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SQUARES OF RIESZ SPACES

G. BUSKES AND A. VAN ROOIJ

ABSTRACT. In this paper we provide three approaches to
the notion of squares of Riesz spaces and show that they are
equivalent.

The study of powers of Banach lattices was initiated by Lozanovsky
in [8] and a similar construction was studied by Krivine in [5], of which
an account can be found in [6] as well. In a recent paper [9], partially
rooted in probability theory, Szulga introduces the notion of powers
of uniformly complete Riesz spaces. Avoiding a technical description,
which for all of the above authors involves functional calculus, their
results are exemplified by the fact that (in Szulga’s notation)

(L1)2 = L2.

For reasons that will become clear, we are interested in Szulga’s power
1/2 rather than his power 2 and, confusing as it may seem at first,
Szulga’s power 1/2 will be called power 2 by us and consequently our
theory will be exemplified by (in our notation)

(L1)2 = L1/2.

Our theory develops squares of any Archimedean vector lattices.
These squares of vector lattices play a role in a surprising variety of
theories in functional analysis. We were motivated to investigate them
while studying certain Riesz algebras and orthosymmetric operators in
[1] and [2]. Given a uniformly complete f -algebra E, we defined its
square in [2] to be

E2 = {fg : f, g ∈ E},
which may explain the notation that we prefer. It is known that Riesz
spaces can be embedded in (semi-prime) f -algebras of the type

C∞(X).
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A definition of E2 for any Riesz space E naturally arises from such an
embedding.

In studying the tensor product of Riesz spaces (see [5]) yet another
candidate for E2 emerges as a certain quotient of

E⊗̄E.

As it turns out, all these possible squares are isomorphic, and that
is the main result of this paper. Our organization is as follows. In
Section 1 we give the definition (via a universal property) and show
(via tensor products as introduced by Fremlin in [4]), the existence
and uniqueness of squares. In Section 2 we give an overview of results
of functional calculus which we need in this paper. Our approach in
Section 2 goes back essentially to Lozanovsky (see [7]), although we
really need (in Theorem 8) the somewhat more complicated functional
calculus of continuous functions f : RN → R of polynomial growth for
which limt↓0 t−1f(tx) exists uniformly on bounded subsets of RN (see
[3]). Additionally, we provide new information about the continuity of
functional calculus in Theorem 7 of Section 2. In Section 3 we study
the squares of Riesz spaces via the theory of f -algebras, providing a
second approach to understanding squares. In Section 4 we give our
version of Szulga’s construction for E1/2 (once again, E2 in our sense)
for a uniformly complete Riesz space E and show that it also satisfies
the universal property introduced in Section 1.

At the end of the paper we show how several interesting features,
e.g., a locally solid vector space topology, of a uniformly complete Riesz
space E, carry over to the square of E.

We wish to remark that Lozanovsky’s results on the power transfor-
mation of a Banach lattice are closely allied to interpolation techniques
in the style of Calderón, and we intend to return to interpolation in
another paper, using the novel techniques and objects of the present
paper.

All Riesz spaces in this paper are Archimedean.

1. The universal property. We remind the reader of the following
definitions in [2] and [4], respectively.

Definition 1. Let E and F be Riesz spaces. A bilinear map
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T : E × E → F is called orthosymmetric if whenever f ∧ g = 0 for
f, g ∈ E we have T (f, g) = 0.

Definition 2. Let E and F be Riesz spaces. A bilinear map
T : E × E → F is called a bimorphism if f �→ T (f, g) and g �→ T (f, g)
are Riesz homomorphisms.

The most important definition of this paper, our starting point, is
the following.

Definition 3. Let E be a Riesz space. (E�,	) is called a square of
E if E� is a Riesz space, and if

1. 	 : E × E → E� is an orthosymmetric bimorphism.

2. For every Riesz space F , whenever T : E × E → F is an
orthosymmetric bimorphism, a unique Riesz homomorphism T� :
E� → F exists such that T� ◦ 	 = T .

The existence and uniqueness of a square for each Riesz space are
straightforward, once one is familiar with Fremlin’s fundamental paper
[4] on tensor products. Indeed, the tensor product of E with itself is
obtained from the above definition by substituting E⊗̄E for E� and
⊗ for 	, while omitting the word orthosymmetric at all places. Thus,
it is not the existence of a square which is surprising, but rather the
consequences that we study in the next sections.

Theorem 4. Let E be a Riesz space. Then

1. E has a square (E�,	), and

2. (E�,	) is (essentially) unique.

Proof. Step 1. First we introduce Fremlin’s tensor product (E⊗̄E,⊗).
Let I be the smallest uniformly closed ideal of E⊗̄E that contains
{f ⊗ g : f, g ∈ E and f ∧ g = 0}. It follows that E� := E⊗̄E/I is
an (Archimedean) Riesz space. Moreover, denoting the natural map
E⊗̄E → E� by q, we get that 	 := q ◦ ⊗ is an orthosymmetric
bimorphism. Now assume that

T : E × E −→ F



48 G. BUSKES AND A. VAN ROOIJ

is an orthosymmetric bimorphism. By the universal property for E⊗̄E,
a Riesz homomorphism

T⊗ : E⊗̄E −→ F

exists such that T⊗ ◦ ⊗ = T . If q(f) ∧ q(g) = 0, then f ⊗ g ∈ I and
hence T⊗(f ⊗ g) = T (f, g) = 0. This shows that T� : E� → F defined
by T�(q(f)) := T⊗(f) (for all f ∈ E⊗̄E) is well defined and a Riesz
homomorphism. That T� is unique follows from the uniqueness of T⊗.

Step 2. Now the uniqueness of E�. Suppose that (E©,©) is
also a square. Since © : E × E → E© is an orthosymmetric
bimorphism, there exists a unique Riesz homomorphism S : E� → E©

for which S ◦ 	 = ©. Also, there exits a unique Riesz homomorphism
T : E© → E� with T ◦© = 	. Then

T ◦ S ◦ 	 = T ◦© = 	

but also
I ◦ 	 = 	

and hence T ◦ S = I and, similarly, S ◦ T = I.

2. Review of functional calculus. Let N ∈ N. We denote by
H(RN ) the Riesz space of all continuous functions f : RN → R for
which

f(tx) = tf(x) for all x ∈ RN and all t ≥ 0 (see [3]).

Let E be a Riesz space, f ∈ H(RN ) and a1, . . . , aN ∈ E. We say that

f(a1, . . . , aN ) exists in E

if there is an element b of E such that

ω(b) = f(ω(a1), . . . , ω(aN ))

for every R-valued Riesz homomorphism ω on the Riesz subspace of E
generated by a1, . . . , aN , b. For any given E and f and a1, . . . , aN , at
most one b exists with this property. This b is also indicated by

f(a1, . . . , aN ).
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In this situation we have the following theorem.

Theorem 5 (Lozanovsky [7]). Let E be a uniformly complete
Riesz space and a1, . . . , aN ∈ E. Then f(a1, . . . , aN ) exists for every
f ∈ H(RN ). The map

f −→ f(a1, . . . , aN ), f ∈ H(RN )

is a Riesz homomorphism H(RN ) → E.

Remark. In a way, f(a1, . . . , aN ) is independent of E. Indeed,
if D is any Riesz subspace of E that is uniformly complete and
contains a1, . . . , aN , then f(a1, . . . , aN ) relative to D means the same
as f(a1, . . . , aN ) relative to E. In particular, every Riesz subspace of E
that is uniformly complete and contains a1, . . . , aN must also contain
f(a1, . . . , aN ).

By A(RN ) we denote the set of all continuous functions f : RN → R
that are of polynomial growth and for which limt↓0 t−1f(tx) exists uni-
formly on bounded subsets ofRN . (The latter condition is equivalent to
the existence of a g ∈ H(RN ) such that f(x) = g(x)+0(‖x‖) (x → 0) ).
A(RN ) is an f -algebra.

Let E be a semi-prime f -algebra, f ∈ A(RN ) and a1, . . . , aN ∈ E.
We say that

f(a1, . . . , aN ) exists in E

if there is a b ∈ E with

ω(b) = f(ω(a1), . . . , ω(aN ))

for every R-valued multiplicative Riesz homomorphism ω on the f -
subalgebra of E generated by a1, . . . , aN , b. Only one such b exists,
which is then called

f(a1, . . . , aN ).

This definition is in accordance with the one we gave for H(RN ) if
f ∈ H(RN ).

In this situation we have the following theorem.
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Theorem 6 (see [3]). Let E be a uniformly complete semi-prime
f-algebra and a1, . . . , aN ∈ E. Then f(a1, . . . , aN ) exists for every
f ∈ A(RN ). The map

f −→ f(a1, . . . , aN ), f ∈ A(RN )

is a multiplicative Riesz homomorphism A(RN ) → E.

The following result is new and generalizes the continuity of the
functional calculus in [9].

Theorem 7. Let E be a uniformly complete Riesz space, and let
f ∈ H(RN ). The map

(a1, . . . , aN ) �−→ f(a1, . . . , aN ), a1 . . . , an ∈ E

is continuous

(i) relative to relative uniform convergence and

(ii) relative to any locally solid vector space topology on E.

Proof. We will write

‖x‖ = |x1| ∨ · · · |xN |, x ∈ EN

and

‖s‖ = |s1| ∨ · · · |sN |, s ∈ RN .

Step 1. Let ε > 0. We will prove that a number Cε exists such that

(∗) |f(a+ x)− f(a)| ≤ ε‖a‖+ Cε‖x‖, (a, x ∈ EN ).

Set

A = {(s, t) ∈ RN × RN : ‖s‖ ∨ ‖t‖ = 1, |f(s+ t)− f(s)| ≥ ε‖s‖}.
A is a compact subset of R2N and for all (s, t) ∈ A we have that
‖t‖ �= 0. Hence there is a number Cε > 0 for which

|f(s+ t)− f(s)| − ε‖s‖
‖t‖ ≤ Cε for all (s, t) ∈ A.
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Then |f(s + t) − f(s)| ≤ ε‖s‖ + Cε‖t‖ for all (s, t) ∈ R2N with
‖s‖ ∨ ‖t‖ = 1, and even for all (s, t) ∈ R2N . Thus (∗) follows.
Step 2. (Proof of part (i) of the theorem.) Let a ∈ EN , and let

u ∈ E+. We show that for every ε > 0 there exists a δ > 0 with

x1, . . . , xN ∈ [−δu, δu] =⇒ |f(a+ x)− f(a)| ≤ ε(‖a‖+ u).

Indeed, take Cε as above and δ := εC−1
ε .

Step 3. (Proof of part (ii) of the theorem.) Let τ be a locally solid
vector space topology on E. Let a ∈ EN , and let U be a solid τ -
neighborhood of 0. We prove the existence of a τ -neighborhood W of
0 with

x1, . . . , xN ∈ W =⇒ |f(a+ x)− f(a)| ∈ U.

Indeed, choose a solid neighborhood W0 of 0 with W0 + · · ·+W0 ⊂ U
where there are N +1 terms in the lefthand side of the latter inclusion.
Choose ε > 0 such that ε‖a‖ ∈ W0. Take Cε as above and define
W := C−1

ε W0. If x1, . . . , xN ∈ W , then

|f(a+ x)− f(a)| ≤ ε‖a‖+ Cε‖x‖.

But the righthand side of the previous inequality is in W0 + · · · +W0

(N + 1 terms) and hence in U . Thus |f(a+ x)− f(a)| ∈ U .

3. Squares and f-algebras. We now study the connection between
f -algebras and squares of uniformly complete Riesz spaces.

Theorem 8. Let E be a uniformly complete Riesz subspace of an
Archimedean semi-prime f-algebra G whose multiplication is indicated
by a period •. Put E2 := {x • y : x, y ∈ E}. Then E2 is a Riesz
subspace of G and (E2, •) is a square of E.

Proof. By Lemma 8 of [2], E2 is a Riesz subspace of G. Considered
as a map E × E → E2, the multiplication is an orthosymmetric
bimorphism. Let F be a Riesz space, and let T : E × E → F be an
orthosymmetric bimorphism. By Lemma 4 in [2], a unique increasing
linear map

T • : E2 −→ F
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exists with T •(x • y) = T (x, y) for all x, y. We need to prove that T •

actually is a Riesz homomorphism, i.e.,

|T •(x • y)| = T •(|x • y|) for all x, y.

Now functional calculus comes in. Take x, y ∈ E. The function

f(s, t) =
√
|st| sgn (st), s, t ∈ R

is in A(R2) and f(s, t)|f(s, t)| = st, s, t ∈ R. Thus, there is an element
a in E such that a = f(x, y). But then a • |a| = x • y. The map

z �−→ T (z, |a|)

of E into F is a Riesz homomorphism, thus

|T •(x • y)| = |T •(a • |a|)| = |T (a, |a|)|
= T (|a|, |a|) = T •(|a| • |a|) = T •(|x • y|).

4. Szulga’s construction. In this section E is a uniformly
complete Riesz space. Consequently, we can apply the functional
calculus results of Section 2. For the special case of Banach lattices,
the following construction can be found in [6], with the fundamental
ideas going back to Lozanovsky [8] and Krivine [5], while in the case of
uniformly complete Riesz spaces it is due to Szulga [9]. For the reader’s
convenience we provide the details of the construction.

The function ϑ : t �→ t|t| is an order isomorphism of R. We define
H, J : R2 → R by

H(s, t) = ϑ−1(ϑ(s) + ϑ(t))

and

J(s, t) = ϑ−1(st) for all s, t ∈ R.

Then H, J ∈ H(R2). Thus H(x, y) and J(x, y) exist for all x, y ∈
E. We will use the map H to define an addition +̃ and a scalar
multiplication · on E. Then we show that the resulting vector space is
a Riesz space that satisfies the universal property of Section 1.
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Theorem 9. Let E be a uniformly complete Riesz space. Define an
addition +̃ and a scalar multiplication · on E by

x+̃y := H(x, y) and λ · x := ϑ−1(λ)x
for all x, y ∈ E and all λ ∈ R.

(i) Under these operations and with the given ordering, E is a Riesz
space E• and J , considered as a map form E×E into E•, is a surjective
orthosymmetric bimorphism.

(ii) If F is any Riesz space and if T : E × E → F is bilinear,
orthosymmetric and order bounded, there exists a unique T • : E• → F
with T = T •J ; this T • is linear and order bounded. T • is positive if
and only if T is bipositive. T • is a Riesz homomorphism if and only if
T is a bimorphism.

(iii) In particular, (E•, J) is a square of E.

Proof. For any Riesz space F and any orthosymmetric and order
bounded bilinear map T : E × E → F , we define T • : E• → F by

T •(x) := T (x, |x|), x ∈ E.

For u ∈ E+, let Eu be the principal ideal generated by u. As Eu

is uniformly complete, it follows that x+̃y ∈ Eu for all x, y ∈ Eu,
whereas, of course, λ · x ∈ Eu if λ ∈ R and x ∈ Eu. By E•

u we
denote the underlying set of Eu provided with the addition +̃, the scalar
multiplication · and the ordering inherited from the given ordering of
E.

Let F, T, u be as above. We intend to prove:

(1) E•
u is a Riesz space; x �→ J(x, u) is a Riesz isomorphism of Eu

onto E•
u.

(2) The restriction of J is an orthosymmetric map Eu × Eu → E•
u.

(3) The restriction of T • is an order bounded linear map E•
u → F ; it

is a Riesz homomorphism if T is a bimorphism.

(From this the theorem follows easily.)

For (1), (2) and (3), the part of E that is outside Eu is irrelevant; we
may as well assume E = Eu. By the Kakutani-Krein Representation
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Theorem for Riesz spaces with strong order unit, we may even assume
that E = C(X) for some compact Hausdorff space X and u = 1.

Thus, let E = C(X), u = 1. Proving (1), (2) and (3) is now a matter
of bookkeeping. The map

P : f �−→ ϑ ◦ f = f |f |, f ∈ C(X)

is an order isomorphism of C(X) onto C(X). For all f, g ∈ C(X) we
have

H(f, g) = H ◦ (f, g) = ϑ−1 ◦ (ϑ ◦ f + ϑ ◦ g)
= P−1(P (f) + P (g))

J(f, g) = J ◦ (f, g) = ϑ−1 ◦ (fg) = P−1(fg).

Hence, if f, g ∈ C(X) then

P (f+̃g) = P (H(f, g)) = P (f) + P (g),
J(f, u) = J(f, 1) = P−1(f),

whereas for all λ ∈ R, since ϑ is multiplicative

P (λ · f) = ϑ−1 ◦ (ϑ−1(λ)f) = λP (f).

It follows from Theorem 1 in [1] that T (f, g) = T (fg, 1) for all
f, g ∈ C(X), so that

T •(f) = T (f, |f |) = T (f |f |, 1) = T (P (f), 1),
T (f, g) = T (fg, 1) = T (PJ(fg), 1) = T •J(f, g).

(1), (2) and (3) follow.

As a corollary we obtain several surprising facts. It is easy to see
(and well-known) that l∞⊗̄l∞ is not Dedekind complete even though,
of course, l∞ is. But as an ordered set (and we emphasize the word set,
i.e., we are not talking about the lattice ordered linear structure), the
square of a uniformly complete Riesz space is indistinguishable from
that Riesz space itself. Thus, we have the following result.

Corollary 10. If E is Dedekind complete (or σ-Dedekind complete,
or laterally complete) then so is its square.
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A lot harder to prove is the fact that, actually

c0⊗̄c0

is not even uniformly complete. For contrast we offer the following
result.

Corollary 11. If E is uniformly complete then so is its square.

The proof of this corollary follows the exact same lines as the proof
of Corollary 12 below and is left to the reader.

In light of the equality (L1)2 = L1/2 we cannot expect a locally convex
and locally solid topology on E to carry over to a locally convex and
locally solid topology on the square of E. In spite of that, we offer the
following.

Corollary 12. Let E be a uniformly complete Riesz space, let E•

be its square as constructed in Theorem 9, and let τ be a locally solid
vector space topology on E. Then τ defines a locally solid vector space
topology on E• such that the identity map E → E• is a topological
isomorphism.

Proof. For a net fα in E• and g ∈ E•, define fα → g in E•

if H(fα,−g) → 0 in E. This convergence defines a locally solid
vector space topology on E•. Half of the assertion now follows from
Theorem 7. On the other hand, H(H(f, g),−g) = f for all f, g ∈ E.
Thus we infer from Theorem 7 as well that H(fα,−g) → 0 in E implies
that H(H(fα,−g), g) → H(0, g) = g in E, hence that fα → g in E.
This proves the Corollary.
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