element of G
whose coordinates are 1 at the α-th place and 0 otherwise. We define a
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valuation v : L(xα : α < γ) → G ∪ {∞} by extending the assignments
xα �→ eα. Then the valuation domain V corresponding to v satisfies
our requirements.

Proposition 3. Let L be the prime subfield of Q, the field of fractions
of T , and let λ be the transcendence degree of Q over L. Then for
any cardinal γ ≤ λ, there exists a valuation domain V of Q such that
V ∩ T = R is a T -large domain with Krull dimension equal to γ.

Proof. Let us choose a well-ordered set {xα : α < λ} of elements
of Q which constitutes a basis of transcendence of Q over L; it is
not restrictive to choose x0 ∈ T and x0 ≡ 1 mod M. Making use
of the lemma for a fixed γ ≤ λ, let us construct a valuation domain
W of the field L′ = L(xα : α < γ) of Krull dimension γ, where the
set {Pα : α < γ} of nonzero prime ideals of W is well-ordered by
the opposite inclusion. Let us extend the valuation on L′ to the field
L′′ = L′(xα : γ ≤ α < λ) in such a way that the value group remains
the same (see [7]). Now Q is an algebraic extension of L′′ and we can
extend the valuation on L′′ to a valuation on Q. Let V be the valuation
domain of Q with respect to this last valuation. These extensions of
valuations do not affect the lattice structure of prime ideals, and so
V has Krull dimension γ and its maximal ideal, P, (though no longer
principal) is not the union of a strictly ascending chain of prime ideals,
and therefore P is a radical ideal of V . Moreover, V �⊆ T by our
choice of x0 ∈ P. By Proposition 2 it follows that R = V ∩ T is a
T -large domain and RP = V (where P = P∩R) implies that the Krull
dimension of R is γ too.

Let us note that in this case λ is always infinite and the Krull
dimension of V cannot exceed the transcendence degree of Q over L,
and so R can have any admissible Krull dimension.

The following result will be crucial in our investigation of Hausdorff
finite rank torsion-free R-modules in the next section.

Proposition 4. If V is a valuation domain of Q, the field of fractions
of the complete DVR T , and V �⊆ T , then V is never complete in the
topology of the valuation. If V̂ denotes the completion of V , we have
rankV V̂ = ∞. As a consequence we also have rankV Ṽ = ∞ where Ṽ
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is any maximal immediate extension of V .

Proof. We set R = T ∩ V , πT is the maximal ideal of T , P is the
maximal ideal of V ; Q denotes the common field of fractions of R, T ,
V ; πT ∩R and P = P∩R are the only maximal ideals of R in view of
Theorem 11.11 of [6]. We may assume that π ∈ R and R ∩ πT = πR,
as one can see with the same proof as for property (G) above. Let us
choose λ ∈ R such that λπ ≡ 1 mod P. For every prime number q
greater than the π-adic value of λπ, the polynomial f(Y ) = Y q − λπ
has no roots in T , and thus also none in Q since T is integrally closed.
By field theory it follows that f is irreducible in Q[Y ]. Let us also
assume that q is different from the characteristic of V/P. Let us now
prove the following

Claim. Let V̂ be the completion of V ; then the polynomial f(Y ) has
a root in V̂ .

Since πR is a maximal ideal of R, we can find a subset F of V such
that {rV : r ∈ F} is a basis of neighborhoods of zero for the V -topology
of V , satisfying the following:

r ∈ R ∩ P; r ≡ 1 mod πR, ∀ r ∈ F.

For all r ∈ F , let us consider the polynomials

fr = Y q + rY q−1 − λπ ∈ R[Y ] ⊂ T [Y ].

Now T is a complete DVR, hence henselian (see, e.g., [7]). Since
fr ≡ Y (Y q−1 + 1) mod πT , we may apply Hensel’s lemma to find a
root ξr ∈ Q of fr. Let us note that ξr ∈ T ∩ V = R since T and V
are integrally closed. We have ξq

r = −rξq−1
r + λπ ≡ λπ ≡ 1 mod P

so that ξr is a unit of V for all r ∈ F . Moreover, ξr + P is a root of
the polynomial Zq − 1 ∈ (V/P)[Z]. Since F is an infinite set, there
must exist a subset F ′ of F such that {rV : r ∈ F ′} is a basis of
neighborhoods of zero and ξr ≡ ξs mod P for all r, s ∈ F ′. Let us now
remark that ξr ≡ ξs mod P implies that

ηrs = ξq−1
r + ξq−2

r ξs + · · ·+ ξrξq−2
s + ξq−1

s ≡ qξq−1
r �≡ 0 mod P,



MODULES OVER DOMAINS 1431

since ξr and q are units of V (recall that q is different from the
characteristic of V/P).

We want to verify that {ξr : r ∈ F ′} is a Cauchy net in V . In
fact let us pick r, s ∈ F ′ where r divides s in V ; we have ξq

r − ξq
s =

sξq−1
s −rξq−1

r ∈ rV from which (ξr −ξs)ηrs ∈ rV . Since ηrs is a unit in
V as observed above, we have ξr −ξs ∈ rV ; it follows that {ξr : r ∈ F ′}
is a Cauchy net as desired.

Let us now choose ξ ∈ V̂ such that ξ − ξr ∈ rV̂ for all r ∈ F ′. Then

ξq ≡ ξq
r = −rξq−1

r + λπ ≡ λπ mod rV̂ , ∀ r ∈ F ′;

since ∩r∈F ′rV̂ = {0}, we conclude that ξq − λπ = 0 as desired.

Since the prime element q may be chosen arbitrarily large, and f is
irreducible in Q[Y ], from the above claim we deduce that [Q̂ : Q] = ∞;
equivalently, rankV V̂ = ∞. Finally, since V̂ embeds into V̂ , we also
have rankV Ṽ = ∞.

Remark. In his book [4] Matlis describes the theory of D-rings, i.e.
those domains R such that every torsion-free R-module of finite rank is
a direct sum of modules of rank 1. One main result is that an integrally
closed domain R is a D-ring if and only if R is the intersection of at
most two maximal valuation rings of its field of fractions. Examples
are given of D-rings R which are not valuation domains; of course the
two maximal valuation domains V1, V2 such that R = V1 ∩ V2 are both
nondiscrete according to our Proposition 4. As a consequence we can
state that our T -large domains are not D-rings, but we shall see much
more in the next section.

Section 2. In this section we shall examine torsion-free modules,
of finite rank M over a T -large domain R, which are Hausdorff in the
N-adic topology.

Proposition 5. Let M be a finite rank torsion-free R-module,
Hausdorff in the N-adic topology. Then the N-adic completion of M
coincides with the localization MN, which is a direct sum of as many
copies of T as the rank of M .

Proof. Since RN = T , then MN is a T -module; since T is a complete
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DVR, MN has to be a direct sum of as many copies of T as the
T -rank of MN which is equal to the R-rank of M . It also follows
that the R-module MN is complete in the N-adic topology since T
is the completion of R in the N-adic topology. To conclude that
MN is the completion of M , it suffices to show that the N-topology
on M coincides with the topology induced on M by the N-topology
of MN and that M is dense in MN. This amounts to prove that
for all n ∈ N, πnM = (πnMN) ∩ M and that for all t ∈ MN and
n ∈ N, (t + πnMN) ∩ M �= ∅. These two facts can be proved with so
straightforward a generalization of the arguments in Lemmas 5 and 6
of [10] that we have thought it appropriate to omit the verifications.

An immediate consequence of the above proposition is the following

Corollary 6. A finite rank torsion-free R-module M is Hausdorff if
and only if it is contained in a finite direct sum of copies of T .

In the next results, we shall carry over known results on modules
over the nonmaximal valuation domain V to Hausdorff modules over
R = V ∩ T .

Proposition 7. For any fixed n > 0, there exists an indecomposable
torsion-free R-module M of rank n which is Hausdorff in the N-adic
topology.

Proof. In view of Proposition 4, we know that rankV (Ṽ ) = ∞. Let
us then choose a1, . . . , an ∈ Ṽ , linearly independent over Q. Let us
consider the V -module

N = (Qa1 + · · ·+ Qan) ∩ Ṽ ;

N is an indecomposable V -module in view of Theorem 3(a) of [8]. Let
us now consider the following R-module

M = N ∩ (Ta1 + · · ·+ Tan).

M has rank n and it is Hausdorff, being contained in Ta1 + · · ·+ Tan.
Let us verify that M is indecomposable. It is clear that any possible
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nontrivial direct decomposition of the R-module M gives rise to a
nontrivial direct decomposition of the V -module MP (P is the maximal
ideal of V ). It is then enough to show that MP = N . Obviously,
N ⊇ MP since N is a V -module. Let us now choose η ∈ N ; since
η ∈ Qa1 + · · ·+ Qan, there exist h ≥ 0 and t1, . . . , tn ∈ T such that

η = (1/π)h(t1a1 + · · ·+ tnan).

It follows that πhη ∈ N ∩ (Ta1 + · · · + Tan) = M whence η ∈ MP

since π is a unit of V . This yields N ⊆ MP and the desired conclusion
follows.

Our next Theorem 8 will be based on Theorem 1 in [3]; we state it
in the following, less general form, which is exactly what we need.

Theorem [3]. Let V be a valuation domain such that rankV V̂ = ∞.
Let AV be a reduced torsion-free V -algebra of finite rank n; let ÂV

be the completion of AV in the V -topology. Then there exist α ∈ V̂ ,
δ ∈ ÂV such that :

(i) 1AV
, α, δ are independent over AV ;

(ii) the V -submodule N = AV + AV α + AV δ of ÂV has rank 3n;

(iii) EndV (N∗) = AV , where N∗ is the purification of N in ÂV .

We recall that an R-module M is said to be cotorsion-free if M is
reduced, torsion-free and does not contain isomorphic copies of R̂ = T .
We will need the simple fact that M is cotorsion-free if and only if
MP is reduced. In fact if M contains a copy of T , then MP contains
a copy of TP = Q. Conversely let us suppose that MP ⊇ Qξ where
without loss of generality, ξ ∈ M . In order to show that M ⊇ Tξ, it
is enough to prove that ξ/y ∈ M for any y ∈ R \ πR, since T = RN.
Now ξ/y belongs to Qξ ⊆ MP whence we can write ξ/y = a/πk,
where a ∈ M . To reach the desired conclusion we have to show that
a ∈ πkM . If not we may assume that a /∈ πM and k > 0. We have
ya = πkξ ∈ πkM ; let z ∈ R be such that yz ≡ 1 mod πR, 1 = yz + λπ,
say; then a = zya + λπa ∈ πM against our assumption.

Theorem 8. Let R = V ∩ T be a T -large domain. Every cotorsion-
free Hausdorff R-algebra A of finite rank n is the R-endomorphism
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algebra of a torsion-free Hausdorff R-module M of rank 3n.

Proof. Since A is Hausdorff, AN is the N-adic completion of A;
we can write AN = Tz1 ⊕ · · · ⊕ Tzn where the zi lie in A and
z1 = 1A. Let us now consider the V -algebra AP; let us note that
AP is reduced since A is cotorsion-free. We are thus in the position to
apply the preceding theorem to AP since rankV V̂ = ∞ holds in view
of Proposition 4. Let N = AP + APα + APδ ⊆ ÂP be the V -module
such that EndV (N∗) = AP. Let us note that the elements z1, . . . , zn,
z1α, . . . , znα, z1δ, . . . , znδ of N are linearly independent over Q since
1A, α, δ are independent over A; moreover, A ⊆ Qz1⊕· · ·⊕Qzn implies
that

N∗ ⊆ Qz1 ⊕ · · ·Qzn ⊕ Qz1α ⊕ · · · ⊕ Qznα ⊕ Qz1δ ⊕ · · · ⊕ Qznδ.

Let us consider the R-module

C = Tz1 ⊕ · · ·Tzn ⊕ Tz1α ⊕ · · · ⊕ Tznα ⊕ Tz1δ ⊕ · · · ⊕ Tznδ,

and let us set M = N∗ ∩ C. It is clear that the R-module M
has rank 3n since it contains Rz1 ⊕ · · · ⊕ Rznδ; we will show that
EndR(M) = A whence our statement follows. Let us first show that
MP = N∗. It is clear that N∗ ⊇ MP since N∗ is a V -module. Let
now η be any element of N∗; then η ∈ Qz1 ⊕ · · · ⊕ Qznδ so that
η =

∑
aizi +

∑
biziα +

∑
ciziδ, where ai, bi, ci ∈ Q. Since any d ∈ Q

is of the form d = v/πk with v ∈ T and k ≥ 0, it is clear that we can
write η = (1/π)hθ, where h ≥ 0 is a suitable integer and θ ∈ C. It
follows that θ = πhη ∈ N∗ ∩ C = M whence η ∈ MP, since π /∈ P; we
conclude that N∗ ⊆ MP too. From N∗ = MP we deduce that every
R-endomorphism of M extends uniquely to an R-endomorphism of N∗.
Moreover, EndR(N∗) = EndV (N∗) = AP whence EndR(M) ⊆ AP. We
also have A ⊆ EndR(M) since M is an A-module; in fact N∗ is by
definition an A-module and to see that C is an A-module, it is enough
to observe that A ⊆ AN = Tz1⊕· · ·⊕Tzn. To end the proof, it suffices
to check that no ρ ∈ AP\A can be an endomorphism of M . In fact since
A is Hausdorff, for such a ρ we can write ρ = a/πk where a ∈ A, k > 0
and a/π /∈ A. From πAN ∩ A = πA (see the proof of Proposition 5),
it follows that a/π /∈ AN too. Then ρz1 = ρ1A = ρ /∈ AN. Since
C = AN⊕ANα⊕ANδ and 1A, α, δ are independent over A, we conclude
that ρz1 /∈ C whence ρz1 /∈ M and ρ /∈ EndR(M).
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The assumption that the R-algebra A is cotorsion-free cannot be
eliminated, due to the following example.

Example 9. The finite rank Hausdorff R-algebra A = T × T is
not the endomorphism algebra of a Hausdorff torsion-free R-module
of finite rank. This fact can be verified exactly as in the proof of the
corollary of Theorem 1 in [3].

Our last result shows the remarkable fact that the Krull-Schmidt
theorem fails for finite rank torsion-free modules over a T -large domain
R; its proof is an adaptation of the argument developed in Theorem 2
of [3].

Theorem 10. Let R = V ∩ T be a T -large domain. Then for every
n ∈ N there exists an R-module N of rank > n which admits two
non-isomorphic direct decompositions into indecomposable summands.

Proof. Let λ ∈ R be such that λπ ≡ 1 mod P. We know that for
almost all prime numbers q, the polynomial f = Y q −λπ is irreducible
in Q[Y ] whence, a fortiori in R[Y ], since it is monic. Let us also
assume that q /∈ P ∪ N whence q is a unit of R, and let f1 = Y − 1,
f2 = Y q−1 + · · · + Y + 1. Then from q ∈ (f1, f2)R[Y ] it follows that
1 ∈ (f1, f2)R[Y ]. Let g2 be a monic irreducible factor of f2 in R[Y ]; let
us set g1 = f1 which is irreducible in R[Y ] too. We conclude that we
can write 1 = g1h1+g2h2 for suitable h1, h2 ∈ R[Y ]. Let us also observe
that from λπ ≡ 1 mod P it follows that ḡ1ḡ2 divides f̄ in (R/P)[Y ],
where ḡ1, ḡ2, f̄ are the reductions of g1, g2, f modulo P. Moreover, since
R is integrally closed and g1, g2, f are all irreducible in R[Y ] and monic,
they are also prime elements of R[Y ]. Let us consider the R-algebra A =
R[Y ]/(g1g2f); A is cotorsion-free of finite rank since g1g2f is monic. We
are in the position to apply Theorem 8. Let M be a finite rank torsion-
free Hausdorff R-module such that EndR(M) = A. As in [3] we can see
that from g1, g2, f prime in R[Y ], it follows that A has no idempotent
elements whence M is indecomposable. Note that rankM > 3q since
rankA > q. Let φ : R[Y ] → A denote the canonical map and let us
define submodules Mi ⊂ M by Mi = φ(gihi)(M), i = 1, 2. Define
mappings M → M1 ⊕ M2 by m �→ (φ(g1h1)(m), φ(g2h2)(m)) and
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M1 ⊕ M2 → M by (m1, m2) �→ m1 + m2. The composition map is
φ(g1h1 + g2h2) = φ(1) = 1A so that N = M1 ⊕ M2 = M ⊕ K for a
suitable K. Moreover, rankM > rankMi, i = 1, 2 (see [3]). Thus when
M1, M2, K are expressed as direct sums of indecomposable modules,
we get inequivalent decompositions. Finally, if we choose q such that
3q > n, we get n < 3q < rankM < rankN .
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