GEODESIC LAMINATIONS ON COMPACT SURFACES AND HOMEOMORPHISMS OF THE CANTOR SET

LUCA Q. ZAMBONI

ABSTRACT. In this paper we investigate a connection between minimal geodesic laminations on compact hyperbolic surfaces and homeomorphisms of the Cantor set. Let M be a compact hyperbolic surface. To each minimal lamination $\mathcal{L} \subset M$ having no closed leaves, and to each compact curve C transverse to \mathcal{L} , we associate a group consisting of certain homeomorphisms on the intersection $C \cap \mathcal{L}$. This group is used to study various topological aspects of the lamination including orientability and existence of transverse measures.

0. Introduction. In [8] M. Urbański and I investigated a connection between circle maps, measured laminations on compact surfaces, and free actions of surface groups on \mathbf{R} -trees. We showed that certain order preserving homeomorphisms f of the unit circle induce a measured lamination (\mathcal{L}, μ) on the torus T^2 . The map f has no periodic points and no dense orbits; this is equivalent to saying that f is not topologically conjugate to a rotation. The resulting lamination \mathcal{L} is minimal (each leaf is dense in \mathcal{L}), and each leaf and each complementary region of \mathcal{L} is simply connected. Via results found in [6], the measured lamination (\mathcal{L}, μ) determines a free action (by isometries) of $\pi_1(T^2) = \mathbf{Z} \times \mathbf{Z}$ on an \mathbf{R} -tree T. It is shown that T is isometric to \mathbf{R} and that the ratio of the translation lengths of the standard generators (1,0) and (0,1) of $\mathbf{Z} \times \mathbf{Z}$ is equal to the rotation number of the homeomorphism f.

The basic idea in the construction of the lamination \mathcal{L} on the torus is as follows. We begin with an essential simple closed curve C imbedded in T^2 together with an identification of C with the unit circle S^1 . We then take an order preserving homeomorphism f of S^1 which is not topologically conjugate to a rotation and view it as a homeomorphism

Copyright ©2001 Rocky Mountain Mathematics Consortium

¹⁹⁹¹ AMS Mathematics Subject Classification. 58F.
Research supported in part by NSF grant INT-9726708, and by a grant from the

Texas Advanced Research Program.
Received by the editors on August 9, 1996, and in revised form on October 18, 1999.

of C. We let Δ denote the set of accumulation points of $\{f^n(x)\}_{n\in\mathbb{Z}}$ for some point $x\in C$. The set Δ is independent of the point $x\in C$ and is invariant under f. Furthermore, Δ is topologically a Cantor set, i.e., a nonempty perfect totally disconnected set. We then construct \mathcal{L} by joining each point $p\in\Delta$ to the point f(p) by a geodesic in T^2 .

The lamination \mathcal{L} is related to the homeomorphism f as follows. For each point $p \in \Delta$ the points p and f(p) lie on the same leaf of \mathcal{L} and the open segment (p, f(p)) contained in \mathcal{L} is disjoint from C. It is shown in [8] that this sort of relationship between a lamination \mathcal{L} on a compact surface M and an order preserving homeomorphism f of S^1 implies that the Euler characteristic of M is equal to zero. In this paper we propose to extend the above construction to more general hyperbolic surfaces.

Let M be a closed compact hyperbolic surface, and let $\mathcal{L} \subset M$ be a minimal geodesic lamination having no closed and no isolated leaves. Let $\mathcal{T}_{\mathcal{L}}$ be the set of all compact one-manifolds imbedded in M which meet the lamination \mathcal{L} transversely and whose boundary, if nonempty, lies in the complement of \mathcal{L} . For each C in $\mathcal{T}_{\mathcal{L}}$, the intersection $\Delta = C \cap \mathcal{L}$ is topologically a Cantor set, i.e., a nonempty perfect, totally disconnected set. We associate to each $C \in \mathcal{T}_{\mathcal{L}}$ the group $\mathcal{G}_{\mathcal{L}}(C)$ consisting of all homeomorphisms f of $\Delta = C \cap \mathcal{L}$ satisfying the following two conditions:

- (1) For each $x \in \Delta$, x and f(x) belong to the same leaf of \mathcal{L} .
- (2) The map $\iota_f: \Delta \to \mathbf{N}$ defined by $\iota_f(x) = \operatorname{Card}([x, f(x)] \cap C) 1$ is continuous, where [x, f(x)] denotes the closed segment contained in the leaf of \mathcal{L} joining x to f(x).

The group structure is given by composition of mappings. We show that for each $C \in \mathcal{T}_{\mathcal{L}}$ the group $\mathcal{G}_{\mathcal{L}}(C)$ is nontrivial (cf. Theorem 1.13).

An element $f \in \mathcal{G}_{\mathcal{L}}(C)$ is called *irreducible* if a proper nonempty subset Δ' of Δ does not exist which is invariant under f and which is a finite union of closed intervals of Δ . We show that an element $f \in \mathcal{G}_{\mathcal{L}}(C)$ is irreducible if and only if it is minimal in the sense that the orbit of each point $x \in \Delta$ under the map f is dense in Δ (see Corollary 2.5). It will follow that if \mathcal{L} is orientable then the first return map on Δ (with respect to the orientation on \mathcal{L}) defines an irreducible element of $\mathcal{G}_{\mathcal{L}}(C)$ (see Theorem 2.7). We establish a connection between irreducible elements of $\mathcal{G}_{\mathcal{L}}(C)$ and the existence of

transverse measures on \mathcal{L} . Each irreducible element $f \in \mathcal{G}_{\mathcal{L}}(C)$ which carries discrete dynamics on $C \cap \mathcal{L}$ (in the sense of [5]) determines a transverse measure μ on \mathcal{L} .

1. Minimal laminations and homeomorphisms of the Cantor set. Let M be a closed compact hyperbolic surface (without boundary). We identify the universal cover M of M with the Poincare disk \mathbf{H}^2 . By a geodesic in M we mean the image in M under the covering map of a complete geodesic in \mathbf{H}^2 . A geodesic in M is said to be simple if it has no transverse self intersections. A (geodesic) lamination in Mis a nonempty closed subset \mathcal{L} of M which is a disjoint union of simple geodesics. The geodesics contained in \mathcal{L} are called the *leaves* of \mathcal{L} . A geodesic lamination \mathcal{L} is said to be minimal if the closure of each leaf is all of \mathcal{L} . Clearly, such a lamination either consists of a single closed leaf or else contains no closed leaves (in which case \mathcal{L} contains more than one leaf). A lamination is said to be perfect if it contains no isolated leaves. It is well known that for most surfaces such laminations exist, see Corollary 4.7.2 in [1]. In fact, there exist minimal perfect laminations \mathcal{L} with the property that each leaf and each complementary region of \mathcal{L} is simply connected. (See [6] and [7].) Such laminations fill up the surface in the following sense.

Proposition 1.1. Let \mathcal{L} be a geodesic lamination on M whose complementary regions are all simply connected. Then \mathcal{L} is minimal.

Proof. As each component of $M - \mathcal{L}$ is simple connected, it follows that \mathcal{L} has no closed leaves. Thus, \mathcal{L} is a disjoint union of closed isolated minimal sublaminations each of which consists of more than one leaf.

Let \mathcal{L}_0 be one such sublamination. We will show that $\mathcal{L} = \mathcal{L}_0$. Let N be a small ε -neighborhood of \mathcal{L}_0 disjoint from all other sublaminations and whose boundary is a union of simple closed curves. (See [7] for example.) By hypothesis each boundary component of N is trivial in the surface M. It follows that \mathcal{L} contains no other sublaminations other than \mathcal{L}_0 for all other sublaminations would have to be contained in a union of disks, which is impossible. \square

In what follows, \mathcal{L} denotes a minimal geodesic perfect lamination in

M having no closed leaves.

Lemma 1.2. Let S^1_{∞} denote the boundary of the Poincare disk \mathbf{H}^2 . Then no point on S^1_{∞} is an endpoint of infinitely many leaves of $\tilde{\mathcal{L}} \subset \mathbf{H}^2$.

Proof. Actually the result of the lemma holds for arbitrary geodesic laminations $\mathcal{L} \subset M$ having no closed leaves (cf. [1, Lemma 4.4]).

In fact, if a point $x \in S^1_{\infty}$ is an endpoint of a leaf $\tilde{\lambda}$ of $\tilde{\mathcal{L}}$, then it is either an endpoint of exactly one leaf or of exactly two leaves depending on whether λ is a regular leaf or a boundary leaf of \mathcal{L} .

Let $\mathcal{T}_{\mathcal{L}}$ be the set of all compact one-manifolds imbedded in M which meet \mathcal{L} transversely and whose boundary if nonempty lies in the complement of \mathcal{L} . Let C be an element of $\mathcal{T}_{\mathcal{L}}$. Put $\Delta = C \cap \mathcal{L}$. The set Δ is topologically a Cantor set, i.e., a nonempty perfect, totally disconnected set. A point x in Δ is called a boundary point if it is isolated from one side. Otherwise, x is called a regular point. Both sets of points are dense in Δ . A subset J of Δ will be called a closed interval I in I in I. The interior of I, denoted I, is then I on I.

Lemma 1.3. Let I be a closed interval contained in C which meets the lamination \mathcal{L} and whose endpoints lie in the complement of \mathcal{L} . Then there are only finitely many closed intervals $I' \subset C$ which are isotopic (relative to $\mathcal{T}_{\mathcal{L}}$) to the interval I.

Proof. Let \tilde{I} be a lift of I in \mathbf{H}^2 . Since I meets the lamination \mathcal{L} , \tilde{I} must meet infinitely many geodesics of $\tilde{\mathcal{L}}$ in \mathbf{H}^2 . Let $\tilde{\gamma}$ denote one such geodesic, and let a and b denote the two endpoints of $\tilde{\gamma}$ on the circle at infinity. Now suppose to the contrary that there are infinitely many intervals I' isotopic to I. Then one can move \tilde{I} indefinitely along $\tilde{\gamma}$ in at least one direction keeping the endpoints at all times in the complement of \tilde{L} . Since the Euclidean metric of \tilde{I} must tend to zero as we move \tilde{I} towards the circle at infinity, it follows that either a or b must be an endpoint of infinitely many leaves of $\tilde{\mathcal{L}}$. This contradicts the result of Lemma 1.2.

In what follows, let $\Delta' \subset \Delta$ be a finite union of closed sub-intervals of Δ .

Definition 1.4. Let $f: \Delta' \to \Delta$ be a continuous function. We say that f is weakly supported by \mathcal{L} if for each point $x \in \Delta'$, the points x and f(x) lie on the same leaf of \mathcal{L} .

For example, given a transverse orientation on the curve C, the first return map to C is weakly supported by \mathcal{L} . More generally, in the same way any continuous vector field parallel to \mathcal{L} on Δ determines a map f which is weakly supported by \mathcal{L} . In order to obtain the converse, we need to impose an additional condition on the map f.

Let $f: \Delta' \to \Delta$ be weakly supported by \mathcal{L} . Associated to f is a map $\iota_f: \Delta' \to \mathbf{N}$ defined as follows: for $x \in \Delta'$,

$$\iota_f(x) = \operatorname{Card}([x, f(x)] \cap C) - 1$$

where [x, f(x)] denotes the closed segment contained in the leaf of \mathcal{L} joining x to f(x). Thus, $\iota_f(x) = 0$ if and only if x is a fixed point of f.

Definition 1.5. A map $f: \Delta' \to \Delta$ is said to be supported by \mathcal{L} if it is weakly supported by \mathcal{L} and if the associated map $\iota_f: \Delta' \to \mathbf{N}$ is also continuous.

Lemma 1.6. Let $f: \Delta' \to \Delta$ be supported by \mathcal{L} . For each point $x \in \Delta'$, let $\nu(x)$ be the unit tangent vector to \mathcal{L} at x in the direction from x to f(x). Then ν defines a continuous vector field on Δ' . Conversely, let ω be a continuous vector field on Δ' and let $\iota: \Delta' \to \mathbf{N}$ be any continuous function. Then the pair (ω, ι) determines a map f on Δ' which is supported by \mathcal{L} with $\iota_f = \iota$.

Proof. The first assertion follows immediately from the continuity of the map f together with the fact that the lamination $\mathcal L$ has no closed leaves. As for the second assertion, we define $f:\Delta'\to\Delta$ as follows: for $x\in\Delta'$, if x lies on some leaf $\lambda\subset\mathcal L$, we move along λ in the direction $\omega(x)$ until we cross the curve C $\iota(x)$ times and take f(x) to be the stopping point. The continuity of ω and ι on Δ' together ensure the continuity of f.

Remark 1.7. The continuity of the map ι_f does not in general follow from the continuity of f.

Proof. To see this we construct an example of a map f on Δ which is weakly supported by \mathcal{L} , and whose associate map ι_f is discontinuous. Let x_0 be a regular point of Δ , and let γ_0 be the leaf of \mathcal{L} through the point x_0 . Choose a transverse orientation ν of C and let y_0 denote the point of Δ obtained by starting at x_0 and moving along γ_0 in the direction of $\nu(x_0)$ until we meet C again for the first time. Now let $\{I_k\}_{k\geq 0}$ be a sequence of nonempty disjoint closed intervals contained in Δ converging to x_0 whose endpoints consist of boundary points of Δ . In addition, if $I_k = [a_k, b_k]$, we require that the point a_k be isolated from the left while the point b_k is isolated from the right. Similarly choose a sequence of nonempty disjoint closed intervals $\{J_k\}_{k\geq 0}$ contained in Δ converging to y_0 whose endpoints consist of boundary points of Δ .

For each k = 0, 1, 2, ..., there exists a continuous function f_k on I_k having the following properties:

- $(1) f_k: I_k \to J_k,$
- (2) for each $x \in I_k$, we have that x and $f_k(x)$ lie on the same leaf of \mathcal{L} ,
 - (3) the map $\iota_{f_k}: I_k \to \mathbf{N}$ is continuous,
- (4) for each point $z \in I_k$, we have $\iota_{f_k}(z) > \text{maximum } \{\iota_{f_{k-1}}(x) \mid x \in I_{k-1}\}.$

In fact, for each $k \geq 0$, and for each point $x \in I_k$, the point x lies on some leaf γ of \mathcal{L} which meets the interior of J_k at infinitely many points. Let $y \in \gamma \cap J_k^{\circ}$, and set $n = \operatorname{Card}([x, y] \cap C) - 1$. For each $x' \in I_k$ sufficiently close to x, if x' is contained in a leaf $\gamma' \subset \mathcal{L}$, then traveling along γ' parallel to [x, y], the nth crossing with C will occur in J_k° .

We next define f on Δ as follows: if $x \in I_k$ for some k, we set f(x) equal to $f_k(x)$, while if $x \in \Delta - \bigcup_{k \geq 0} I_k$, then f(x) is the first return map to C along the leaf γ through x in the direction $\nu(x)$. Then f is weakly supported by \mathcal{L} , in fact, since the intervals J_k converge to $y_0 = f(x_0)$, it follows that f is continuous at x_0 . On the other hand, ι_f is unbounded in any neighborhood of the point x_0 .

Lemma 1.8. Let $f: \Delta' \to \Delta$ be a map supported by \mathcal{L} . There exists finite decomposition $\Delta' = J_1 \cup \cdots \cup J_n$ into pairwise disjoint closed intervals such that, for each $1 \leq i \leq n$, ι_f is constant on J_i , the restriction of f to J_i is a homeomorphism of J_i onto $f(J_i)$ and $f(J_i)$ is a closed interval isotopic to J_i . Moreover, if f has no fixed points, then the intervals J_i can be chosen so that $f(J_i) \cap J_i = \emptyset$.

Proof. For each regular point $x \in \Delta'$, there exists a neighborhood $U \subset \Delta$ of x on which ι_f is constant, and on which the map f is determined by a transverse orientation of U together with the natural number $\iota_f(x)$ (see Lemma 1.6). By choosing U sufficiently small, we can ensure that $f|_U$ maps U homeomorphically onto f(U) and that, for each closed interval $I \subset U$, I is isotopic to f(I). Moreover, if f is fixed point free, U can be chosen so that U and f(U) are disjoint. The result of the lemma now follows from the compactness of Δ' .

Lemma 1.9. Let $f: \Delta' \to \Delta$ be a map supported by \mathcal{L} . Let $X = f(\Delta') \cap (\Delta - \Delta')$. Then there exists a map $f': \Delta' \cup X \to \Delta$ with the following properties:

- (1) f' is supported by \mathcal{L} ,
- (2) f' is an extension of f,
- (3) $f'(x) \subset \Delta' (f(\Delta') \cap \Delta')$.

Thus, if X contains a nondegenerate closed interval, then so does $\Delta' - (f(\Delta') \cap \Delta')$.

Proof. In case the set X is empty there is nothing to show. Otherwise, if X is nonempty, it follows from Lemma 1.8 that X contains a nondegenerate closed interval. Let $\Delta' = J'_1 \cup \cdots \cup J'_k$ be a partition of Δ' given by Lemma 1.8. Let

$$P = \bigcup \{P(e) \mid e \text{ is an endpoint of some } J_i'\}$$

where

$$P(e) = \{ f^l(e) \mid l \in \mathbf{Z}^+ \} \cap X.$$

The cardinality of P(e) is at most one for each endpoint e. The finite set P determines a partition $X = X_1 \cup \cdots \cup X_r$ into disjoint

closed intervals. By construction, the interior of each interval X_j is disjoint from the images under f of all the endpoints of the intervals J_i' . Thus the preimage $f^{-1}(X_j)$ is a closed interval contained in one of the intervals J_i' . A similar argument shows that the interval $f^{-1}(X_j)$ is either contained in $f(\Delta')$ or disjoint from it. In case it is contained in $f(\Delta')$, then by a similar argument we obtain that the interval $f^{-2}(X_j)$ is contained in one of the intervals J_i' and is again either contained in $f(\Delta')$ or disjoint from it.

Thus, for each $1 \leq j \leq r$, there exists a smallest positive integer t_j such that $f^{-t_j}(X_j) \subset \Delta' - (f(\Delta') \cap \Delta')$, for otherwise we would obtain an infinite sequence of disjoint closed intervals

$$X_j, f^{-1}(X_j), f^{-2}(X_j), \dots$$

each of which is isotopic to the interval X_j contrary to the result of Lemma 1.3. We define the map $f': \Delta' \cup X \to \Delta$ by $f'|_{\Delta'} = f$ and $f'|_{X_j} = f^{-t_j}(X_j) \subset \Delta' - (f(\Delta') \cap \Delta')$ for each $1 \leq j \leq r$.

The following two corollaries are immediate consequences of Lemma 1.9.

Corollary 1.10. Let $f: \Delta' \to \Delta$ be supported by \mathcal{L} . Then Δ' cannot be a proper subset of $f(\Delta')$.

Proof. Again, by Lemma 1.8, if $f(\Delta') - \Delta'$ were nonempty, it would contain a nondegenerate closed interval. The assertion now follows from the last statement of Lemma 1.9.

Corollary 1.11. Let $f: \Delta' \to \Delta$ be a map supported by \mathcal{L} . If f is one-to-one, then $f(\Delta')$ cannot be a proper subset of Δ' . In particular, if $\Delta' = \Delta$, then f is a homeomorphism of Δ onto itself.

Proof. Let $\Delta_0 = f(\Delta')$. Suppose to the contrary that Δ_0 is a proper subset of Δ' . Define $g: \Delta_0 \to \Delta$ by $g(x) = f^{-1}(x)$ for all $x \in \Delta_0$. Then g is a map supported by \mathcal{L} and $g(\Delta_0) = \Delta'$ properly contains Δ_0 contradicting Corollary 1.10. \square

Definition 1.12. Let $\mathcal{G}_{\mathcal{L}}(C)$ denote the collection of all homeomorphisms $f: \Delta \to \Delta$ which are supported by \mathcal{L} . Then $\mathcal{G}_{\mathcal{L}}(C)$ is a group under composition of maps.

Theorem 1.13. Let M be a closed compact hyperbolic surface without boundary, and let $\mathcal{L} \subset M$ be a minimal lamination having no closed leaves. Let C be a compact one-manifold in M which meets the lamination \mathcal{L} transversely and whose boundary if nonempty lies in the complement of \mathcal{L} . Then the group $\mathcal{G}_{\mathcal{L}}(C)$ defined above is nontrivial. In fact, there exists an element $F \in \mathcal{G}_{\mathcal{L}}(C)$ which is fixed point free, i.e., $F(x) \neq x$ for each $x \in C \cap \mathcal{L}$.

Proof. Let $\Delta = C \cap \mathcal{L}$. Let ν be any transverse orientation of C. Then the first return map determines a map $f: \Delta \to \Delta$ which is supported by \mathcal{L} (cf. Lemma 1.6). Let $\Delta = J_1 \cup J_2 \cup \cdots \cup J_n$ be the decomposition given by Lemma 1.8. Since \mathcal{L} has no closed leaves, it follows that f is fixed point free, and therefore each J_i can be taken so that $f(J_i) \cap J_i = \emptyset$ (cf. Lemma 1.8). For each $1 \leq m \leq n$, set

$$\Delta_m = J_1 \cup \cdots \cup J_m.$$

We show by induction that for each m there exists a fixed point free, one-to-one map

$$F_m:\Delta_m\to\Delta$$

which is supported by \mathcal{L} . However, F_{m+1} will not necessarily be an extension of F_m . It follows then by Corollary 1.11 that the map $F = F_n : \Delta = \Delta_n \to \Delta$ is a nontrivial homeomorphism of Δ onto itself.

For m=1 we take $F_1=f|_{J_1}$. Next suppose that F_m is defined on Δ_m having the above properties. We show how to define F_{m+1} on $\Delta_{m+1}=\Delta_m \cup J_{m+1}$ having the required properties. Let $X=F_m(\Delta_m) \cap J_{m+1}$ and $Y=J_{m+1}-X$. By Lemma 1.10, there exists a map F'_{m+1} on $\Delta_m \cup X$ with the following properties:

- (1) F'_{m+1} is supported by \mathcal{L}
- (2) F'_{m+1} is an extension of F_m
- (3) $F'_{m+1}(X) \subset \Delta_m (F_m(\Delta_m) \cap \Delta_m)$.

We are now ready to define the map F_{m+1} on all of Δ_{m+1} . First, set

$$Z = F_{m+1}'^{-1}(f(Y)) \cap F_{m+1}'(\Delta_m \cup X),$$

and

$$W = \Delta_m \cup X - Z.$$

Set

$$(1.1) F_{m+1}|_W = F'_{m+1}|_W,$$

(1.2)
$$F_{m+1}|_{Z} = f^{-1} \circ F'_{m+1}|_{Z},$$

and

$$(1.3) F_{m+1}|_{Y} = f|_{Y}.$$

Note that F_{m+1} is not necessarily an extension of F_m ; in fact, if for some $x \in \Delta_m$, $F_m(x)$ should equal to f(y) for some point $y \in Y$, then $F_{m+1}(x) = y \neq F_m(x)$. We further note that $f(Y) \cap Y = \emptyset$ since $Y \subset J_{m+1}$.

It follows from (1.1), (1.2) and (1.3) that $F_{m+1}: \Delta_m \to \Delta$ defines a one-to-one map which is supported by \mathcal{L} . Moreover, F_{m+1} is fixed point free; in fact, if $x \in \Delta_m$, then F_{m+1} maps x either to $F_m(x)$ or to a point in Y. On the other hand, points in J_{m+1} are mapped either to Δ_m or to F(Y), both of which are disjoint from J_{m+1} .

Let $F = F_n : \Delta = \Delta_n \to \Delta$. By Corollary 1.11, it follows that F is the desired nontrivial element of $\mathcal{G}_{\mathcal{L}}(C)$.

We note that in the proof of Theorem 1.13, for each $1 \leq m \leq n$, the map F_m is "locally" an iterate of the map f, that is, for each $x \in \Delta_m$, there exist a neighborhood U of x and a nonzero integer k so that $F_m|_U = f^k|_U$.

Definition 1.14. Let $f: \Delta \to \Delta$ be a map supported by \mathcal{L} . Let $\Delta' \subset \Delta$ be a finite union of closed intervals of Δ . A map $g: \Delta' \to \Delta'$ supported by \mathcal{L} is said to be generated by f if there exists a finite decomposition

$$\Delta' = I_1 \cup I_2 \cup \cdots \cup I_r$$

by pairwise disjoint intervals, and nonzero integers n_1, n_2, \ldots, n_r such that, for each $1 \le t \le r$, we have $g|_{I_t} = f^{n_t}|_{I_t}$.

As a consequence of the proof of Theorem 1.13, we have

Corollary 1.15. Every map $f: \Delta \to \Delta$ supported by \mathcal{L} generates a homeomorphism $F: \Delta \to \Delta$ supported by \mathcal{L} . Moreover, if f is fixed point free, then the homeomorphism F can also be taken to be fixed point free.

By Lemma 1.8, the intervals I_1, I_2, \ldots, I_r occurring in Definition 1.14 can be chosen so that for each $1 \leq t \leq r$, $g(I_t)$ is a closed interval isotopic to I_t . Therefore, Theorem 1.15 asserts that, given any map $f: \Delta \to \Delta$ supported by \mathcal{L} , there exist a decomposition

$$\Delta = I_1 \cup I_2 \cup \cdots \cup I_r$$

and nonzero integers n_1, n_2, \ldots, n_r so that the set $\{f^{n_1}(I_1), f^{n_2}(I_2), \ldots, f^{n_r}(I_r)\}$ also constitutes a decomposition of Δ by pairwise disjoint closed intervals. Moreover, if f is fixed point free, then for each $1 \leq t \leq r$, the interval I_t can be chosen so that $f^{n_t}(I_t) \cap I_t = \emptyset$.

2. Irreducible elements. Let M be a compact hyperbolic surface (without boundary) and \mathcal{L} a minimal geodesic perfect lamination on M having no closed leaves.

Definition 2.1. An element $f \in \mathcal{G}_{\mathcal{L}}(C)$ is said to be irreducible if there does not exist a proper nonempty subset Δ' of Δ which is invariant under f and which is a finite union of closed intervals of Δ .

We shall see later that, if \mathcal{L} is orientable, that is, if it admits a nonvanishing continuous vector field ν , then the first return map with respect to ν defines an irreducible element of $\mathcal{G}_{\mathcal{L}}(C)$.

Proposition 2.2. Let $f \in \mathcal{G}_{\mathcal{L}}(C)$. For each closed interval $I \subset \Delta$, there exist a decomposition

$$I = I_1 \cup I_2 \cup \cdots \cup I_k$$

and positive integers m(j) for $1 \le j \le k$ such that

$$I_1, f(I_1), \dots, f^{m(1)-1}(I_1), \dots, I_k, f(I_k), \dots, f^{m(k)-1}(I_k)$$

is a sequence of pairwise disjoint closed intervals whose union

$$\Delta(I) = \bigcup_{j=1}^k \bigcup_{i=0}^{m(j)-1} f^i(I_j)$$

is invariant under f.

Proof. Let $I = [x, y] \subset \Delta$. Let

$$\Delta = J_1 \cup J_2 \cup \cdots \cup J_n$$

be the decomposition of Δ given by Lemma 1.8. Let

 $S = \{e \mid e = x, y \text{ or is an endpoint of one of the intervals } J_i\}.$

For each point $e \in S$, let $\mathcal{O}^-(e) = \{f^l(e) \mid l \leq 0\}$. In case $\mathcal{O}^-(e) \cap I^{\circ} \neq \emptyset$, we set n(e) to be the largest nonpositive integer such that $f^{n(e)}(e) \in I^{\circ}$. Let

$$P = \{ f^{n(e)}(e) \mid e \in S \}.$$

Then the finite set P determines a partition

$$I = I_1 \cup I_2 \cup \cdots \cup I_k$$

into pairwise disjoint closed intervals.

Let $1 \leq j \leq k$. Then there exists a positive integer m such that $f^m(I_j)^{\circ} \cap I \neq \emptyset$. In fact, there exists a smallest positive integer r such that $f^r(I_j)$ contains an endpoint e of one of the intervals J_i in its interior, for otherwise by Lemma 1.8,

$$I_j, f(I_j), f^2(I_j), f^3(I_j), \dots$$

would be an infinite sequence of pairwise disjoint closed intervals each isotopic to I_j , contrary to the result of Lemma 1.3. Now, since

 $f^{-r}(e) \in I_j^{\circ}$, it follows from the definition of the intervals I_1, I_2, \ldots, I_k that there exists a nonnegative integer s < r so that $f^{-s}(e) \in I^{\circ}$. Thus, $f^{-s} \circ f^r(I_j)^{\circ} \cap I \neq \emptyset$.

For each $1 \leq j \leq k$, let m(j) denote the smallest positive integer less than or equal to r such that $f^{m(j)}(I_j)^{\circ} \cap I \neq \emptyset$. It follows from the minimality if m(j) that

$$I_j, f(I_j), f^2(I_j), \dots, f^{m(j)-1}(I_j)$$

is a sequence of pairwise disjoint closed intervals, each isotopic to I_j , and that $f^{m(j)}(I_j)$ is a closed interval isotopic to I_j and contained in I. In fact, the interval $f^{m(j)}(I_j)$ meets I and does not contain the points x or y in its interior. It follows that

$$I_1, f(I_1), \dots, f^{m(1)-1}(I_1), \dots, I_k, f(I_k), \dots, f^{m(k)-1}(I_k)$$

is a sequence of pairwise disjoint closed intervals whose union

$$\Delta(I) = \bigcup_{j=1}^{k} \bigcup_{i=0}^{m(j)-1} f^{i}(I_{j})$$

is invariant under f.

The following is an immediate consequence of Proposition 2.2.

Corollary 2.3. Let I be a closed interval contained in Δ . If $f \in \mathcal{G}_{\mathcal{L}}(C)$ is irreducible, then $\Delta(I) = \Delta$.

Definition 2.4. An element $f \in \mathcal{G}_{\mathcal{L}}(C)$ is said to be minimal if the set

$$\mathcal{O}(x) = \{ f^n(x) \mid n \in \mathbf{Z} \}$$

is dense in Δ for each point $x \in \Delta$.

Corollary 2.5. Let $f \in \mathcal{G}_{\mathcal{L}}(C)$. The following are equivalent:

- (1) f is irreducible,
- (2) f is minimal,

(3) There exists a point $x \in \Delta$ for which the set $\mathcal{O}(x)$ is dense in Δ .

Proof. First suppose that f is irreducible. Then, for each closed interval $I \subset \Delta$, we have that $\Delta(I) = \Delta$. This implies that, for each point $x \in \Delta$, there exists an integer m, dependent on I, such that $f^m(x) \in I^{\circ}$. This implies that f is minimal.

Clearly (2) implies (3). Finally, to see that (3) implies (1), suppose that for some point $x \in \Delta$ the set $\mathcal{O}(x)$ is dense in Δ . We suppose to the contrary that f is not irreducible. Then there exists a nonempty proper subset Δ' of Δ which is invariant under f and which is a finite union of closed intervals. Since $\mathcal{O}(x)$ meets Δ' and Δ' is invariant under f, it follows that $\mathcal{O}(x) \subset \Delta'$. This contradicts our assumption that $\mathcal{O}(x)$ is dense in Δ .

Corollary 2.6. Let $f: \Delta \to \Delta$ be an irreducible element of $\mathcal{G}_{\mathcal{L}}(C)$. Let I be any closed interval contained in C. Then f generates a fixed point free homeomorphism F in $\mathcal{G}_{\mathcal{L}}(I)$, i.e., setting $\Delta' = I \cap \mathcal{L}$, there exists a decomposition

$$\Delta' = I_1 \cup I_2 \cup \cdots \cup I_r$$

by pairwise disjoint closed intervals and nonzero integers n_1, n_2, \ldots, n_r such that

$$\{f^{n_1}(I_1), f^{n_2}(I_2), \dots, f^{n_r}(I_r)\}$$

also constitutes a decomposition of Δ' by a pairwise disjoint closed interval such that for each $1 \leq t \leq r$ we have $f^{n_t}(I_t) \cap I_t = \emptyset$ and $f^{n_t}(I_t)$ is isotopic to I_t .

Proof. By Corollary 2.5, it follows that there exists a fixed point free map $g: \Delta' \to \Delta'$ such that for each point $x \in \Delta'$ there exist a neighborhood U of x and a nonzero integer k such that $g|_{U} = f^{k}|_{U}$. The rest now follows immediately from Corollary 1.15. \square

Theorem 2.7. Let M be a closed hyperbolic surface. Let \mathcal{L} be a minimal geodesic lamination having no closed leaves. Let $C \in \mathcal{T}_{\mathcal{L}}$, and let $\Delta = C \cap \mathcal{L}$. Suppose that \mathcal{L} is orientable, and let ν be a continuous nonvanishing vector field defined on \mathcal{L} . Then the map $f: \Delta \to \Delta$

defined to be the first return map with respect to ν defines an irreducible element of the group $\mathcal{G}_{\mathcal{L}}(C)$.

Proof. First of all, by Lemma 1.6 it follows that the first return map f on Δ is a map supported by \mathcal{L} . We next claim that the map f is minimal, i.e., that the orbit of each point $x \in \Delta$ is dense in Δ . To see this we observe that since \mathcal{L} contains no closed leaves, no point of Δ is periodic. This, together with the fact that \mathcal{L} is minimal, implies that the map f is minimal.

All that remains is to show that f is a homeomorphism. It will then follow from Corollary 2.5 that the map f is also irreducible. We start by showing that f is injective. If f were not injective, there would exist distinct points x_1 and x_n in Δ such that $y = f(x_1) = f(x_2)$. But the $f(y) \in \{x_1, x_2\}$ which implies that y is a point of period two contradicting the minimality of f. To see that f is onto, let $z \in \Delta$. Then there exists a sequence $\{y_n\}_{n\geq 0} \subset \{f^m(z)\}_{m\geq 0}$ tending to the point z. For each n, let $x_n = f^{-1}(y_n)$, and let x be a limit point of the sequence $\{x_n\}$. Then, since Δ is compact, $x \in \Delta$. Moreover,

$$f(x) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} y_n = z.$$

This concludes the proof of Theorem 2.7.

3. Invariant measures. Throughout this section, all measures are assumed to be probability measures. Let $f \in \mathcal{G}_{\mathcal{L}}(C)$ be an irreducible element. By Corollary 2.5, the map f is minimal and therefore any f-invariant measure μ_0 on Δ necessarily has full support on Δ (cf. [3]).

We saw in Corollary 2.6 that, for each closed interval $\Delta' \subset \Delta$, there exist a decomposition

$$\Delta' = I_1 \cup I_2 \cup \cdots \cup I_r$$

by pairwise disjoint closed intervals and nonzero integers n_1, n_2, \ldots, n_r such that

$$\{f^{n_1}(I_1), f^{n_2}(I_2), \dots, f^{n_r}(I_r)\}\$$

also constitutes a decomposition by pairwise disjoint closed intervals with $f^{n_t}(I_t) \cap I_t = \emptyset$ for each $1 \le t \le r$.

Definition 3.1. Let μ_0 be an f-invariant measure on Δ . We say that the pair (f, μ_0) carries discrete dynamics on Δ if, given any two nondegenerate closed intervals I and J with $\mu_0(I) = \mu_0(J)$, there exist decompositions

$$I = I_1 \cup I_2 \cup \cdots \cup I_r$$

and

$$J = J_1 \cup J_2 \cup \cdots \cup J_r$$

and nonzero integers n_1, n_2, \ldots, n_r such that for each $1 \leq t \leq r$ we have $f^{n_t}(I_t) = J_t$.

In the above definition it is understood that the $\{I_t\}$ consists of mutually pairwise disjoint closed intervals. Similarly for the collection $\{J_t\}$.

Lemma 3.2. Let μ_0 be an f-invariant measure on Δ such that the pair (f, μ_0) carries discrete dynamics on Δ . Then, for any f-invariant measure ν_0 on Δ , and for all closed intervals I and J contained in Δ , we have that $\mu_0(I) = \mu_0(J)$ if and only if $\nu_0(I) = \nu_0(J)$. In particular, the pair (f, ν_0) also carries discrete dynamics on Δ .

Proof. Let I and J be two closed intervals of equal μ_0 measure, and let

$$I = I_1 \cup I_2 \cup \cdots \cup I_r$$

and

$$J = J_1 \cup J_2 \cup \cdots \cup J_r$$

be the decompositions given by Definition 3.1. Then

$$\nu_0(J) = \sum_{i=1}^r \nu_0(J_i) = \sum_{i=1}^r \nu_0(f^{n_i}(I_i)) = \sum_{i=1}^r \nu_0(I_i) = \nu_0(I).$$

Conversely, suppose that I and J are closed intervals of equal ν_0 measure, and suppose to the contrary that $\mu_0(I) \neq \mu_0(J)$. Without loss

of generality, we can assume that $\mu_0(J) > \mu_0(I) > 0$. Recall that μ_0 has full support on Δ . Let $J' \subset J$ be a closed interval with $\mu_0(J') = \mu_0(I)$. Then it follows from the above calculation that $\nu_0(J') = \nu_0(I)$. But this is a contradiction since $\nu_0(J') < \nu_0(J) = \nu_0(I)$.

Any f-invariant measure μ_0 on Δ defines a measure on the curve C simply by intersecting any Borel subset of C with the lamination \mathcal{L} and measuring this intersection with μ_0 . By abuse of notation we shall denote the resulting measure on C by μ_0 . We now show that if (f, μ_0) carries discrete dynamics on Δ , then the resulting measure μ_0 on C is a transverse measure, i.e., is invariant under isotopy.

Theorem 3.3. Let f be an irreducible element of $\mathcal{G}_{\mathcal{L}}(C)$, and let μ_0 be an f-invariant measure such that the pair (f, μ_0) carries discrete dynamics on $\Delta = C \cap \mathcal{L}$. Let $\mathcal{T}_{\mathcal{L}}(C) = \{X \in \mathcal{T}_{\mathcal{L}} \mid X \subset C\}$. Then the measure μ_0 on C defines a transverse measure on C, i.e.,

- (1) μ_0 has full support on \mathcal{L} .
- (2) If $C' \in \mathcal{T}_{\mathcal{L}}(C)$ and $C' \cup_{i \geq 0} C_i$ where $C_i \in \mathcal{T}_{\mathcal{L}}(C)$ and $C_i \cap C_j = \partial C_i \cap \partial C_j$ for all $i \neq j$, then $\mu_0(C') = \sum_{i \geq 0} \mu_0(C_i)$.
- (3) If C_1 and C_2 are elements of $\mathcal{T}_{\mathcal{L}}(C)$ which are isotopic through elements of $\mathcal{T}_{\mathcal{L}}$, then $\mu_0(C_1) = \mu_0(C_2)$.

Proof. Conditions (1) and (2) are immediate since μ_0 is a measure with full support on $\Delta = C \cap \mathcal{L}$. Thus, it suffices to verify condition (3). Also, in view of (2), without loss of generality, we can take C_1 and C_2 to be intervals contained in C. Let $I = C_1 \cap \mathcal{L}$ and $J = C_2 \cap \mathcal{L}$. We must show that $\mu_0(I) = \mu_0(J)$. Suppose to the contrary. Without loss of generality we can assume that $\mu_0(I) < \mu_0(J)$. Let J' be a proper subinterval of J with $\mu_0(J') = \mu_0(I)$. Let I' be the corresponding subinterval I which is isotopic to J'. Since the pair (f, μ_0) carries discrete dynamics on Δ , it follows that there exists a map $g: I \to J'$ which is supported by \mathcal{L} and which is both injective and surjective. Composing the map g with the isotopy from J' to I', we obtain a new map g' also supported by \mathcal{L} which maps I one-to-one onto I'. But this now contradicts the result of Corollary 1.11 since the interval I' is a proper subinterval of I. This concludes the proof of Theorem 3.3.

Let f be an irreducible element of $\mathcal{G}_{\mathcal{L}}(C)$, and let μ_0 be an f-invariant measure. Then the essence of Theorem 3.3 is that if the pair (f, μ_0) carries discrete dynamics on Δ , then the measure μ_0 descends to a measure on the family of isotopy classes of $\mathcal{T}_{\mathcal{L}}(C)$. Thus, the transverse measure μ_0 on C extends to a transverse measure μ_D for each $D \in \mathcal{T}_{\mathcal{L}}$. In fact, each such D admits a decomposition

$$D = D_1 \cup D_2 \cup \cdots \cup D_n$$

where each D_j is a closed interval isotopic to a closed interval I_j contained in C. Hence we set

$$\mu_D(D) = \sum_{j=1}^n \mu_0(I_j).$$

In view of Theorem 3.3, this is well defined and depends only on the isotopy class of D. Thus, the measure μ_0 determines a transverse measure μ on the lamination \mathcal{L} , i.e., it gives \mathcal{L} the structure of a measured lamination.

Conversely, if we are given a transverse measure μ on \mathcal{L} then the restriction of μ on C, denoted μ_C , is necessarily an f-invariant measure on C with full support on \mathcal{L} (cf. Lemma 1.8).

In summary:

Theorem 3.4. Let f be an irreducible element of $\mathcal{G}_{\mathcal{L}}(C)$, and let μ_0 be an f-invariant measure such that the pair (f, μ_0) carries discrete dynamics on $\Delta = C \cap \mathcal{L}$. Then μ_0 defines a transverse measure μ on \mathcal{L} .

Acknowledgments. I wish to thank Mariusz Urbański with whom I discussed the content of this paper in great depth, and who provided me with many useful ideas. I also wish to thank the referees for their time and effort and for the many valuable comments and suggestions on improving the original version of the paper.

REFERENCES

1. A.J. Casson and S. Bleiler, Automorphisms of surfaces after Nielsen and Thurston, Cambridge University Press, Cambridge, 1988.

- 2. S.P. Kerckhoff, Simplicial systems for interval exchange maps and measured foliations, Ergodic Theory Dynamical Systems 5 (1985), 257–271.
- ${\bf 3.}$ R. Mañé, Ergodic theory and differential dynamics, Springer-Verlag, New York, 1987.
- **4.** H. Masur, Interval exchange transformations and measured foliations, Ann. Math. **115** (1982), 169–200.
- 5. J.W. Morgan, Ergodic theory and free actions on trees, Invent. Math. 94 (1988), 605–622.
- **6.** J.W. Morgan and P.B. Shalen, Free actions of surface groups on **R**-trees, Topology **30** (1991), 143–154.
- ${\bf 7.}$ W. Thurston, $Geometry\ and\ topology\ of\ 3-manifolds,$ Princeton University lecture notes, 1980.
- 8. M. Urbański and L.Q. Zamboni, Circle maps, measured laminations, and free group actions on trees, Math. Nachr. 168 (1994), 277–285.

Department of Mathematics, University of North Texas, Denton, TX 76203-5116

E-mail address: luca@unt.edu