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DEGENERATE HOMOGENEOUS STRUCTURES OF
TYPE S1 ON PSEUDO-RIEMANNIAN MANIFOLDS

A. MONTESINOS AMILIBIA

ABSTRACT. We obtain all of the pseudo-Riemannian
manifolds endowed with homogeneous structures defined by
isotropic vector fields. Thus, the (general pseudo-Riemannian)
class S1 of homogeneous structures is fully determined.

1. Introduction. Ambrose and Singer [1] gave a characterization
for a connected, simply connected and complete Riemannian manifold
to be homogeneous, in terms of a (1,2) tensor field S on the manifold.
This characterization extends the classical one given by Cartan of
Riemannian symmetric spaces as the spaces of parallel curvature, which
correspond to Ambrose-Singer’s case S = 0. That characterization has
also permitted Tricerri and Vanhecke [8] to classify those homogeneous
Riemannian manifolds into eight classes which are defined by the
invariant subspaces of certain space S1 ⊕ S2 ⊕ S3. In [8] it is proved
that a connected, simply connected and complete Riemannian manifold
admits a nonvanishing homogeneous structure S of type S1 if and only
if it is isometric to the hyperbolic space.

Gadea and Oubiña [4] have extended the characterization in [1] to
the pseudo-Riemannian case of any signature and proved that a con-
nected, simply connected and complete pseudo-Riemannian manifold
admits a homogeneous pseudo-Riemannian structure if and only if it
is reductive homogeneous. As is well known, in the Riemannian case
every homogeneous manifold is complete and reductive.

Gadea and Oubiña give in [6] a classification for the pseudo-Rieman-
nian case of any signature similar to that given in [8] for Riemannian ho-
mogeneous structures, and they moreover characterize the three prim-
itive classes. From now on we shall focus attention on the first class,
S1. A connected, simply connected and complete pseudo-Riemannian
manifold (M, g) of any signature (M, g) admits [6] a nondegenerate,
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see Section 2, homogeneous structure of type S1 if and only if g is, up
to a change of sign, a metric of strictly negative constant curvature.
Moreover, the nonflat pseudo-Riemannian space forms of arbitrary sig-
nature locally admit nondegenerate homogeneous pseudo-Riemannian
structures of type S1. By the way, we note that in the complex case
the situation is similar to the real one [3]: one of the classes in Abbena-
Garbiero’s classification [2] (of homogeneous Kahler structures) corre-
sponds to spaces of strictly negative holomorphic curvature.

Thus, to determine the (general pseudo-Riemannian) class S1, it only
rests upon the degenerate case which is solved in the present paper,
proving the following

Theorem. Let (M, ḡ) be an n + 2-dimensional connected pseudo-
Riemannian manifold with a degenerate homogeneous structure of
type S1. Then (M, ḡ) is locally isometric to Rn+2 with the pseudo-
Riemannian metric

g = du⊗ dv + dv ⊗ du+
(
b(x,x) + 2u

)
dv ⊗ dv + h,

where b and h are symmetric bilinear forms in Rn, h is nondegenerate,
x is the position vector in Rn and u, v are the coordinates in R2.

As we shall see in Proposition 3, (Rn+2, h, b) is isometric to the
reductive homogeneous pseudo-Riemannian manifold G/H with group
G, isotropy group H and Lie subspace m endowed with the Ad (H)-
invariant inner product as defined in Section 5; but G is not in general
the whole group of isometries of (Rn+2, h, b). Moreover, (Rn+2, h, b) is
an example of a reductive homogeneous pseudo-Riemannian manifold
which is noncomplete.

2. Preliminaries. Let (M, g) be a connected C∞ pseudo-
Riemannian manifold with Levi-Civita connection ∇ and curvature
R. Then, in the same vein as [8], Gadea and Oubiña [4] define a
homogeneous pseudo-Riemannian structure on (M, g) as a tensor field
S of type (1,2) on M such that the connection ∇̃ = ∇ − S satisfies
∇̃g = ∇̃R = ∇̃S = 0. Such a structure is said to be of type S1 if there
is a vector field ξ ∈ X(M) that defines S by

S(X,Y ) = g(X,Y )ξ − g(Y, ξ)X,
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and it is said to be degenerate or not according to ξ being isotropic or
not.

Gadea and Oubiña [6] have studied nondegenerate homogeneous
structures of type S1. They turn out to be defined on certain subsets of
pseudo-Riemannian manifolds of strictly negative constant curvature.

Here we treat the case of degenerate homogeneous pseudo-Riemannian
structures of type S1.

Let (M, g) be a connected C∞ pseudo-Riemannian manifold with
dimM = n+2, and let 0 	= ξ ∈ X(M) be isotropic, that is, g(ξ, ξ) = 0.
We assume that if we put

∇̃XY := ∇XY − g(X,Y )ξ + g(Y, ξ)X,

then ∇̃g = ∇̃R = ∇̃S = 0, where S(X,Y ) = g(X,Y )ξ− g(Y, ξ)X. The
condition ∇̃g = 0 is automatically satisfied. As for ∇̃S we have

(∇̃XS)(Y, Z) = g(Y, Z)∇̃Xξ − g(Z, ∇̃Xξ)Y = 0.

Let W be any nonisotropic (local) vector field. Since dimM ≥ 2,
we can take Y nonisotropic and orthogonal to W and Z = Y . Then
g(Y, Y )g(∇̃Xξ,W ) = 0, whence g(∇̃Xξ,W ) = 0. Since this is true for
any nonisotropic W we conclude ∇̃ξ = 0. Thus,

∇Xξ = g(X, ξ)ξ,

or if we put α = g(ξ), we have

∇ξ = α⊗ ξ, ∇α = α⊗ α.

Then
dα = 0.

As for the curvature, we first fix the notation. We define

R(X,Y )Z = ∇[X,Y ]Z +∇Y ∇XZ −∇X∇Y Z,

R(X,Y, Z,W ) = g(R(X,Y )Z,W ).

We have ∇Y ∇Xξ = 2α(Y )α(X)ξ + α(∇Y X)ξ, whence evidently

R(X,Y )ξ = 0, R(X,Y, Z, ξ) = 0.
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By expanding the condition ∇̃R = 0, we get

(∇XR)(Y, Z,W,U) = α(Y )R(X,Z,W,U) + α(Z)R(Y,X,W,U)
+ α(W )R(Y, Z,X,U) + α(U)R(Y, Z,W,X).

If we take the cyclic sum in X,Y, Z and apply Bianchi identities we get

SXY Zα(X)R(Y, Z,W,U) = 0.

In other terms, for every W,U ∈ X (M), we have

α ∧R(., .,W,U) = 0,

and if we bring this into the formula for ∇XR, we get

∇XR = 2α(X)R.

Now since dα = 0 for each point of M there must be a function v
defined in some connected neighborhood of it that satisfies α = dv.
But then ∇X(de−v) = 0. Thus, if we put w = e−v and restrict our
study to that neighborhood, we have the following situation:

(2.1)

w ∈ C∞(M), z := g−1(dw), z 	= 0, g(z, z) = 0,
∇z = 0, ∇dw = 0,

dw ∧R(., ., X, Y ) = 0, X, Y ∈ X(M),

∇R = − 2
w

dw ⊗ R.

3. The local canonical form of the metric.

Proposition 1. The metric on Rn+2 has the canonical form

g = du⊗ dv + dv ⊗ du+
(
b(x,x) + 2u

)
dv ⊗ dv +

n∑
a=1

εadx
a ⊗ dxa,

and we have
ξ = ∂u, α = dv.
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Proof. Since M is connected and there is some point where dw
does not vanish, we conclude that dw is everywhere nonzero because
∇dw = 0. Thus, for each t ∈ R the subset Ht = w−1({t}) is a
regular hypersurface of M . Let γ : I → M be a geodesic and put
w(t) = (w ◦ γ)(t); then

ẇ =
(
(dw) ◦ γ)

(γ̇),

ẅ =
(
(∇γ̇dw

) ◦ γ)(γ̇) + (dw ◦ γ)(∇γ̇ γ̇) = 0.

So if for some value t ∈ R, γ̇t is tangent to Hw(t), then γ remains in
that hypersurface. On the contrary, if ẇ(0) = 1, then we always have
ẇ(t) = 1.

Let ew ∈ X(M) be such that ew(w) = dw(ew) = 1. By inner
multiplication of (2.1) with ew we have

R(., ., X, Y ) = dw ∧R(ew, ., X, Y ).

Thus R(Z,W,X, Y ) = Z(w)R(ew,W,X, Y )−W (w)R(ew, Z,X, Y ). By
using the symmetries of R we can write

R(ew, Z,X, Y ) = R(X,Y, ew, Z)
= X(w)R(ew, Y, ew, Z)− Y (w)R(ew, X, ew, Z),

so that if we put m(X,Y ) := R(ew, X, ew, Y ), then

(3.1) R = (dw ⊗ dw) ∧m,

where the wedge stands for the product of double forms.

If X,Y ∈ X(Ht) we have dw(∇XY ) = ∇X(dw(Y ))−(∇Xdw)(Y ) = 0
because dw is parallel. Hence ∇XY ∈ X(Ht). Thus, ∇ induces on
Ht a torsionless connection whose curvature, due to (3.1), vanishes.
Therefore, the parallel displacement along Ht does not depend (locally)
on the path. This will allow for a suitable choice of coordinates.

Assume that H0 	= ∅ and that p ∈ H0. Since zp ∈ TpH0 because
zp(w) = (dw)p(zp) = g(zp, zp) = 0, and zp is orthogonal to the whole
TpH0, we can take vectors e1(0), . . . , en(0) of TpH0 such that if we call

ez(0) := zp,
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we have

g(ez(0), ez(0)) = 0,
g(ez(0), ea(0)) = 0, a = 1, . . . , n,
g(ea(0), eb(0)) = εaδab, a, b = 1, . . . , n, εa = ±1.

The two-dimensional subspace of TpM which is orthogonal to that
generated by the vectors e1(0), . . . , en(0) has a nondegenerate metric
induced by g and contains ez(0) which is an isotropic vector. Therefore,
a vector ew(0) ∈ TpM exists such that

g(ew(0), ez(0)) = 1,
g(ew(0), ew(0)) = 0,
g(ew(0), ea(0)) = 0, a = 1, . . . , n.

Now we consider the geodesic γ in M with initial condition γ0 = p,
γ̇0 = ew(0). By parallel displacement of the basis {ez(0), ew(0), ea(0)}
along γ we obtain the basis {ez(t), ew(t), ea(t)} of Tγ(t)M and we have
γt ∈ Ht because γ̇0(w) = dw(ew(0)) = g(zp, ew(0)) = g(ez(0), ew(0)) =
1, whence w(t) = t. Starting from the point γt we make the parallel
displacement of ea(t) along Ht. Since initially (dw)p(ea(0)) = 0
and dw is parallel, we have that ea(t) ∈ Tγt

Ht. Therefore, that
parallel displacement does not depend on the path. Thus, there is a
neighborhood V of p on which we have vector fields ez = z, ea ∈ X(V )
such that ∇ez = 0, ∇ea

eb = 0, ∇ez
ea = 0, a, b = 1, . . . , n. Therefore,

[ez, ea] = [ea, eb] = 0, a, b = 1, . . . , n. Consequently, the flows φa
s , φ

z
s of

these vector fields commute. Thus, there is a neighborhood of 0 ∈ Rn+2

where there is a well-defined map

ψ(z, w, x1, . . . , xn) = (φz
z ◦ φ1

x1 ◦ · · · ◦ φn
xn)(γw)

which is the inverse of a chart for M with coordinates (z, w, xa) such
that the coordinate w is the function w, and such that

∂z :=
∂

∂z
= ez = z, ∂a :=

∂

∂xa
= ea, a = 1, . . . , n,

∂w(w) =
∂

∂w
(w) = 1.
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We put
b := g(∂w, ∂w), sa := g(∂w, ∂a).

Then, having in mind that g(z) = g(∂z) = dw, that g(∂z, ∂z) =
g(z, z) = 0 and that g(∂a, ∂b) = εaδab, we have

g = dz ⊗ dw + dw ⊗ dz + bdw ⊗ dw

+
n∑

a=1

sa(dw ⊗ dxa + dxa ⊗ dw) +
n∑

a=1

εadx
a ⊗ dxa.

Also we have the initial conditions

(3.2) b(z=0,xa=0) = g(γ̇w, γ̇w) = g(γ̇0, γ̇0) = g(ew(0), ew(0)) = 0,

(3.3) sa(z=0,xa=0) = g(ew(w), ea(w)) = 0.

Since ∇z = ∇∂z = 0, we have immediately L∂z
g = 0, that is,

∂b

∂z
=

∂sa

∂z
= 0.

Conversely, these conditions guarantee that ∇z = 0 and also that
∇∂z∂ea

= 0, as is easily verified. Now we need to impose the condition
∇∂a

∂eb
= 0. The usual formula for Christoffel symbols gives

∇∂a
∂eb

=
1
2

(
∂sa

∂xb
+

∂sb

∂xa

)
∂z,

and we conclude that
∂sa

∂xb
+

∂sb

∂xa
= 0.

But then, if we call

sabc :=
∂2sa

∂xb∂xc

we have sabc = sacb and sabc = −sbac. Thus, as is well known, sabc ≡ 0.
Since, by (3.3), we have sa(z=0,xa=0) = 0, we conclude that there are
some functions Sab(w) such that

Sab(w) + Sba(w) = 0,

sa =
n∑

b=1

Sab(w)xb.
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From this, we get Γb
wa = εbSba(w). But along γ we have (∇∂w

∂a) ◦γ =
∇γ̇ea = 0; this implies that Γb

wa = 0 at the points where z = x1 =
· · · = xn = 0. And this leads to Sab(w) = 0, Γb

wa ≡ 0 and sa ≡ 0.

After computation, we get the Christoffel symbols that are not
identically zero:

Γz
ww =

1
2

∂b

∂w
, Γa

ww = − 1
2
εa

∂b

∂xa
, Γz

wa =
1
2

∂b

∂xa
.

With the aid of these formulae, we can easily compute the components
mab = R(∂w, ∂a, ∂w, ∂b) which completely determine the curvature. We
get

(3.4) mab = − 1
2

∂2b

∂xa∂xb
.

Thus the curvature is given by R =
∑n

a,b=1 mab(dw∧dxa)⊗(dw∧dxb).
Then

∇∂w
R =

n∑
a,b=1

∂mab

∂w
(dw ∧ dxα)⊗ (dw ∧ dxb),

∇∂c
R =

n∑
a,b=1

∂mab

∂xc
(dw ∧ dxa)⊗ (dw ∧ dxb).

Hence, the condition ∇R + (2/w) dw ⊗R = 0 requires that

(3.5)
∂mab

∂w
+

2mab

w
=

1
w2

∂w2mab

∂w
= 0,

∂mab

∂xc
= 0,

a, b, c,= 1, . . . , n.

If we bring (3.4) to the last formula, we have

∂3b

∂xa∂xb∂xc
= 0, a, b, c = 1, . . . , n.

Now at the points on which z = x1 = · · · = xn = 0 we have
Γz

wa = (1/2)(∂b/∂xa) = 0. Since, by (3.2), b vanishes at those points,
we conclude that b =

∑n
a,b=1 Bab(w)xaxb and mab = −Bab(w). The

first formula of (3.5) now implies that

Bab(w) =
1
w2

bab, bab ∈ R.
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Thus we get the following form of the metric

g = dz ⊗ dw + dw ⊗ dz +
1
w2

b(x,x) dw ⊗ dw +
n∑

a=1

εa dx
a ⊗ dxa,

where we have put b(x,x) =
∑n

a,b=1 babx
axb and x = (x1, . . . , xn) is

the position vector in Rn. Now we substitute w = e−v, u := −e−vz and
finally obtain the canonical form of the metric given in the statement,
which is a pseudo-Riemannian metric defined in all of Rn+2.

4. The curvature and geodesics of this metric.

Proposition 2. Let (Rn+2, h, b) denote Rn+2 equipped with the
metric

g = du⊗ dv + dv ⊗ du+
(
b(x,x) + 2u

)
dv ⊗ dv +

n∑
a,b=1

habdx
a ⊗ dxb.

Then its curvature and its Ricci tensor are given by

R = −
n∑

a,b=1

bab(dv ∧ dxa)⊗ (dv ∧ dxb),

Ricci = − tr (h−1 · b) dv ⊗ dv.

Except for the straight lines in the hyperplane v = v0, the geodesics are
not defined for all t. Thus (Rn+2, h, b) is a connected, simply connected
and noncomplete pseudo-Riemannian manifold.

Proof. For brevity, we shall put h =
∑n

a,b=1 habdx
a ⊗ dxb with

dethab 	= 0 so that h is a constant nondegenerate pseudo-Riemannian
metric on Rn. Then the metric of M is locally given by

(4.1)
g = du⊗ dv + dv ⊗ du+

(
b(x,x) + 2u

)
dv ⊗ dv + h,

g−1 = ∂u ⊗ ∂v + ∂v ⊗ ∂u − (
b(x,x) + 2u

)
∂u ⊗ ∂u + h−1,

where h−1 = hab∂a ⊗ ∂b and the matrix (hab) is the inverse of (hab).
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The nonvanishing Christoffel symbols are

Γu
vv = b(x,x) + 2u, Γu

vu = 1, Γu
va =

n∑
b=1

babx
b,

Γv
vv = −1, Γa

vv = −
n∑

b,c=1

habbbcx
c.

It is very easy to verify that this metric satisfies our requirements,
i.e., that ∂u is a degenerate homogeneous pseudo-Riemannian structure
in Rn+2 with the metric (4.1). The curvature of (Rn+2, h, b) is given
by

R = −
n∑

a,b=1

bab(dv ∧ dxa)⊗ (dv ∧ dxb).

The Ricci tensor is

Ricci = − tr (h−1 · b) dv ⊗ dv,

and the scalar curvature vanishes. Therefore, for the right choice
of dimension and signature, (4.1) is a solution of Einstein’s general
relativity equations for a universe filled with a swarm of photons, see
[7, p. 579].

The equations of geodesics are

ü+
(
b(x,x) + 2u

)
v̇2 + 2b(x, ẋ)v̇ + 2u̇v̇ = 0,

v̈ − v̇2 = 0,
ẍ − v̇2h−1 · b · x = 0.

Then v = v0 − ln(1− v̇0t). If we put primes to represent differentiation
with respect to v, then the third equation becomes x′′ = −x′+h−1 ·b·x,
whose solution is(

x(v)
x′(v)

)
= exp

(
0 (v − v0)I

(v − v0)h−1 · b −(v − v0)I

) (
x(v0)
x′(v0)

)
,

or undoing the change:(
x(t)

(1− v̇0t)/v̇0 ẋ(t)

)

= exp
(

0 − ln(1− v̇0t)I
− ln(1− v̇0t)h−1 · b ln(1− v̇0t)I

) (
x0

(ẋ0/v̇0)

)
.
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With the same change, the first equation is now

u′′ + 3u′ + 2u = − b(x,x)− 2b(x,x′).

A particular solution is f(v) = −(1/2)h(x(v),x′(v)). The general
solution of u′′ + 3u′ + 2u = 0 is u = ev0−v(A+Bev0−v). Thus,

u(t) = (1− v̇0t)
(
A+B(1− v̇0t)− 1

2v̇0
h(x(t), ẋ(t))

)
,

and the constants A,B must be determined from the initial conditions.
Of course, these formulae hold when v̇0 	= 0. If v̇0 = 0, we simply
have the equations of straight lines in the hyperplane v = v0, that is,
v(t) = v0, u(t) = u̇0t+ u0, x(t) = ẋ0t+ x0. With the exception of this
case, the geodesics are not defined for all t.

5. The homogeneous pseudo-Riemannian space (Rn+2, h, b).
Let G be R2n+2 with the product

(5.1) (a1, t1, s1) · (a2, t2, s2)
=

(
a1 + a2e

−t1 + τ (s1) · Jt1 · s2, t1 + t2, Jt1 · s2 + s1

)
,

where

ai, ti ∈ R, si =
(
xi

yi

)
∈ Rn × Rn, i = 1, 2,

τ

(
x
y

)
= (y · h,−x · h), Jt = exp

(
0 tI

th−1 · b −tI

)
.

Let

(5.2) H =
{(

0, 0,
(
0
y

))
: y ∈ Rn

}
⊂ G

and

(5.3) m =
{(

a, t,

(
x
−x

))
: a, t ∈ R, x ∈ Rn

}
⊂ g.
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Then H ∼= (Rn,+) is a closed subgroup of G, m is an Ad (H)-invariant
subspace of the Lie algebra g of G and the inner product 〈 , 〉 in m
defined by

(5.4)
〈(

a, t,

(
x
−x

))
,

(
a, t,

(
x
−x

))〉
= at+ h(x, x)

is Ad (H)-invariant.

Let (Rn+2, h, b) be as in Proposition 2 and G, H, m and 〈 , 〉 as in
(5.1), (5.2), (5.3) and (5.4) above. Then we have

Proposition 3. (Rn+2, h, b) is isometric to the reductive homoge-
neous pseudo-Riemannian manifold G/H with Lie subspace m, endowed
with the Ad (H)-invariant inner product 〈 , 〉.

As a first step towards this description of (Rn+2, h, b) as a homoge-
neous space, we compute the algebra k of Killing vector fields of (4.1).

Lemma 4. The vector field Z ∈ X(Rn+2, h, b) belongs to k if and
only if it can be written as

(5.5)
Z =

(
(p(x)− k)evu− h(q′,x) + ae−v

)
∂u

+ (kev + l − h(p,x)ev)∂v +B · x+ uevp+ q.

where a, k, l ∈ R; p = pc∂c with pc ∈ R for c = 1, . . . , n; q = qa(v)∂a

satisfies q′′ = −q′+h−1 · b · q; B ∈ o(h)∩ o(b); and, if b 	= 0, then k = 0
and p = 0.

Proof. Let Z = U∂u + V ∂v + Xa∂a ∈ X(M). We shall use the
summation convention over the indexes a, b, c, . . . = 1, . . . , n. Then
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Z ∈ k if and only if the following equations hold:

U +
∂U

∂v
+ b(x, X) +

(
b(x,x) + 2u

) ∂V

∂v
= 0,(5.6)

∂V

∂v
+

∂U

∂u
+

(
b(x,x) + 2u

) ∂V

∂u
= 0,(5.7)

∂V

∂u
= 0,(5.8)

∂U

∂xa
+

(
b(x,x) + 2u

) ∂V

∂xa
+ hab

∂Xb

∂v
= 0,(5.9)

∂V

∂xa
+ hab

∂Xb

∂u
= 0,(5.10)

hac
∂Xc

∂xb
+ hbc

∂Xc

∂xa
= 0.(5.11)

From (5.8) we have V = V (u,x). If we bring this to (5.7) and
differentiate with respect to u, we get ∂2U/∂u2 = 0. Therefore, taking
account of (5.7), we conclude that

U = − ∂V (v,x)
∂v

u+B(v,x),

for some function B(v,x). For brevity we put Xa := habX
b. Then

(5.11) reads ∂Xa/∂x
b+∂Xb/∂x

a = 0. So there are functions Aab(u, v),
Ca(u, v) with Aab(u, v) +Aba(u, v) = 0 such that

Xa = Aab(u, v)xb + Ca(u, v).

From (5.10), we have

∂V (v,x)
∂xa

= − ∂Xa

∂u
= − ∂Aab(u, v)

∂u
xb − ∂Ca(u, v)

∂u
.

By anti-differentiation and having in mind that Aab+Aba = 0, we have

(5.12)
V (v, x) = − ∂Ca(u, v)

∂u
xa + C(u, v),

∂Aab(u, v)
∂u

= 0.
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By differentiation of (5.12) with respect to u, we get Ca(u, v) =
pa(v)u + qa(v) for some functions pa(v), qa(v). Also ∂C(u, v)/∂u = 0.
Therefore, the situation is now as follows

Xa = Aab(v)xb + pa(v)u+ qa(v),
V = − pa(v)xa + C(v),
U =

(
p′a(v)x

a − C ′(v)
)
u+B(v,x).

We substitute this in (5.9):

(5.13) p′a(v)u+
∂B(v,x)

∂xa

− (
b(x,x) + 2u

)
pa(v) +A′

ab(v)x
b + p′a(v)u+ q′a(v) = 0.

From the coefficient in u we see that pa(v) = pae
v and the numbers

pa can be regarded as the components of a form p ∈ (Rn)∗. By
differentiation of the whole formula with respect to xb, we get

∂2B(v,x)
∂xa∂xb

+A′
ab(v)− 2pae

vbbcx
c = 0.

By interchanging indexes a and b and subtracting, we have

A′
ab(v)− ev(pabbc − pbbac)xc = 0,

whence Aab is constant (take values for xa = 0) and pbbac = pabbc.
Assume that some of the pa are not zero, for instance, p1 	= 0. Then
p1bac = pab1c, whence bac = (pa/p1)b1c, and further b1c = bc1 =
(pc/p1)b11. Thus,

bac =
papc

p2
1

b11.

In other words, b is decomposable, and if we call r := b11/p
2
1, we have

b(x,x) = rp(x)2 where p(x) = pax
a. Substituting in (5.13), we have

∂B(v,x)
∂xa

= rpae
vp(x)2 − q′a(v)

=
rev

3
∂p(x)3

∂xa
− q′a(v),

B(v,x) =
rev

3
p(x)3 − q′a(v)x

a + a(v)

=
ev

3
b(x,x)p(x)− q′a(v)x

a + a(v),
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for some function a(v). After substitution in (5.6), we have

(5.14)
(
babx

ahbcpce
v − C ′′(v) + C ′(v)

)
u

− ev

3
b(x,x)p(x) + a′(v) + a(v)− (q′′a(v) + q′a(v))x

a

+ babx
ahbc

(
Acdx

d + qc(v)
)
+ b(x,x)C ′(v) = 0.

The term of third degree in x must be zero, that is, p = 0 or otherwise
b = 0. From the factor in u we get C(v) = kev + l. By differentiation
of (5.14) with respect to xa and taking xa = 0, we see that

q′′ = − q′ + q · h−1 · b,

where q : R → (Rn)∗ is given by q(v) = qa(v) dxa. Note that we
usually shall consider a bilinear form b as a map b : Rn → (Rn)∗.
In this same spirit, h−1 is conceived as a map h−1 : (Rn)∗ → Rn.
By evaluating (5.14) at xa = 0 we see that a(v) = ae−v. So (5.14)
becomes babh

bcAcdx
axd + b(x,x)kev = 0 so that k = 0 if b 	= 0 and

bach
cdAdb + bbch

cdAda = 0, or equivalently

sym (b · h−1 ·A) = 0.

Let us interpret the conditions upon A. If we put B := h−1 ·
A ∈ gl (n;R), the condition for B to belong to the Lie algebra of
the group O(h), that is, the group of linear h-isometries of Rn, is
h(B(v),w) + h(v, B(w)) = h(h−1(A(v)),w) + h(v, h−1(A(w))) =
A(v,w) + A(w,v) = 0, and this is the condition of A being skew-
symmetric. The condition for B to belong to the Lie algebra of the
group O(b) is that b(B(v),w)+ b(v, B(w)) = 0 for all v,w ∈ Rn. But
the lefthand side is

b(B(v),w) + b(v, B(w)) = b
(
(h−1 ·A)(v),w)

+ b
(
v, (h−1 ·A)(w)

)
= (b · h−1 ·A)(v,w) + (b · h−1 ·A)(w,v) = 0.

Thus the conditions upon A can be expressed as B ∈ o(h) ∩ o(b).

We now change the notation putting q := q · h−1, p := p · h−1,
x := xa∂a and considering p, q as vector fields in Rn+2 given by
q(u, v, x1, . . . , xn) = qa(v)∂a, p(u, v, x1, . . . , xn) = pa∂a. Then we get
the expression stated in the lemma.
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Proof of Proposition 3. We consider the subspaces of k given by the
vector fields as (5.5) with the following additional conditions:

g = {Z ∈ k : k = 0, B = 0, p = 0},
h = {Z ∈ g : a = l = 0, q(0) = 0},
m = {Z ∈ g : q(0) + q′(0) = 0}.

Thus a vector G ∈ g is given as G = (−h(q′,x) + ae−v)∂u + l∂v + q,
where a, l ∈ R and q = qa(v)∂a satisfies q′′ = −q′ + h−1 · b · q.
Let κ : R × R × Rn × Rn → g be the map given by

κ(a, l, x, y) = (−h(q′,x) + (1/2)ae−v)∂u + l∂v + q,

where q : R → Rn is the solution of the differential equation q′′ =
−q′ +K · q, q(0) = x, q′(0) = y, where we have put K := h−1 · b. After
calculation, we have

(5.15)
[κ(a1,l1, x1, y1), κ(a2, l2, x2, y2)]

= κ

(
a1l2 − a2l1 + 2(h(y1, x2)− h(y2, x1)), 0, l1y2 − l2y1,

l1y2 + l2y1 +K(l1x2 − l2x1)
)
.

In the course of the computation one encounters the expression
(
h(q′1, q2)− h(q′2, q1)

)
∂u.

But we have

d

dv

(
h(q′1, q2)− h(q′2, q1)

)
= h(−q′1 + h−1 · b · q1, q2)
− h(−q′2 + h−1 · b · q2, q1)

= −h(q′1, q2) + h(q′2, q1)
+ b(q1, q2)− b(q2, q1)

= −h(q′1, q2) + h(q′2, q1).

Hence (h(q′1, q2)− h(q′2, q1))∂u = (h(y1, x2)− h(y2, x1))e−v∂u.

From (5.15), we easily see that g and h are subalgebras of k, that h =
κ(0, 0, 0,Rn) is abelian and that [h,m] ⊂ m so that the decomposition
g = h ⊕ m is reductive. Also, g(3) = 0, whence g is solvable.
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We endow m with the inner product 〈 , 〉 given by g at the origin of
Rn+2. Thus, if Y = κ(a, l, x,−x) ∈ m, we have

(5.16) 〈Y, Y 〉 = al + h(x, x).

Then
〈[κ(0, 0, 0, y), Y ], Y 〉 = 〈κ(2h(y, x), 0,−y, y), Y 〉

= lh(y, x)− lh(y, x) = 0.

Therefore, 〈 , 〉 is ad h-invariant.

For describing g as a matrix subalgebra, we need some notation. First
we put

J :=
(
0 I
K −I

)
, Jt := exp(tJ),

where I is the identity in Rn. Now if s =
(

x

y

)
∈ Rn × Rn, we shall

write τ (s) = (y ·h,−x ·h). Evidently, Jt1 ·Jt2 = Jt1+t2 . From the easily
verified fact that h ·K = K · h, it can be directly proved that

(5.17) τ (s) · J = − τ (J · s+ s).

Now we consider the subspace of (2n+ 2)× (2n+ 2) matrices of the
form

M(a, l, x, y) =


−l τ (s) a

0 lJ s
0 0 0


 ,

where s =
(

x

y

)
. Then it can be shown at once with the aid of (5.17)

that the map
κ(a, l, x, y) �−→ M(a, l, x, y)

is a Lie algebra isomorphism. Accordingly, we shall identify g with this
matrix Lie algebra and m with the subspace

{M(a, l, x,−x) : (a, l, x) ∈ R × R × Rn}.

We consider the subset G of (2n+ 2)× (2n+ 2) real matrices of the
following form

N(a, t, s) =


 e−t τ (s) · Jt a

0 Jt s
0 0 1


 .
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We have

N(a1, t1, s1) ·N(a2, t2, s2)

=


 e−(t1+t2) e−t1τ (s2)·Jt2+τ (s1)·Jt1+t2 a2e

−t1+τ (s1)·Jt1 ·s2+a1

0 Jt1+t2 Jt1 ·s2+s1

0 0 1


.

Now

τ (Jt1 · s2 + s1) · Jt1+t2 − e−t1τ (s2) · Jt2 − τ (s1) · Jt1+t2

=
(
τ (Jt1 · s2) · Jt1 − e−t1τ (s2)

) · Jt2 .

Hence G is a group if and only if for every t ∈ R and s ∈ R2n we have
τ (Jt · s) · Jt = e−tτ (s). But with the aid of (5.17) we get

d

dt
(τ (Jt · s) · Jt) = τ (J · Jt · s) · Jt+τ (Jt · s) · J · Jt = − τ (Jt · s) · Jt.

Therefore, the condition holds and G is a Lie group whose Lie algebra
is g. It is clear that G is diffeomorphic to R2n+2. Also, let H be the
subgroup of G given by the matrices

N

(
0, 0,

(
0
z

))
,

whose Lie algebra is h. Then H ∼= (Rn,+). Since

N

(
0, 0,

(
0
z

))
·N

(
a, t,

(
x
y

))
= N

(
a+ h(x, z), t,

(
x

y + z

))
,

the orbits for the left action of H on G can be parametrized by the
elements N

(
a, t,

( x

−x

) )
. Since G \ H is diffeomorphic to G/H, we see

that G/H is diffeomorphic to Rn+2. Finally it can be proved at once
that the metric (5.16) for m is Ad (H)-invariant.

Remark. We have dropped a direct summand from k consisting of
vector fields of the form

X =
(
p(x)− k

)
evu∂u +

(
k − h(p,x)

)
ev∂v +B · x+ uevp,
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with the conditions stated in Proposition 4. Thus, in general, G is not
the whole group of isometries of (Rn+2, h, b).
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