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MULTIPLICITY OF POSITIVE SOLUTIONS FOR
HIGHER ORDER STURM-LIOUVILLE PROBLEMS

JOHN M. DAVIS, LYNN H. ERBE AND JOHNNY HENDERSON

ABSTRACT. We establish the existence of an arbitrary
number of positive solutions to the 2mth order Sturm-Liouville
type problem

(−1)my(2m)(t) = f(t, y(t)), 0 ≤ t ≤ 1,

αy(2i)(0)− βy(2i+1)(0) = 0, 0 ≤ i ≤ m − 1,

γy(2i)(1) + δy(2i+1)(1) = 0, 0 ≤ i ≤ m − 1,

where f : [0, 1]×[0,∞) → [0,∞) is continuous. We accomplish
this by making growth assumptions on f which we state in
terms which generalize assumptions in recent works regarding
superlinear and/or sublinear growth in f .

1. Introduction. In [5], Erbe and Tang consider the boundary
value problem (BVP)

(1.1) −∆u = F (r, u) in R < r < R̂

where r = |x|, x ∈ Rn, subject to one of the boundary conditions

(1.2)

u = 0 on |x| = R, u = 0 on |x| = R̂

u = 0 on |x| = R,
∂u

∂r
= 0 on |x| = R̂

∂u

∂r
= 0 on |x| = R, u = 0 on |x| = R̂.

(Here, (∂u/∂r) denotes differentiation in the radial direction.) In a
radially symmetric setting, after a change of variable (1.1), (1.2) become

−u′′ = f(t, u), 0 < t < 1,(1.3)
αu(0) − βu′(0) = 0
γu(1) + δu′(1) = 0.(1.4)
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Erbe and Tang were able to establish criteria for the existence of
multiple positive solutions of (1.3), (1.4) by making certain assumptions
on the growth of f . It is the aim of this work to generalize these results
for second order BVP’s to arbitrary even order problems.

More specifically, we consider the 2mth order differential equation

(1.5) (−1)my(2m)(t) = f(t, y(t)), 0 ≤ t ≤ 1,

satisfying the Sturm-Liouville type boundary conditions

(1.6)
αy(2i)(0) − βy(2i+1)(0) = 0, 0 ≤ i ≤ m− 1,

γy(2i)(1) + δy(2i+1)(1) = 0, 0 ≤ i ≤ m− 1,

where f : [0, 1] × [0,∞) → [0,∞) is continuous, α, β, γ, δ ≥ 0, and

ρ := γβ + αγ + αδ > 0.

These last two assumptions are simply so that we have a nonnegative
Green’s function for the homogeneous problem

(1.7) (−1)my(2m)(t) = 0

satisfying the boundary conditions (1.6).

The higher order Sturm-Liouville problem given by (1.5), (1.6) is
not only a generalization of (1.3) and (1.4) but it also encompasses
the Lidstone BVP,s which have been of recent interest; see Davis
and Henderson [1]. In [1], the existence of at least three positive,
symmetric solutions is established for the Lidstone BVP’s (i.e., when
β = δ = 0) via the Leggett-Williams fixed point theorem [9]. The
techniques presented here are very different from those in [1] because
we do not rely on the Leggett-Williams fixed point theorem, and we are
also able to establish the existence of any number of positive solutions
in appropriate annular regions.

Our primary goal is to establish growth conditions on h(t, y) :=
(f(t, y)/y), 0 < y < ∞, 0 ≤ t ≤ 1, which yield existence and multi-
plicity criteria for positive solutions of (1.5) and (1.6). Accomplishing
this requires us to define the extended real-valued functions h0(t) and
h∞(t) by

h0(t) := lim
y→0+

h(t, y)

h∞(t) := lim
y→∞h(t, y).
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The cases in which h0(t) ≡ 0 and h∞(t) ≡ ∞ are referred to as
superlinearities of f(t, y) with respect to y at y = 0 and y = ∞.
On the other hand, h0(t) ≡ ∞ and h∞(t) ≡ 0 are referred to as
sublinearities of f(t, y) with respect to y at y = 0 and y = ∞. Each
of the superlinear and sublinear cases has been discussed in [4], [6],
[7], [8], [11]. Most recently, Lian, Wong, and Yeh [10] relaxed the
superlinear and sublinear conditions above and instead assumed only
certain smallness or largeness conditions for h(t, y) at y = 0 and as
y → ∞. We will extend these results in the same spirit as Erbe and
Tang [5]. In doing so, we will assume that h(t, y) 
≡ 0 on any subinterval
of [0, 1] for all 0 < y < ∞.

2. Existence of a positive solution. Our main tool will be the
following fixed point theorem of cone expansion/compression type due
to Krasnosels’kii. See Deimling’s text [2] for the proof.

Theorem 2.1 (Krasnosels’kii). Let E be a Banach space, let K ⊆ E
be a cone, and suppose that Ω1, Ω2 are open subsets of E with 0 ∈ Ω1

and Ω1 ⊂ Ω2. Suppose further that A : K ∩ (Ω2 \ Ω1) → K is a
completely continuous operator such that either

(i) ||Au|| ≤ ||u||, u ∈ K ∩ ∂Ω1 and ||Au|| ≥ ||u||, u ∈ K ∩ ∂Ω2, or

(ii) ||Au|| ≥ ||u||, u ∈ K ∩∂Ω1 and ||Au|| ≤ ||u||, u ∈ K ∩∂Ω2 holds.

Then A has a fixed point in K ∩ (Ω2 \ Ω1).

Our aim is to apply Theorem 2.1 to a completely continuous operator
whose kernel is the Green’s function for (1.7) and (1.6). For the case
m = 1, this Green’s function is

G(t, s) =
1
ρ

{
(γ + δ − γt)(β + αs) 0 ≤ s ≤ t ≤ 1,
(β + αt)(γ + δ − γs) 0 ≤ t ≤ s ≤ 1.

If we let G1(t, s) := G(t, s), then for 2 ≤ j ≤ m we can recursively
define

(2.1) Gj(t, s) =
∫ 1

0

G(t, r)Gj−1(r, s) dr.
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As a result, Gm(t, s) is the Green’s function for (1.7) and (1.6). Note
that G(t, r) ≤ G(r, r) for 0 ≤ t, r ≤ 1. This quickly leads to

(2.2)
Gm(t, s) ≤

[ ∫ 1

0

G(r, r) dr
]m−1

G(s, s)

= Im−1G(s, s), 0 ≤ t ≤ 1, 0 ≤ s ≤ 1,

where

I =
∫ 1

0

G(r, r) dr.

Since G1(t, s) > 0 and therefore G2(t, s) =
∫ 1

0
G(t, r)G1(r, s) dr > 0,

it follows that Gm(t, s) > 0. Moreover, (G(t, s)/G(s, s)) ≥ σ for
1/4 ≤ t ≤ 3/4 and 0 ≤ s ≤ 1 where

σ := min
{

γ + 4δ
4(γ + δ)

,
α + 4β

4(α + β)

}
< 1.

Hence

G2(t, s) =
∫ 1

0

G(t, r)G1(r, s) dr

≥ σ

∫ 1

0

G(r, r)G1(r, s) dr

≥ σ

∫ 3/4

1/4

G(r, r)G1(r, s) dr

≥ σ2G(s, s)
∫ 3/4

1/4

G(r, r) dr.

Continuing inductively, we see that

Gm(t, s) ≥ σmJm−1G(s, s),
1/4 ≤ t ≤ 3/4, 0 ≤ s ≤ 1,

where

J =
∫ 3/4

1/4

G(r, r) dr.

The inequalities (2.2) and (2.3) will be important in the proof of our
main result.
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It is well known that the BVP (1.5), (1.6) has a solution y if and only
if y solves the operator equation

(Ay)(t) :=
∫ 1

0

Gm(t, s)f(s, y(s)) ds = y(t).

Establishing the existence of a solution of (1.5), (1.6) is equivalent then
to proving the existence of a fixed point of A which we will do by using
Theorem 2.1. First, the operator A : C[0, 1] → C[0, 1] is completely
continuous. Define the cone K ⊂ C[0, 1] by

K := {ϕ ∈ C[0, 1] : ϕ(t) ≥ 0 and min
1/4≤t≤3/4

ϕ(t) ≥ Σ||ϕ||}

where

Σ :=
σmJm−1

Im−1
< 1 and ||ϕ|| := sup

0≤t≤1
|ϕ(t)|.

For convenience and cleaner notation, define the constants

η :=
[( ∫ 1

0

G(s, s) ds
)m]−1

= (Im)−1

µ :=
[
σmJm−1

∫ 3/4

1/4

G(s, s) ds
]−1

= (σmJm)−1.

In terms of η and µ, we state the following conditions which govern the
behavior of f(t, y).

(C1) There is a p > 0 such that f(t, y) ≤ ηp for 0 ≤ t ≤ 1 and
0 ≤ y ≤ p.

(C2) There is a q > 0 such that f(t, y) ≥ µq for (1/4) ≤ t ≤ (3/4)
and Σq ≤ y ≤ q.

We are now ready to state our first theorem which establishes the ex-
istence of a positive solution of (1.5), (1.6) based on the aforementioned
conditions.

Theorem 2.2. Suppose there exist distinct p, q > 0 such that
condition (C1) holds for p and condition (C2) holds for q. Then (1.5),
(1.6) has a positive solution y such that ||y|| is between p and q.
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Proof. Without loss of generality we assume 0 < p < q. If y ∈ K and
||y|| = p, then using the estimate in (2.2) we have

Ay(t) =
∫ 1

0

Gm(t, s)f(s, y(s)) ds

≤
∫ 1

0

Im−1G(s, s)f(s, y(s)) ds

≤ Im−1ηp

∫ 1

0

G(s, s) ds

= p

which implies ||Ay|| ≤ ||y|| for ||y|| = p. Likewise, if y ∈ K and ||y|| = q,
then using (2.3) we have, for 1/4 ≤ t ≤ 3/4,

Ay(t) =
∫ 1

0

Gm(t, s)f(s, y(s)) ds

≥
∫ 3/4

1/4

Gm(t, s)f(s, y(s)) ds

≥ µq

∫ 3/4

1/4

Gm(t, s) ds

≥ µqσmJm−1

∫ 3/4

1/4

G(s, s) ds

= q

which implies ||Ay|| ≥ ||y|| for ||y|| = q. By Theorem 2.1, the operator
A has a fixed point in K ∩ (Ωq \ Ωp) where

Ωp := {y ∈ C[0, 1] : ||y|| < p} and Ωq := {y ∈ C[0, 1] : ||y|| < q}.

As a result, the BVP (1.5), (1.6) has a solution y such that p ≤ ||y|| ≤ q.

Corollary 2.1. The BVP (1.5), (1.6) has a positive solution provided

(C3) h0(t) < η for 0 ≤ t ≤ 1 and h∞(t) > (µ/Σ) for (1/4) ≤ t ≤
(3/4), or
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(C4) h0(t) > (µ/Σ) for (1/4) ≤ t ≤ (3/4) and h∞(t) < η for
0 ≤ t ≤ 1.

Proof. Suppose (C3) holds. Then

lim
y→0+

f(t, y)
y

< η, 0 ≤ t ≤ 1,

and

lim
y→∞

f(t, y)
y

>
µ

Σ
, 1/4 ≤ t ≤ 3/4.

So there is a sufficiently small p > 0 and sufficiently large q > 0 such
that

f(t, y)
y

≤ η, 0 ≤ t ≤ 1, 0 < y ≤ p,

and
f(t, y)
y

≥ µ

Σ
,

1
4
≤ t ≤ 3

4
, y ≥ Σq.

Hence
f(t, y) ≤ ηy ≤ ηp, 0 ≤ t ≤ 1, 0 ≤ y ≤ p,

and
f(t, y) ≥ µ

Σ
y ≥ µq,

1
4
≤ t ≤ 3

4
, Σq ≤ y ≤ q.

So we have shown that (C3) implies (C1) and (C2).

For the rest of the proof, assume (C4) holds. Then

lim
y→0+

f(t, y)
y

>
µ

Σ
,

1
4
≤ t ≤ 3

4
,

and

lim
y→∞

f(t, y)
y

< η, 0 ≤ t ≤ 1.

This implies that there are 0 < p < q such that

f(t, y)
y

≥ µ

Σ
,

1
4
≤ t ≤ 3

4
, 0 < y ≤ p,
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and

(2.4)
f(t, y)
y

≤ η, 0 ≤ t ≤ 1, y ≥ q.

So

f(t, y) ≥ µ

Σ
y ≥ µp,

1
4
≤ t ≤ 3

4
, Σp ≤ y ≤ p.

Therefore condition (C2) holds at p.

In order to show that (C1) holds, we consider two cases.

Case 1. Suppose f(t, y) is bounded for 0 ≤ t ≤ 1 and 0 ≤ y < ∞,
i.e., f(t, y) ≤ M for 0 ≤ t ≤ 1 and 0 ≤ y < ∞. By (2.4) above, there
is a p∗ ≥ q such that f(t, y) ≤ M ≤ ηp∗ for 0 ≤ t ≤ 1 and 0 ≤ y ≤ p∗

provided p∗ ≥ (M/η). Hence (C1) holds for p = p∗.

Case 2. Suppose f(t, y) is unbounded. Then there is a t0 ∈ [0, 1] and
p∗ ≥ q such that f(t, y) ≤ f(t0, p∗) for 0 ≤ t ≤ 1 and 0 ≤ y ≤ p∗.
Hence f(t, y) ≤ f(t0, p∗) ≤ ηp∗ and (C1) holds for p = p∗.

An application of Theorem 2.2 yields the result.

3. An arbitrary number of positive solutions. We are also
able to establish the existence of multiple solutions by utilizing our
previous conditions.

Theorem 3.1. The BVP (1.5), (1.6) has at least two positive solu-
tions if (C1) holds for some p > 0, and in addition, we have

h0(t) >
µ

Σ
,

1
4
≤ t ≤ 3

4

and

h∞(t) >
µ

Σ
,

1
4
≤ t ≤ 3

4
.

Moreover, 0 < ||y1|| < p < ||y2||.
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Proof. As in the proof of the last corollary, there exist p1, p2 with
0 < p1 < p < p2 satisfying

f(t, y) ≥ µp1, for
1
4
≤ t ≤ 3

4
, Σp1 ≤ y ≤ p1,

and

f(t, y) ≥ µp2, for
1
4
≤ t ≤ 3

4
, Σp2 ≤ y ≤ p2.

By Theorem 2.2, we obtain the existence of the solutions y1, y2 of the
BVP (1.5), (1.6) with 0 < p1 < ||y1|| < p < ||y2|| < p2.

Similarly, we have the following result.

Theorem 3.2. The BVP (1.5), (1.6) has at least two positive solu-
tions if (C2) holds for some p > 0, and in addition, we have

(3.2) h0(t) < η, 0 ≤ t ≤ 1 and h∞(t) < η, 0 ≤ t ≤ 1.

Moreover, 0 < ||y1|| < p < ||y2||.

Criteria for the existence of three (or more) positive solutions may
be stated in a similar manner. As examples, we give the following two
corollaries.

Corollary 3.1. Suppose (C3) in Corollary 2.1 holds, and suppose
there exist 0 < p1 < p2 such that (C1) holds at p = p2 and (C2)
holds at p = p1. Then the BVP (1.5), (1.6) has at least three positive
solutions y1, y2, y3 satisfying 0 < ||y1|| < p1 < ||y2|| < p2 < ||y3||.

Corollary 3.2. Suppose (C4) in Corollary 2.1 holds, and suppose
there exist 0 < p1 < p2 such that (C1) holds at p = p1 and (C2)
holds at p = p2. Then the BVP (1.5), (1.6) has at least three positive
solutions y1, y2, y3 satisfying 0 < ||y1|| < p1 < ||y2|| < p2 < ||y3||.

For our final results, we utilize the previous cone expansion/compres-
sion techniques iteratively to obtain various sufficient conditions for the
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existence of n solutions for any n ∈ N. We state two different sufficient
conditions for odd n and two different sufficient conditions for even n.

Theorem 3.3 (Any odd number of solutions). The BVP (1.5), (1.6)
has at least n positive solutions where n = 2k+ 1, k ∈ N provided (C3)
in Corollary 2.1 holds and there are 0 < p1 < p2 < · · · < pn−1 such
that (C2) holds at p2i−1, i = 1, . . . , k, while at the same time (C1) holds
at p2i, i = 1, . . . , k. Moreover, 0 < ||y1|| < p1 < ||y2|| < p2 < · · · <
||yn−1|| < pn−1 < ||yn||.

Theorem 3.4 (Any odd number of solutions). The BVP (1.5), (1.6)
has at least n positive solutions where n = 2k+ 1, k ∈ N provided (C4)
in Corollary 2.1 holds and there are 0 < p1 < p2 < · · · < pn−1 such
that (C1) holds at p2i−1, i = 1, . . . , k, while at the same time (C2) holds
at p2i, i = 1, . . . , k. Moreover, 0 < ||y1|| < p1 < ||y2|| < p2 < · · · <
||yn−1|| < pn−1 < ||yn||.

Theorem 3.5 (Any even number of solutions). The BVP (1.5), (1.6)
has at least n positive solutions where n = 2k, k ∈ N provided (3.1)
holds and there are 0 < p1 < p2 < · · · < pn−1 such that (C1) holds
at p2i−1, i = 1, . . . , k, while at the same time (C2) holds at p2i,
i = 1, . . . , k − 1. Moreover, 0 < ||y1|| < p1 < ||y2|| < p2 < · · · <
||yn−1|| < pn−1 < ||yn||.

Theorem 3.6 (Any even number of solutions). The BVP (1.5), (1.6)
has at least n positive solutions where n = 2k, k ∈ N provided (3.2)
holds and there are 0 < p1 < p2 < · · · < pn−1 such that (C2) holds
at p2i−1, i = 1, . . . , k, while at the same time (C1) holds at p2i,
i = 1, . . . , k − 1. Moreover, 0 < ||y1|| < p1 < ||y2|| < p2 < · · · <
||yn−1|| < pn−1 < ||yn||.

4. Symmetric solutions. As mentioned in the introduction, one
motivation for considering BVP’s of the form (1.5), (1.6) is that these
are generalizations of the Lidstone BVP’s; see [1]. Symmetry plays an
important role in [1]. We now address the symmetry of solutions of
these higher order Sturm-Liouville problems.

For each fixed y, if f(t, y) is symmetric about t = 1/2, we may take
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C[0, 1] as our Banach space and define the cone K ⊂ C[0, 1] by

K :=
{
ϕ ∈ C[0, 1] : ϕ(t) ≥ 0 is symmetric, and min

1/4≤t≤3/4
ϕ(t) ≥ Σ||ϕ||}.

We remark that an equivalent formulation of (2.1) is given by

Gj(t, s) =
∫ 1

0

Gj−1(t, r)G(r, s) dr, 2 ≤ j ≤ m,

where G1(t, s) := G(t, s) is the Green’s function for (1.7), (1.6).
This implies that Gm(t, s) is in fact symmetric and leads to the
following variation of Theorem 3.3. Note that symmetric versions of
Theorems 3.4 3.6 could be stated as well.

Theorem 4.1 (Any odd number of symmetric solutions). Suppose
that for all fixed y, f(t, y) is symmetric about t = 1/2. Then the
BVP (1.5), (1.6) has at least n positive, symmetric solutions where
n = 2k + 1, k ∈ N provided (C3) in Corollary 2.1 holds and there are
0 < p1 < p2 < · · · < pn−1 such that (C2) holds at p2i−1, i = 1, . . . , k,
while at the same time (C1) holds at p2i, i = 1, . . . , k. Moreover,
0 < ||y1|| < p1 < ||y2|| < p2 < · · · < ||yn−1|| < pn−1 < ||yn||.

5. Examples.

Example 1. Consider the BVP

(−1)my(2m)(t) = p(t)f(y), 0 < t < 1,

αy(2i)(0) − βy(2i+1)(0) = 0, 0 ≤ i ≤ m− 1,

γy(2i)(1) + δy(2i+1)(1) = 0, 0 ≤ i ≤ m− 1.

As an example, let α = β = γ = δ = 1 so that ρ := γβ + αγ + αδ = 3
and let

p(t) = λt(1 − t), 0 ≤ t ≤ 1,
f(y) = sinh y.

Then
h0(t) := lim

y→0+

p(t) sinh y
y

= p(t),

h∞(t) := lim
y→∞

p(t) sinh y
y

= ∞, 1/4 ≤ t ≤ 3/4.
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Since p(t) is symmetric (with respect to t = 1/2), we will obtain
symmetric solutions. As for the other constants, we get

I :=
∫ 1

0

G(s, s) ds =
13
18

J :=
∫ 3/4

1/4

G(s, s) ds =
107
288

σ := min
{

γ + 4δ
4(γ + δ)

,
α + 4β

4(α + β)

}
=

5
8

η :=
1
Im

=
(

18
13

)m

µ :=
1

σmJm
=

(
2304
535

)m

Σ :=
σmJm−1

Im−1
=

(
5
8

)m(
107
288

)m−1(18
13

)m−1

.

Suppose now that m = 2 and as a result, we are dealing with the
fourth order BVP

y(4)(t) = λt(1 − t) sinh y, 0 < t < 1,
y(0) − y′(0) = 0,
y(1) + y′(1) = 0,

y′′(0) − y′′′(0) = 0,
y′′(1) + y′′′(1) = 0.

The first part of Corollary 2.1 yields the existence of a positive solution
provided

h0(t) = p(t) = λt(1 − t) < η =
(

18
13

)2

.

Since p(t) ≤ p(1/2) = λ/4, we are guaranteed a positive symmetric
solution if

λ

4
<

(
18
13

)2

⇐⇒ λ < 7.6686 . . .

(Here, h∞(t) = ∞ as observed earlier.)
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Example 2. Consider the fourth order BVP

y(4)(t) = λt(1 − t)g(y), 0 < t < 1,
y(0) − y′(0) = 0,
y(1) + y′(1) = 0,

y′′(0) − y′′′(0) = 0,
y′′(1) + y′′′(1) = 0.

where g is a continuous function such that

g(y) =



ay 0 ≤ y ≤ 1,
ε(0, a] 1 ≤ y ≤ q1,
by y ≥ q̂2,
arbitrary ≥ 0 otherwise,

where q1 and q̂2 are chosen below. For this case,

h0(t) = aλt(1 − t),

h∞(t) = bλt(1 − t),
1
4
≤ t ≤ 3

4
.

We need the following conditions satisfied.

(C1) There is a p > 0 such that f(t, y) ≤ ηp for 0 ≤ t ≤ 1 and
0 ≤ y ≤ p.

(C2) There is a q > 0 such that f(t, y) ≥ µq for (1/4) ≤ t ≤ (3/4)
and Σq ≤ y ≤ q.

For m = 2 we have

η =
(

18
13

)2

µ =
(

2304
535

)2

Σ =
(

5
8

)2(107
288

)(
18
13

)
.

In this example,

f(t, y) = λt(1 − t)g(y)
≤ λt(1 − t)a for 0 ≤ y ≤ q1, 0 ≤ t ≤ 1

≤ λa

4
for 0 ≤ y ≤ q1, 0 ≤ t ≤ 1.
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Hence, if (λa/4) ≤ ηq1, then (C1) holds for p = q1. That is, we need
q1 > 1 so that

q1 ≥ aλ

4η
=

(
13
18

)2
aλ

4
.

Therefore, given a, λ > 0 choose q1 ≥ (13/18)2(aλ/4) and then (C1)
will hold for p = q1.

On the other hand, for 1/4 ≤ t ≤ 3/4,

λt(1 − t) ≥ λ · 1
4
· 3

4
=

3λ
16

which implies

f(t, y) = λt(1 − t)g(y) ≥ 3λ
16

by for y ≥ q̂2.

Therefore, (C2) will hold for q = q2 provided

3λ
16

by ≥ µq2, Σq2 ≤ y ≤ q2, y ≥ q̂2.

We need
3λ
16

bΣq2 ≥ µq2, where Σq2 = q̂2.

If

λb ≥
(
µ

Σ

)
· 16

3
= 492.2

then (C2) holds at q = q2 = q̂2/Σ where q̂2 > q1.

To summarize, suppose a, λ > 0 are given. Then (C1) holds for p = q1
provided

q1
a

≥
(

13
18

)2
λ

4

and (C2) holds for q = q2 provided

λ ≥ 492.2
b

.

To elaborate even further, if a = 1 then choose q1 ≥ (13/18)2(λ/4) so
that (C1) holds for p = q1. Setting q̂2 = Σq2 > q1, then (C2) holds for
q = q2 provided bλ ≥ 492.2.
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For the above example with a, b, λ > 0, if

7.69
(
q1
a

)
≥ λ ≥ 492.2

b

then (C1) and (C2) both hold. Theorem 2.2 guarantees the existence
of a positive solution y such that

q1 ≤ ||y|| ≤ q2 =
q̂2
Σ
.
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