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GEOMETRICAL PROPERTIES
OF THE PRODUCT OF A C∗-ALGEBRA

KAIDI EL AMIN, ANTONIO MORALES CAMPOY AND

ANGEL RODRIGUEZ PALACIOS

0. Introduction. The study of the geometry of norm-unital
complex Banach algebras at their units [5], [6] takes its first impetus
from the celebrated Bohnenblust-Karlin theorem [3] asserting that the
unit of such an algebra A is a vertex of the closed unit ball of A.
As observed in [5, pp. 33 34], the Bohnenblust-Karlin paper contains
a stronger result, namely that, for such an algebra A, the inequality
n(A,1) ≥ (1/e) holds. Here 1 denotes the unit of A, and n(A,1) is a
suitably defined nonnegative real number which depends only on the
Banach space of A and the norm-one distinguished element 1. As the
main result, we prove in this paper that the product of every nonzero
C∗-algebra A is a vertex of the closed unit ball of the Banach space
Π(A) of all continuous bilinear mappings from A × A into A. As in
the above mentioned case, the vertex property follows from stronger
“numerical” conditions. Indeed, if A is a nonzero C∗-algebra, and if
pA denotes the product of A, then n(Π(A), pA) is equal to 1 or 1/2
depending on whether or not A is commutative (Theorem 1.1). We
note that our main result improves the recent one in [24, Corollary 2.7]
asserting that the product of every nonzero C∗-algebra A is an extreme
point of the closed unit ball of Π(A).

In Section 2 we show that the main result remains true for the so-
called alternative C∗-algebras (Theorem 2.5). Alternative C∗-algebras
are defined by means of the Gelfand-Naimark abstract system of axioms
but relaxing the familiar requirement of associativity to that of alter-
nativity. Alternative C∗-algebras arise in a natural way in functional
analysis. Indeed, Gelfand-Naimark axioms on a general nonassociative
unital algebra imply the alternativity [22, Theorem 14] (see also [9])
and the existence of alternative C∗-algebras failing to be associative
is well known (see [17, Example 13] and [8, Theorem 3.7]). Alterna-
tive C∗-algebras are studied in detail in [20] and [8] and have shown
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useful in the structure theory of JB∗-triples [14]. Most tools applied
in the extension of the main result to the alternative setting are actu-
ally proved for the so-called noncommutative JB∗-algebras [20]. We
note that the class of noncommutative JB∗-algebras contains that of
alternative C∗-algebras. Moreover, as in the case of these last alge-
bras, noncommutative JB∗-algebras have a natural birth. Namely, if a
norm-unital complete normed nonassociative complex algebra A is sub-
jected to the geometric Vidav condition characterizing C∗-algebras in
the associative context [4, Theorem 38.14], then A is a noncommutative
JB∗-algebra [23].

Finally, in Section 3, we raise the question if alternative C∗-algebras
are the unique noncommutative JB∗-algebras A whose products are
vertices of the closed unit ball of Π(A). In relation to this question, we
exhibit an example showing that, if the vertex property is relaxed to
the extreme point property, then the answer is negative (Example 3.2).

1. The main result. Let X be a normed space. We denote by SX

and BX the unit sphere and the closed unit ball, respectively, of X.
L(X) will denote the normed algebra of all bounded linear operators on
X, and IX will stand for the identity operator on X. Each continuous
bilinear mapping from X × X into X will be called a product on X.
Each product f on X has a natural norm ‖f‖ given by

‖f‖ := sup{‖f(x, y)‖ : x, y ∈ X, ‖x‖ ≤ 1, ‖y ≤ 1}.
We denote by Π(X) the normed space of all products on X. For every
product f on a normed space X, f∗∗∗ : X∗∗ ×X∗∗ → X∗∗ will stand
for the third Arens transpose of f [2].

Now let u be a norm-one element in the normed space X. The set of
states of X relative to u, D(X,u), is defined as the nonempty, convex
and weak∗-compact subset of X∗ given by

D(X,u) := {φ ∈ BX∗ : φ(u) = 1}.
For x in X, the numerical range of x relative to u, V (X,u, x) is given
by

V (X,u, x) := {φ(x) : φ ∈ D(X,u)}.
Thanks to the Hahn-Banach theorem, numerical ranges are contracted
(respectively, preserved) under linear contractions (respectively, isome-
tries), preserving “distinguished” elements. Indeed, if Y is another
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normed space, if v is a norm-one element in Y , and if F is a linear con-
traction (respectively, isometry) from X into Y with F (u) = v, then
for all x in X we have

V (Y, v, F (x)) ⊆ V (X,u, x) respectively, V (Y, v, F (x)) = V (X,u, x).

We say that u is a vertex of BX if the conditions x ∈ X and φ(x) = 0
for all φ in D(X,u) imply x = 0. It is well known and easy to see that
the vertex property for u implies that u is an extreme point of BX . For
x in X, we define the numerical radius of x relative to u, v(X,u, x), by

v(X,u, x) := Max {|ρ| : ρ ∈ V (X,u, x)}.

The numerical index of X relative to u, n(X,u), is the number given
by

n(X,u) := Max {r ≥ 0 : r‖x‖ ≤ v(X,u, x) for all x in X}.

We note that 0 ≤ n(X,u) ≤ 1 and that the condition n(X,u) > 0
implies that u is a vertex of BX . Note also that, if Y is a subspace
of X containing u, then n(Y, u) ≥ n(X,u). According to a result of
Crabb, Duncan and McGregor [10, Theorem 3], if A is a nonzero C∗-
algebra with a unit 1, then n(A,1) is equal to 1 or 1/2 depending on
whether or not A is commutative.

Let A be a complex algebra. The unital hull A1 of A is defined by
A1 := A, if A has a unit, and otherwise by A1 := C1⊕A with product

(λ1+ x)(µ1+ y) := λµ1+ (λy + µx+ xy).

In any case, A1 is a unital complex algebra containing A as an ideal. For
z in A1, we denote by Tz the linear operator on A defined by Tz(x) := zx
for every x in A. We note that, if the algebra A is normed, then, for z in
A1, the operator Tz is continuous. We also note that, if ∗ is an algebra-
involution on A, then it extends uniquely to an algebra-involution, also
denoted by ∗, on A1, which is given by (λ1+x)∗ := λ̄1+x∗. It is known
that, if the algebra A is a C∗-algebra, then A1, with the involution
above and the norm ‖.‖ given by ‖z‖ := ‖Tz‖ for z in A1 becomes a
C∗-algebra containing A isometrically (see for instance Lemma 12.19
in [4] and its proof).
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For every normed algebra A, pA will denote the natural product of
A and, when A is endowed with an involution, Asa will stand for the
self-adjoint part of A. Also, if E is any set, then B(E,A) will mean the
normed algebra of all bounded functions from E into A (with point-wise
operations and the supremum norm). For background on C∗-algebras,
the reader is referred to [11] and [25].

Theorem 1.1. Let A be a nonzero C∗-algebra. Then n(Π(A), pA) is
equal to 1 or 1/2 depending on whether or not A is commutative.

Proof. Let δ denote either 1 or 1/2 depending on whether or not A
is commutative. Consider the chain of linear mappings

A1
F1−→ L(A) F2−→ Π(A) F3−→ Π(A∗∗) F4−→ B((A∗∗)sa × (A∗∗)sa, A

∗∗),

where F1(z) := Tz for every z in A1, F2(T )(x, y) := T (xy) for every T
in L(A) and all x, y in A, F3(f) := f∗∗∗ for every f in Π(A), and

F4(g)(h, k) := e−ihg(eih, eik)e−ik

for every g in Π(A∗∗) and all h, k in (A∗∗)sa. We know that F1 and
F3 are isometries. But the same is true for F2 (because A has an
approximate unit bounded by one) and also for F4 (thanks to the
Russo-Dye-Palmer theorem [4, Theorem 38.13]). Moreover, we have
F1(1) = IA, F2(IA) = pA, F3(pA) = (pA)∗∗∗, which is nothing but the
natural C∗-product pA∗∗ of A∗∗, and F4(PA∗∗) = �, where � denotes
the constant mapping equal to the unit of A∗∗ on (A∗∗)sa × (A∗∗)sa.
Since A1 and B((A∗∗)sa × (A∗∗)sa, A

∗∗) are C∗-algebras with units 1
and �, respectively, and they are commutative if and only if A is, it
follows that

δ = n(A1,1) ≥ n(L(A), IA) ≥ n(Π(A), pA)
≥ n(Π(A∗∗), pA∗∗) ≥ n(B((A∗∗)sa × (A∗∗)sa, A

∗∗),�) = δ.

The method of proof in the above theorem leads to other interesting
consequences. As a first application the next corollary shows how, for
a unital C∗-algebra A, numerical ranges in Π(A) relative to pA can be
computed in terms of numerical ranges in A relative to its unit.
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Corollary 1.2. Let A be a nonzero C∗-algebra with a unit 1. Denote
by U the set of all unitary elements in A. Then, for every f in Π(A),
we have

V (Π(A), pA, f) = co [∪{V (A,1, u∗f(u, v)v∗) : u, v ∈ U}]
= co [∪{V (A,1, e−ihf(eih, eik)e−ik) : h, k ∈ Asa}],

where co denotes closed convex hull.

Proof. The inclusion

co [∪{V (A,1, e−ihf(eih, eik)e−ik) : h, k ∈ Asa}]
⊆ co [∪{V (A,1, u∗f(u, v)v∗) : u, v ∈ U}]

is clear, and the one

co [∪{V (A,1, u∗f(u, v)v∗) : u, v ∈ U}] ⊆ V (Π(A), pA, f)

follows since, for u, v in U , the mapping f → u∗f(u, v)v∗ from Π(A) to
A is a linear contraction sending pA to 1. Put E := Asa ×Asa and, for
f in Π(A), let f̂ be the element in B(E,A) defined by

f̂(h, k) := e−ihf(eih, eik)e−ik.

As seen in the proof of Theorem 1.1, the linear mapping f → f̂ from
Π(A) to B(E,A) is an isometry sending pA to the unit � of B(E,A).
Therefore

V (Π(A), pA, f) = V (B(E,A),�, f̂).
But, by [22, Proposition 3], we have

V (B(E,A),�, f̂) = co [∪{V (A,1, f̂(h, k)) : (h, k) ∈ E}].

It follows that

V (Π(A), pA, f) = co [∪{V (A,1, e−ihf(eih, eik)e−ik) : h, k ∈ Asa}].

Now we handle other consequences of the method of proof of Theo-
rem 1.1. Let X be a nonzero normed space. The duality mapping of X
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is the set-valued function v → D(X, v) from SX into P(X∗). Follow-
ing [13] we say that the duality mapping of X is norm-to-norm upper
semi-continuous at a point u of SX if, for every ε > 0, there exists
δ > 0 such that D(X, v) ⊆ D(X,u) + εBX whenever v is in SX and
‖v − u‖ ≤ δ. We note that the requirement n(X,u) = 1 implies that
the duality mapping of X is upper semi-continuous at u whereas, for
every 0 < ρ < 1, upper semi-continuity of the duality mapping of X at
u and the requirement n(X,u) = ρ are independent conditions [1, pp.
134 135].

Corollary 1.3. Let A be a nonzero C∗-algebra. Then the duality
mapping of Π(A) is norm-to-norm upper semi-continuous at pA.

Proof. With the notation in the proof of Theorem 1.1, the mapping
F4 ◦ F3 identifies Π(A) with a subspace of the norm-unital Banach
algebra B((A∗∗)sa × (A∗∗)sa, A

∗∗) in such a way that pA converts
into the unit of that algebra. Then the result follows from [19,
Proposition 4.5] and the well-known hereditary character of the upper
semi-continuity of the duality mapping.

Again let X be a nonzero normed space (no distinguished norm-
one element is chosen). The normed space numerical index, N(X) of
X is defined by N(X) := n(L(X), IX). The proof of Theorem 1.1
directly gives the result of T . By Huruya [15], if A is a nonzero C∗-
algebra, then N(A) is equal to 1 or 1/2 depending on whether or not
A is commutative. As a methodological remark, we point out that a
part of our proof can be useful to clarify the first step in Huruya’s
original argument. In our opinion that first step (establishing the
inequality N(A) ≤ 1/2 for every noncommutative C∗-algebra A) is
easily understood only by passing through the unit hull A1 of A in the
way we have done.

We conclude this section with a variant of Huruya’s theorem. For
an element x in an algebra A, we denote by Lx the operator of left
multiplication by x on A.

Proposition 1.4. Let A be a nonzero W ∗-algebra, and let A∗ denote
the predual of A. Then N(A∗) is equal to 1 or 1/2 depending on whether
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or not A is commutative.

Proof. First note that, for every normed space X, the inequality
N(X∗) ≤ N(X) holds [6, Lemma 32.7]. Assume that the W ∗-algebra
A is commutative. Then we have 1 = N(A) ≤ N(A∗) ≤ 1. Now
assume that A is not commutative. Then 1/2 = N(A) ≤ N(A∗). On
the other hand, by [18, Appendix 3], there exists x in SA with x2 = 0.
By [7, p. 214], for such an x we have v(A,1, x) = 1/2 (here 1 stands
for the unit of A). Since the mapping y → Ly from A to L(A) is a
linear isometry sending 1 to IA, we derive v(L(A), IA, Lx) = 1/2. By
the separate weak∗-continuity of the product of A, there exists S in
L(A∗) such that Lx = S∗, and hence we obtain v(L(A∗), IA∗ , S) = 1/2.
It follows that N(A∗) = n(L(A∗), IA∗) ≤ 1/2.

2. Extending the results to alternative C∗-algebras. In this
section we show that Theorem 1.1 remains true if the assumption of
associativity for the C∗-algebra A is relaxed to that of alternativity.

Alternative algebras are defined as those (not necessarily associative)
algebras A satisfying x2y = x(xy) and yx2 = (yx)x for all x, y in A. By
Artin’s theorem [26, p. 29], an algebra A is alternative, (if and) only if,
for all x, y in A, the subalgebra of A generated by {x, y} is associative.
As a consequence, alternative algebras are power-associative (i.e., all
one-generated subalgebras are associative). Let A be an alternative
algebra with a unit 1. An element x in A is said to be invertible if
there exists y in A such that xy = yx = 1. If this is the case, then
the element y above is uniquely determined by x, is called the inverse
of x, is denoted by x−1 and satisfies x(x−1z) = x−1(xz) = z and
(zx−1)x = (zx−1)x = z for every z in A (see for instance [26, p. 38]).

A complete normed complex alternative algebra A with (conjugate-
linear) algebra-involution ∗ satisfying ‖x∗x‖ = ‖x‖2 for all x in A is
called an alternative C∗-algebra. Let A be an alternative C∗-algebra
with a unit 1. An element u in A is said to be unitary if the equalities
uu∗ = u∗u = 1 hold (equivalently, if u is invertible in A with u−1 = u∗).
Such an element u satisfies ‖u‖ = ‖u∗‖ = 1 and u(u∗z) = u∗(uz) = z
and (zu∗)u = (zu)u∗ = z for every z in A, so that the mappings
z → uz and z → zu from A to A become surjective linear isometries.
Distinguished unitary elements of A are those of the form eix where
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x is in the self-adjoint part Asa of A, and it is easily shown (see for
instance [8, Theorem 2.10]) that the verbatim translation of the Russo-
Dye-Palmer theorem holds for A. Indeed, the equalities

BA = co {u : u unitary in A} = co {eih : h ∈ Asa}

are true.

Most remaining facts of the theory of (associative) C∗-algebras ap-
plied in the proof of Theorem 1.1 are also known in the wider setting of
alternative C∗-algebras. For instance, if A is an alternative C∗-algebra,
then the bidual A∗∗ of A, with product equal to the third Arens tran-
pose of the product ofA, and involution equal to the second transpose of
the involution of A, becomes an alternative C∗-algebra with a unit [20,
Corollary 1.9]. Other results needed for our purpose are directly deriv-
able from the theory of noncommutative JB∗-algebras [20] and the fact
that alternative C∗-algebras are noncommutative JB∗-algebras. Fol-
lowing [26, p. 141], we define noncommutative Jordan algebras as those
algebras A satisfying the Jordan identity (xy)x2 = x(yx2) and the flex-
ibility condition (xy)x = x(yx). Noncommutative Jordan algebras are
also power associative [26, p. 141]. As a consequence of Artin’s theo-
rem, alternative algebras are noncommutative Jordan algebras. For an
element x in a noncommutative Jordan algebra A, we denote by Ux the
mapping y → x(xy+yx)−x2y from A to A. By a noncommutative JB∗-
algebra we mean a complete normed noncommutative Jordan complex
algebra (say A) with algebra involution ∗ satisfying ‖Ux(x∗)‖ = ‖x‖3

for every x in A. Now alternative C∗-algebras are nothing but those
noncommutative JB∗-algebras which are alternative [20, Proposition
1.3]. As a first application, the extension for alternative C∗-algebras
of the Crabb-Duncan-McGregor result in [10, Theorem 1] will follow
from the next proposition.

Proposition 2.1 [22, Theorem 26] (see also [16, Theorem 4]). Let A
be a nonzero, noncommutative JB∗-algebra with a unit 1. Then n(A,1)
is equal to 1 or 1/2 depending on whether or not A is associative and
commutative.

Since commutative alternative complex algebras are associative [29,
Corollary 7.1.2], we obtain
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Corollary 2.2. Let A be a nonzero alternative C∗-algebra with a
unit 1. Then n(A,1) is equal to 1 or 1/2 depending on whether or not
A is commutative.

Now the only remaining auxiliary tools for the proof of the alternative
extension of Theorem 1.1 are the following two lemmas.

Lemma 2.3. Let A be a nonzero, noncommutative JB∗-algebra.
Then A1, endowed with the unique algebra involution extending the
one of A and the norm ‖.‖ given by ‖z‖ := ‖Tz‖ for all z in A1, is a
noncommutative JB∗-algebra containing A isometrically.

Proof. By [20, Theorem 1.7], the bidual A∗∗ of A, with product equal
to the third Arens transpose of the product ofA, and involution equal to
the second transpose of the involution of A, becomes a noncommutative
JB∗-algebra with a unit (say 1). Then we can see A1 as the norm-
closed ∗-invariant subalgebra of A∗∗ consisting of those elements z in
A∗∗ which can be written in the form λ1 + x for some λ in C and
x in A. In this way A1 is a noncommutative JB∗-algebra containing
A isometrically so that, to conclude the proof, it is enough to show
that the equality ‖z‖ = ‖Tz‖ holds for every z in A1 (here ‖z‖
means the norm of z as an element of A∗∗). Let z be in A1. Then
(Tz)∗∗ : A∗∗ → A∗∗ and the operator of left multiplication by z on A∗∗,
say LA∗∗

z , coincide on A and are weak∗-continuous (the second one, by
[20, Theorem 3.5]). It follows from the weak∗-density of A in A∗∗ that
(Tz)∗∗ = LA∗∗

z , and hence

‖Tz‖ = ‖(Tz)∗∗‖ = ‖LA∗∗
z ‖.

Since ‖z‖ = ‖LA∗∗
z ‖, because A∗∗ is a norm-unital normed algebra, we

obtain ‖z‖ = ‖Tz‖, as required.

Lemma 2.4. Let A be a noncommutative JB∗-algebra and x an
element of A. Then x belongs to the norm-closure of xBA.

Proof. Take a net {yλ} in BA convergent to the unit 1 of A∗∗ in the
weak∗ topology of A∗∗. Then, by [20, Theorem 3.5], {xyλ} converges
to x in that topology. Since the net {xyλ} lies in A and x belongs to
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A, it follows that {xyλ} converges to x in the weak topology of A, and
therefore x actually belongs to the weak closure of xBA in A. Finally
apply that xBA is convex.

Now we are ready to prove the extension of Theorem 1.1 to alternative
C∗-algebras.

Theorem 2.5. Let A be a nonzero alternative C∗-algebra. Then
n(Π(A), pA) is equal to 1 or 1/2 depending on whether or not A is
commutative.

Proof. If A is commutative, then by Theorem 1.1 we have
n(Π(A), pA) = 1. Assume that A is not commutative. We know that
A∗∗, with product equal to the third Arens transpose of the product
of A, and involution equal to the second transpose of the involution of
A, becomes an alternative C∗-algebra with a unit 1. Moreover, since
the unital hull of an alternative algebra is an alternative algebra too,
it follows from Lemma 2.3 that A1 is an alternative C∗-algebra in such
a way that the mapping z → Tz from A1 to L(A) is an isometry. Now,
consider the chain of linear mappings

A1
F1−→ L(A) F2−→ Π(A) F3−→ Π(A∗∗) F4−→ B((A∗∗)sa × (A∗∗)sa, A

∗∗),

where F1, F2 and F3 are defined verbatim as in the proof of Theo-
rem 1.1, whereas F4 is determined by the equality

F4(g)(h, k) := e−ih(g(eih, eik)e−ik)

for every g in Π(A∗∗) and all h, k in (A∗∗)sa. At this time, the isometric
character of F1 and F3 is not in doubt. But F2 and F4 are also
isometries. Indeed, apply Lemma 2.4 for the case of F2 and, concerning
F4, keep in mind the extended Russo-Dye-Palmer theorem together
with the fact that left and right multiplications by unitary elements
on A∗∗ are isometries. On the other hand, the equalities F1(1) = IA,
F2(IA) = pA, F3(pA) = pA∗∗ are clear, whereas F4(pA∗∗) = � follows
from Artin’s theorem. Since the unital alternative C∗-algebras A1

and B((A∗∗)sa × (A∗∗)sa, A
∗∗) are not commutative, it follows from
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Corollary 2.2 that

1
2
= n(A1,1) ≥ n(L(A), IA) ≥ n(Π(A), pA)

≥ n(Π(A∗∗), pA∗∗) ≥ n(B((A∗∗)sa × (A∗∗)sa, A
∗∗),�) = 1

2
.

It is worth mentioning that Corollary 1.3 remains true, without any
change in its formulation and proof, in the wider setting of alternative
C∗-algebras. Concerning Corollary 1.2, it needs a light retouching of
formulation in order to remain valid in our new context. Namely, if A
is a nonzero alternative C∗-algebra with a unit 1, and if U denotes the
set of all unitary elements in A, then, for every f in Π(A), we have

V (Π(A), pA, f) = co [∪{V (A,1, u∗(f(u, v)v∗)) : u, v ∈ U}]
= co [∪{V (A,1, e−ih(f(eih, eik)e−ik)) : h, k ∈ Asa}].

Let us also note that the proof of Theorem 2.5 contains an extended
Huruya theorem. Indeed, if A is an alternative C∗-algebra, then N(A)
is equal to 1 or 1/2 depending on whether or not A is commutative. In
fact, the next proposition provides us with a more general result. For
a complex normed space X and a norm-one element u in X, we write

H(X,u) := {x ∈ X : V (X,u, x) ⊆ R}.

Proposition 2.6. Let A be a nonzero noncommutative JB∗-algebra.
Then N(A) is equal to 1 or 1/2 depending on whether or not A is
associative and commutative.

Proof. Assume that A is associative and commutative. Then A
is a commutative C∗-algebra and, therefore, we have N(A) = 1.
Now assume that A fails to be associative or commutative. By the
already applied Theorem 1.7 in [20], A∗∗ is a unital noncommutative
JB∗-algebra in a natural way. Moreover, by Lemma 2.3, A1 is a
noncommutative JB∗-algebra in such a way that the mapping z → Tz

from A1 to L(A) becomes an isometry. Consider the chain of linear
mappings

A1
G1−→ L(A) G2−→ L(A∗∗) G3−→ B((A∗∗)sa, A

∗∗),
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where G1(z) := Tz for every z in A1, G2(T ) := T ∗∗ for every T in L(A),
and

G3(S)(h) := e−iLhS(eih)

for every S in L(A∗∗) and all h in (A∗∗)sa. We know that G1 and G2 are
isometries. To see that the same is true for G3, apply the Russo-Dye-
Palmer-type theorem for noncommutative JB∗-algebras [27, Corollary
2.4], and note that, if h is in (A∗∗)sa, then h belongs to H(A∗∗,1) [28,
Theorem 7(a)], so Lh belongs to H(L(A∗∗), I−A∗∗) and so e−iLh is an
isometry [5, Lemma 5.2]. Since we have G1(1) = IA, G2(IA) = IA∗∗ ,
and G3(IA∗∗) = � (where � denotes the constant mapping equal to
the unit of A∗∗ on (A∗∗)sa), it follows from Proposition 2.1 that

1
2
= n(A1,1) ≥ n(L(A), IA) ≥ n(L(A∗∗), IA∗∗)

≥ n(B((A∗∗)sa, A
∗∗),�) = 1

2
.

Remark 2.7. (i) Proposition 2.6 was formulated in [16, Theorem 5]
as a direct consequence of [20, Theorem 1.7], the particular case of
that proposition for unital algebras [22, Corollary 33], and the claim in
[12] that, for every normed space X, the equality N(X∗) = N(X)
holds. As a matter of fact, the proof of the claim in [12] never
appeared, and the question if for an arbitrary normed space X the
equality N(X∗) = N(X) holds remains an open problem among people
interested in the field.

(ii) Let A be a noncommutative JB∗-algebra. Since A∗∗ is a
noncommutative JB∗-algebra and A∗∗ is associative and commutative
if (and only if) the same is true for A [20, Theorem 1.7], it follows from
Proposition 2.6 that the equality N(X∗) = N(X) holds for X equal to
either A or A∗.

Noncommutative JBW ∗-algebras are defined as those noncommu-
tative JB∗-algebras which are dual Banach spaces. If A is a non-
commutative JBW ∗-algebra, then A has a unit, the predual of A is
unique, and the product of A is separately weak∗-continuous [20, p.
104]. Our concluding result in this section shows that the equality
N(X∗) = N(X) also holds for X equal to the predual A∗ of every non-
commutative JBW ∗-algebra A. Replacing Huruya’s classical theorem,
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[18, Appendix 3, Theorem B] and [7, Corollary 2, p. 214] by Propo-
sition 2.6, [16, Theorem 1] and [22, Proposition 29], respectively, the
proof is almost the same as that of Proposition 1.4, and therefore it is
omitted.

Proposition 2.8. Let A be a nonzero noncommutative JBW ∗-
algebra. Then N(A∗) is equal to 1 or 1/2 depending on whether or
not A is associative and commutative.

3. Discussing the results. Keeping in mind that most auxiliary
results applied to prove Theorem 2.5 are also valid in the setting of
noncommutative JB∗-algebras, one can suspect in a first instance that,
if A is a nonzero noncommutative JB∗-algebra, then n(Π(A), pA) is
equal to 1 or 1/2 depending on whether or not A is associative and
commutative. As a matter of fact, this suspicion is very far from being
right. Indeed, it is very easy to provide us with noncommutative JB∗-
algebras A whose products pA are not extreme points of BΠ(A), so
that pA cannot be a vertex of BΠ(A), and hence n(Π(A), pA) = 0. For
instance, if B is a C∗-algebra which fails to be commutative, if λ is a
real number with 0 < λ < 1, and if we replace the product xy of B by
the one

(x, y) −→ λxy + (1− λ)yx,
then we obtain a noncommutative JB∗-algebra (say A) whose product
is not an extreme point of BΠ(A). With λ = 1/2 in the above
construction we even obtain a (commutative) JB∗-algebra with such a
pathology. Since, on the other hand, we do not know noncommutative
JB∗-algebras A whose products have the vertex property in Π(A)
other than alternative C∗-algebras, we dare to formulate the following
conjecture.

Conjecture 3.1. A noncommutative JB∗-algebra A is alternative
if (and only if) the product of A is a vertex of the closed unit ball of
Π(A).

Concerning the above conjecture, the only remarkable fact that we
know up to date is that, if we relax the vertex property to the extreme
point property, then the answer is negative. This is shown by the next
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example. Following [26, p. 50], we say that a complex algebra A is
quadratic if A has a unit 1, A �= C1 and x2 belongs to the linear hull
of {1, x} for all x in A. A Vidav (in short, V -) algebra is a norm-unital
complete normed complex algebra A satisfying A = H(A,1)⊕ iH(A, 1)
where 1 stands for the unit of A. For such an algebra A, the so-called
natural involution of A, given by (x+ iy)∗ := x− iy, x, y ∈ H(A,1), is
an algebra-involution [23, Theorem 1].

Example 3.2. Let A be the (commutative) JB∗-algebra whose
Banach space is the ∗-invariant subspace of the C∗-algebraM2(C) given
by {(

α β
γ α

)
: α, β, γ ∈ C

}
,

and whose product is the one ◦ defined by

x ◦ y := 1
2
(xy + yx)

for all x, y in A. Since A is commutative and fails to be associative, it
follows that A is not alternative. We will prove that pA is an extreme
point of BΠ(A). To this end we take f, g in BΠ(A) and 0 < λ < 1
such that λf + (1 − λ)g = pA, and we proceed to show that f = pA,
say. If 1 denotes the unit of A then, by [20, Lemma 1.5], we have
f(x,1) = f(1, x) = x for every x in A. In this way 1 is a unit for the
complete normed complex algebras (say B and B+) consisting of the
Banach space of A and the products f and

f+ : (x, y) −→ 1
2
(f(x, y) + f(y, x)),

respectively. Since A is a V -algebra and Vidav’s requirement involves
only the Banach space and the unit, B and B+ are also V -algebras
whose natural (automatically algebra-) involutions coincide with the
JB∗-involution of A. Since A and B+ are commutative V -algebras,
and the mapping F : x→ x from A to B+ is a surjective linear isometry
preserving the units, the argument in the proof of the implication (i)
⇒ (ii) in [17, Lemma 6] shows that F is an algebra isomorphism, so f+

coincides with pA, and hence B+ = A. Now, by [17, Theorem 8] and
[20, Proposition 1.2], B is a noncommutative JB∗-algebra and, since
A is quadratic and squares in B and B+ coincide, B is quadratic too.
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Then, as a consequence of [21, Theorem 3.2], there exist a real Hilbert
space (E, (.|.)) and an anti-commutative product ∧ on E satisfying
(x|x∧ y) = 0 for all x, y in E such that, if we consider the real algebra
C consisting of the vector space R1⊕ E and the product

(λ1+ x)(µ1+ y) := (λµ− (x|y))1+ (λy + µx+ x ∧ y),

then, as a complex algebra, B is nothing but the complexification of C.
Since A is three-dimensional over C, E must be two-dimensional over
R. Let {u, v} be a basis of E. Then we have (u|u∧ v) = (v|u∧ v) = 0,
so u ∧ v = 0 and hence ∧ is identically zero on E. Therefore, B is
commutative, so that B = B+. Since we know that B+ = A, we
obtain B = A. This means f = pA as required.
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