DEGENERATE HOMOGENEOUS STRUCTURES OF TYPE \mathcal{S}_{1} ON PSEUDO-RIEMANNIAN MANIFOLDS

A. MONTESINOS AMILIBIA

Abstract

We obtain all of the pseudo-Riemannian manifolds endowed with homogeneous structures defined by isotropic vector fields. Thus, the (general pseudo-Riemannian) class \mathcal{S}_{1} of homogeneous structures is fully determined.

1. Introduction. Ambrose and Singer [1] gave a characterization for a connected, simply connected and complete Riemannian manifold to be homogeneous, in terms of a $(1,2)$ tensor field S on the manifold. This characterization extends the classical one given by Cartan of Riemannian symmetric spaces as the spaces of parallel curvature, which correspond to Ambrose-Singer's case $S=0$. That characterization has also permitted Tricerri and Vanhecke [8] to classify those homogeneous Riemannian manifolds into eight classes which are defined by the invariant subspaces of certain space $\mathcal{S}_{1} \oplus \mathcal{S}_{2} \oplus \mathcal{S}_{3}$. In [8] it is proved that a connected, simply connected and complete Riemannian manifold admits a nonvanishing homogeneous structure S of type \mathcal{S}_{1} if and only if it is isometric to the hyperbolic space.

Gadea and Oubiña [4] have extended the characterization in [1] to the pseudo-Riemannian case of any signature and proved that a connected, simply connected and complete pseudo-Riemannian manifold admits a homogeneous pseudo-Riemannian structure if and only if it is reductive homogeneous. As is well known, in the Riemannian case every homogeneous manifold is complete and reductive.

Gadea and Oubiña give in [6] a classification for the pseudo-Riemannian case of any signature similar to that given in [8] for Riemannian homogeneous structures, and they moreover characterize the three primitive classes. From now on we shall focus attention on the first class, \mathcal{S}_{1}. A connected, simply connected and complete pseudo-Riemannian manifold (M, g) of any signature (M, g) admits [6] a nondegenerate,

[^0]see Section 2, homogeneous structure of type \mathcal{S}_{1} if and only if g is, up to a change of sign, a metric of strictly negative constant curvature. Moreover, the nonflat pseudo-Riemannian space forms of arbitrary signature locally admit nondegenerate homogeneous pseudo-Riemannian structures of type \mathcal{S}_{1}. By the way, we note that in the complex case the situation is similar to the real one [3]: one of the classes in AbbenaGarbiero's classification [2] (of homogeneous Kahler structures) corresponds to spaces of strictly negative holomorphic curvature.
Thus, to determine the (general pseudo-Riemannian) class \mathcal{S}_{1}, it only rests upon the degenerate case which is solved in the present paper, proving the following

Theorem. Let (M, \bar{g}) be an $n+2$-dimensional connected pseudoRiemannian manifold with a degenerate homogeneous structure of type \mathcal{S}_{1}. Then (M, \bar{g}) is locally isometric to \mathbf{R}^{n+2} with the pseudoRiemannian metric

$$
g=d u \otimes d v+d v \otimes d u+(b(\mathbf{x}, \mathbf{x})+2 u) d v \otimes d v+h
$$

where b and h are symmetric bilinear forms in \mathbf{R}^{n}, h is nondegenerate, \mathbf{x} is the position vector in \mathbf{R}^{n} and u, v are the coordinates in \mathbf{R}^{2}.

As we shall see in Proposition $3,\left(\mathbf{R}^{n+2}, h, b\right)$ is isometric to the reductive homogeneous pseudo-Riemannian manifold $\mathcal{G} / \mathcal{H}$ with group \mathcal{G}, isotropy group \mathcal{H} and Lie subspace \mathfrak{m} endowed with the $\operatorname{Ad}(\mathcal{H})$ invariant inner product as defined in Section 5 ; but \mathcal{G} is not in general the whole group of isometries of $\left(\mathbf{R}^{n+2}, h, b\right)$. Moreover, $\left(\mathbf{R}^{n+2}, h, b\right)$ is an example of a reductive homogeneous pseudo-Riemannian manifold which is noncomplete.
2. Preliminaries. Let (M, g) be a connected C^{∞} pseudoRiemannian manifold with Levi-Civita connection ∇ and curvature R. Then, in the same vein as [8], Gadea and Oubiña [4] define a homogeneous pseudo-Riemannian structure on (M, g) as a tensor field $\underset{\sim}{S}$ of type $(1,2)$ on M such that the connection $\tilde{\nabla}=\nabla-S$ satisfies $\tilde{\nabla} g=\tilde{\nabla} R=\tilde{\nabla} S=0$. Such a structure is said to be of type \mathcal{S}_{1} if there is a vector field $\xi \in \mathfrak{X}(M)$ that defines S by

$$
S(X, Y)=g(X, Y) \xi-g(Y, \xi) X
$$

and it is said to be degenerate or not according to ξ being isotropic or not.

Gadea and Oubiña [6] have studied nondegenerate homogeneous structures of type \mathcal{S}_{1}. They turn out to be defined on certain subsets of pseudo-Riemannian manifolds of strictly negative constant curvature.

Here we treat the case of degenerate homogeneous pseudo-Riemannian structures of type \mathcal{S}_{1}.

Let (M, g) be a connected C^{∞} pseudo-Riemannian manifold with $\operatorname{dim} M=n+2$, and let $0 \neq \xi \in \mathfrak{X}(M)$ be isotropic, that is, $g(\xi, \xi)=0$. We assume that if we put

$$
\tilde{\nabla}_{X} Y:=\nabla_{X} Y-g(X, Y) \xi+g(Y, \xi) X
$$

then $\tilde{\nabla} g=\tilde{\nabla} R=\tilde{\nabla} S=0$, where $S(X, Y)=g(X, Y) \xi-g(Y, \xi) X$. The condition $\tilde{\nabla} g=0$ is automatically satisfied. As for $\tilde{\nabla} S$ we have

$$
\left(\tilde{\nabla}_{X} S\right)(Y, Z)=g(Y, Z) \tilde{\nabla}_{X} \xi-g\left(Z, \tilde{\nabla}_{X} \xi\right) Y=0
$$

Let W be any nonisotropic (local) vector field. Since $\operatorname{dim} M \geq 2$, we can take Y nonisotropic and orthogonal to W and $Z=Y$. Then $g(Y, Y) g\left(\tilde{\nabla}_{X} \xi, W\right)=0$, whence $g\left(\tilde{\nabla}_{X} \xi, W\right)=0$. Since this is true for any nonisotropic W we conclude $\tilde{\nabla} \xi=0$. Thus,

$$
\nabla_{X} \xi=g(X, \xi) \xi
$$

or if we put $\alpha=g(\xi)$, we have

$$
\nabla \xi=\alpha \otimes \xi, \quad \nabla \alpha=\alpha \otimes \alpha
$$

Then

$$
d \alpha=0
$$

As for the curvature, we first fix the notation. We define

$$
\begin{aligned}
R(X, Y) Z & =\nabla_{[X, Y]} Z+\nabla_{Y} \nabla_{X} Z-\nabla_{X} \nabla_{Y} Z \\
R(X, Y, Z, W) & =g(R(X, Y) Z, W)
\end{aligned}
$$

We have $\nabla_{Y} \nabla_{X} \xi=2 \alpha(Y) \alpha(X) \xi+\alpha\left(\nabla_{Y} X\right) \xi$, whence evidently

$$
R(X, Y) \xi=0, \quad R(X, Y, Z, \xi)=0
$$

By expanding the condition $\tilde{\nabla} R=0$, we get

$$
\begin{aligned}
\left(\nabla_{X} R\right)(Y, Z, W, U)= & \alpha(Y) R(X, Z, W, U)+\alpha(Z) R(Y, X, W, U) \\
& +\alpha(W) R(Y, Z, X, U)+\alpha(U) R(Y, Z, W, X)
\end{aligned}
$$

If we take the cyclic sum in X, Y, Z and apply Bianchi identities we get

$$
\mathfrak{S}_{X Y Z} \alpha(X) R(Y, Z, W, U)=0
$$

In other terms, for every $W, U \in \mathcal{X}(M)$, we have

$$
\alpha \wedge R(., ., W, U)=0
$$

and if we bring this into the formula for $\nabla_{X} R$, we get

$$
\nabla_{X} R=2 \alpha(X) R
$$

Now since $d \alpha=0$ for each point of M there must be a function v defined in some connected neighborhood of it that satisfies $\alpha=d v$. But then $\nabla_{X}\left(d e^{-v}\right)=0$. Thus, if we put $w=e^{-v}$ and restrict our study to that neighborhood, we have the following situation:

$$
\begin{gather*}
w \in C^{\infty}(M), \quad \mathbf{z}:=g^{-1}(d w), \quad \mathbf{z} \neq 0, \quad g(\mathbf{z}, \mathbf{z})=0 \\
\nabla \mathbf{z}=0, \quad \nabla d w=0 \\
d w \wedge R(., ., X, Y)=0, \quad X, Y \in \mathfrak{X}(M) \tag{2.1}\\
\nabla R=-\frac{2}{w} d w \otimes R
\end{gather*}
$$

3. The local canonical form of the metric.

Proposition 1. The metric on \mathbf{R}^{n+2} has the canonical form

$$
g=d u \otimes d v+d v \otimes d u+(b(\mathbf{x}, \mathbf{x})+2 u) d v \otimes d v+\sum_{a=1}^{n} \varepsilon_{a} d x^{a} \otimes d x^{a}
$$

and we have

$$
\xi=\partial_{u}, \quad \alpha=d v
$$

Proof. Since M is connected and there is some point where $d w$ does not vanish, we conclude that $d w$ is everywhere nonzero because $\nabla d w=0$. Thus, for each $t \in \mathbf{R}$ the subset $H_{t}=w^{-1}(\{t\})$ is a regular hypersurface of M. Let $\gamma: I \rightarrow M$ be a geodesic and put $w(t)=(w \circ \gamma)(t)$; then

$$
\begin{aligned}
& \dot{w}=((d w) \circ \gamma)(\dot{\gamma}), \\
& \ddot{w}=\left(\left(\nabla_{\dot{\gamma}} d w\right) \circ \gamma\right)(\dot{\gamma})+(d w \circ \gamma)\left(\nabla_{\dot{\gamma}} \dot{\gamma}\right)=0 .
\end{aligned}
$$

So if for some value $t \in \mathbf{R}, \dot{\gamma}_{t}$ is tangent to $H_{w(t)}$, then γ remains in that hypersurface. On the contrary, if $\dot{w}(0)=1$, then we always have $\dot{w}(t)=1$.

Let $e_{w} \in \mathfrak{X}(M)$ be such that $e_{w}(w)=d w\left(e_{w}\right)=1$. By inner multiplication of (2.1) with e_{w} we have

$$
R(., ., X, Y)=d w \wedge R\left(e_{w}, ., X, Y\right)
$$

Thus $R(Z, W, X, Y)=Z(w) R\left(e_{w}, W, X, Y\right)-W(w) R\left(e_{w}, Z, X, Y\right)$. By using the symmetries of R we can write

$$
\begin{aligned}
R\left(e_{w}, Z, X, Y\right) & =R\left(X, Y, e_{w}, Z\right) \\
& =X(w) R\left(e_{w}, Y, e_{w}, Z\right)-Y(w) R\left(e_{w}, X, e_{w}, Z\right)
\end{aligned}
$$

so that if we put $m(X, Y):=R\left(e_{w}, X, e_{w}, Y\right)$, then

$$
\begin{equation*}
R=(d w \otimes d w) \wedge m \tag{3.1}
\end{equation*}
$$

where the wedge stands for the product of double forms.
If $X, Y \in \mathfrak{X}\left(H_{t}\right)$ we have $d w\left(\nabla_{X} Y\right)=\nabla_{X}(d w(Y))-\left(\nabla_{X} d w\right)(Y)=0$ because $d w$ is parallel. Hence $\nabla_{X} Y \in \mathfrak{X}\left(H_{t}\right)$. Thus, ∇ induces on H_{t} a torsionless connection whose curvature, due to (3.1), vanishes. Therefore, the parallel displacement along H_{t} does not depend (locally) on the path. This will allow for a suitable choice of coordinates.

Assume that $H_{0} \neq \varnothing$ and that $p \in H_{0}$. Since $\mathbf{z}_{p} \in T_{p} H_{0}$ because $\mathbf{z}_{p}(w)=(d w)_{p}\left(\mathbf{z}_{p}\right)=g\left(\mathbf{z}_{p}, \mathbf{z}_{p}\right)=0$, and \mathbf{z}_{p} is orthogonal to the whole $T_{p} H_{0}$, we can take vectors $e_{1}(0), \ldots, e_{n}(0)$ of $T_{p} H_{0}$ such that if we call

$$
e_{z}(0):=\mathbf{z}_{p}
$$

we have

$$
\begin{aligned}
g\left(e_{z}(0), e_{z}(0)\right) & =0 \\
g\left(e_{z}(0), e_{a}(0)\right) & =0, \quad a=1, \ldots, n \\
g\left(e_{a}(0), e_{b}(0)\right) & =\varepsilon_{a} \delta_{a b}, \quad a, b=1, \ldots, n, \quad \varepsilon_{a}= \pm 1
\end{aligned}
$$

The two-dimensional subspace of $T_{p} M$ which is orthogonal to that generated by the vectors $e_{1}(0), \ldots, e_{n}(0)$ has a nondegenerate metric induced by g and contains $e_{z}(0)$ which is an isotropic vector. Therefore, a vector $e_{w}(0) \in T_{p} M$ exists such that

$$
\begin{aligned}
g\left(e_{w}(0), e_{z}(0)\right) & =1 \\
g\left(e_{w}(0), e_{w}(0)\right) & =0 \\
g\left(e_{w}(0), e_{a}(0)\right) & =0, \quad a=1, \ldots, n
\end{aligned}
$$

Now we consider the geodesic γ in M with initial condition $\gamma_{0}=p$, $\dot{\gamma}_{0}=e_{w}(0)$. By parallel displacement of the basis $\left\{e_{z}(0), e_{w}(0), e_{a}(0)\right\}$ along γ we obtain the basis $\left\{e_{z}(t), e_{w}(t), e_{a}(t)\right\}$ of $T_{\gamma(t)} M$ and we have $\gamma_{t} \in H_{t}$ because $\dot{\gamma}_{0}(w)=d w\left(e_{w}(0)\right)=g\left(\mathbf{z}_{p}, e_{w}(0)\right)=g\left(e_{z}(0), e_{w}(0)\right)=$ 1 , whence $w(t)=t$. Starting from the point γ_{t} we make the parallel displacement of $e_{a}(t)$ along H_{t}. Since initially $(d w)_{p}\left(e_{a}(0)\right)=0$ and $d w$ is parallel, we have that $e_{a}(t) \in T_{\gamma_{t}} H_{t}$. Therefore, that parallel displacement does not depend on the path. Thus, there is a neighborhood V of p on which we have vector fields $e_{z}=\mathbf{z}, e_{a} \in \mathfrak{X}(V)$ such that $\nabla e_{z}=0, \nabla_{e_{a}} e_{b}=0, \nabla_{e_{z}} e_{a}=0, a, b=1, \ldots, n$. Therefore, $\left[e_{z}, e_{a}\right]=\left[e_{a}, e_{b}\right]=0, a, b=1, \ldots, n$. Consequently, the flows $\phi_{s}^{a}, \phi_{s}^{z}$ of these vector fields commute. Thus, there is a neighborhood of $0 \in \mathbf{R}^{n+2}$ where there is a well-defined map

$$
\psi\left(z, w, x^{1}, \ldots, x^{n}\right)=\left(\phi_{z}^{z} \circ \phi_{x^{1}}^{1} \circ \cdots \circ \phi_{x^{n}}^{n}\right)\left(\gamma_{w}\right)
$$

which is the inverse of a chart for M with coordinates $\left(z, w, x^{a}\right)$ such that the coordinate w is the function w, and such that

$$
\begin{gathered}
\partial_{z}:=\frac{\partial}{\partial z}=e_{z}=\mathbf{z}, \quad \partial_{a}:=\frac{\partial}{\partial x^{a}}=e_{a}, \quad a=1, \ldots, n, \\
\partial_{w}(w)=\frac{\partial}{\partial w}(w)=1 .
\end{gathered}
$$

We put

$$
b:=g\left(\partial_{w}, \partial_{w}\right), \quad s_{a}:=g\left(\partial_{w}, \partial_{a}\right)
$$

Then, having in mind that $g(\mathbf{z})=g\left(\partial_{z}\right)=d w$, that $g\left(\partial_{z}, \partial_{z}\right)=$ $g(\mathbf{z}, \mathbf{z})=0$ and that $g\left(\partial_{a}, \partial_{b}\right)=\varepsilon_{a} \delta_{a b}$, we have

$$
\begin{aligned}
g= & d z \otimes d w+d w \otimes d z+b d w \otimes d w \\
& +\sum_{a=1}^{n} s_{a}\left(d w \otimes d x^{a}+d x^{a} \otimes d w\right)+\sum_{a=1}^{n} \varepsilon_{a} d x^{a} \otimes d x^{a} .
\end{aligned}
$$

Also we have the initial conditions

$$
\begin{align*}
b_{\left(z=0, x^{a}=0\right)} & =g\left(\dot{\gamma}_{w}, \dot{\gamma}_{w}\right)=g\left(\dot{\gamma}_{0}, \dot{\gamma}_{0}\right)=g\left(e_{w}(0), e_{w}(0)\right)=0 \tag{3.2}\\
s_{a\left(z=0, x^{a}=0\right)} & =g\left(e_{w}(w), e_{a}(w)\right)=0 \tag{3.3}
\end{align*}
$$

Since $\nabla \mathbf{z}=\nabla \partial_{z}=0$, we have immediately $\mathcal{L}_{\partial_{z}} g=0$, that is,

$$
\frac{\partial b}{\partial z}=\frac{\partial s_{a}}{\partial z}=0
$$

Conversely, these conditions guarantee that $\nabla \mathbf{z}=0$ and also that $\nabla_{\partial z} \partial_{e_{a}}=0$, as is easily verified. Now we need to impose the condition $\nabla_{\partial_{a}} \partial_{e_{b}}=0$. The usual formula for Christoffel symbols gives

$$
\nabla_{\partial_{a}} \partial_{e_{b}}=\frac{1}{2}\left(\frac{\partial s_{a}}{\partial x^{b}}+\frac{\partial s_{b}}{\partial x^{a}}\right) \partial_{z}
$$

and we conclude that

$$
\frac{\partial s_{a}}{\partial x^{b}}+\frac{\partial s_{b}}{\partial x^{a}}=0
$$

But then, if we call

$$
s_{a b c}:=\frac{\partial^{2} s_{a}}{\partial x^{b} \partial x^{c}}
$$

we have $s_{a b c}=s_{a c b}$ and $s_{a b c}=-s_{b a c}$. Thus, as is well known, $s_{a b c} \equiv 0$. Since, by (3.3), we have $s_{a\left(z=0, x^{a}=0\right)}=0$, we conclude that there are some functions $S_{a b}(w)$ such that

$$
\begin{gathered}
S_{a b}(w)+S_{b a}(w)=0 \\
s_{a}=\sum_{b=1}^{n} S_{a b}(w) x^{b}
\end{gathered}
$$

From this, we get $\Gamma_{w a}^{b}=\varepsilon_{b} S_{b a}(w)$. But along γ we have $\left(\nabla_{\partial_{w}} \partial_{a}\right) \circ \gamma=$ $\nabla_{\dot{\gamma}} e_{a}=0$; this implies that $\Gamma_{w a}^{b}=0$ at the points where $z=x^{1}=$ $\cdots=x^{n}=0$. And this leads to $S_{a b}(w)=0, \Gamma_{w a}^{b} \equiv 0$ and $s_{a} \equiv 0$.

After computation, we get the Christoffel symbols that are not identically zero:

$$
\Gamma_{w w}^{z}=\frac{1}{2} \frac{\partial b}{\partial w}, \quad \Gamma_{w w}^{a}=-\frac{1}{2} \varepsilon_{a} \frac{\partial b}{\partial x^{a}}, \quad \Gamma_{w a}^{z}=\frac{1}{2} \frac{\partial b}{\partial x^{a}}
$$

With the aid of these formulae, we can easily compute the components $m_{a b}=R\left(\partial_{w}, \partial_{a}, \partial_{w}, \partial_{b}\right)$ which completely determine the curvature. We get

$$
\begin{equation*}
m_{a b}=-\frac{1}{2} \frac{\partial^{2} b}{\partial x^{a} \partial x^{b}} \tag{3.4}
\end{equation*}
$$

Thus the curvature is given by $R=\sum_{a, b=1}^{n} m_{a b}\left(d w \wedge d x^{a}\right) \otimes\left(d w \wedge d x^{b}\right)$. Then

$$
\begin{aligned}
& \nabla_{\partial_{w}} R=\sum_{a, b=1}^{n} \frac{\partial m_{a b}}{\partial w}\left(d w \wedge d x^{\alpha}\right) \otimes\left(d w \wedge d x^{b}\right) \\
& \nabla_{\partial_{c}} R=\sum_{a, b=1}^{n} \frac{\partial m_{a b}}{\partial x^{c}}\left(d w \wedge d x^{a}\right) \otimes\left(d w \wedge d x^{b}\right)
\end{aligned}
$$

Hence, the condition $\nabla R+(2 / w) d w \otimes R=0$ requires that

$$
\begin{gather*}
\frac{\partial m_{a b}}{\partial w}+\frac{2 m_{a b}}{w}=\frac{1}{w^{2}} \frac{\partial w^{2} m_{a b}}{\partial w}=0, \quad \frac{\partial m_{a b}}{\partial x^{c}}=0 \tag{3.5}\\
a, b, c,=1, \ldots, n
\end{gather*}
$$

If we bring (3.4) to the last formula, we have

$$
\frac{\partial^{3} b}{\partial x^{a} \partial x^{b} \partial x^{c}}=0, \quad a, b, c=1, \ldots, n
$$

Now at the points on which $z=x^{1}=\cdots=x^{n}=0$ we have $\Gamma_{w a}^{z}=(1 / 2)\left(\partial b / \partial x^{a}\right)=0$. Since, by (3.2), b vanishes at those points, we conclude that $b=\sum_{a, b=1}^{n} B_{a b}(w) x^{a} x^{b}$ and $m_{a b}=-B_{a b}(w)$. The first formula of (3.5) now implies that

$$
B_{a b}(w)=\frac{1}{w^{2}} b_{a b}, \quad b_{a b} \in \mathbf{R}
$$

Thus we get the following form of the metric

$$
g=d z \otimes d w+d w \otimes d z+\frac{1}{w^{2}} b(\mathbf{x}, \mathbf{x}) d w \otimes d w+\sum_{a=1}^{n} \varepsilon_{a} d x^{a} \otimes d x^{a},
$$

where we have put $b(\mathbf{x}, \mathbf{x})=\sum_{a, b=1}^{n} b_{a b} x^{a} x^{b}$ and $\mathbf{x}=\left(x^{1}, \ldots, x^{n}\right)$ is the position vector in \mathbf{R}^{n}. Now we substitute $w=e^{-v}, u:=-e^{-v} z$ and finally obtain the canonical form of the metric given in the statement, which is a pseudo-Riemannian metric defined in all of \mathbf{R}^{n+2}.

4. The curvature and geodesics of this metric.

Proposition 2. Let $\left(\mathbf{R}^{n+2}, h, b\right)$ denote \mathbf{R}^{n+2} equipped with the metric

$$
g=d u \otimes d v+d v \otimes d u+(b(\mathbf{x}, \mathbf{x})+2 u) d v \otimes d v+\sum_{a, b=1}^{n} h_{a b} d x^{a} \otimes d x^{b}
$$

Then its curvature and its Ricci tensor are given by

$$
R=-\sum_{a, b=1}^{n} b_{a b}\left(d v \wedge d x^{a}\right) \otimes\left(d v \wedge d x^{b}\right)
$$

Ricci $=-\operatorname{tr}\left(h^{-1} \cdot b\right) d v \otimes d v$.

Except for the straight lines in the hyperplane $v=v_{0}$, the geodesics are not defined for all t. Thus $\left(\mathbf{R}^{n+2}, h, b\right)$ is a connected, simply connected and noncomplete pseudo-Riemannian manifold.

Proof. For brevity, we shall put $h=\sum_{a, b=1}^{n} h_{a b} d x^{a} \otimes d x^{b}$ with $\operatorname{det} h_{a b} \neq 0$ so that h is a constant nondegenerate pseudo-Riemannian metric on \mathbf{R}^{n}. Then the metric of M is locally given by

$$
\begin{align*}
g & =d u \otimes d v+d v \otimes d u+(b(\mathbf{x}, \mathbf{x})+2 u) d v \otimes d v+h \\
g^{-1} & =\partial_{u} \otimes \partial_{v}+\partial_{v} \otimes \partial_{u}-(b(\mathbf{x}, \mathbf{x})+2 u) \partial_{u} \otimes \partial_{u}+h^{-1} \tag{4.1}
\end{align*}
$$

where $h^{-1}=h^{a b} \partial_{a} \otimes \partial_{b}$ and the matrix $\left(h^{a b}\right)$ is the inverse of $\left(h_{a b}\right)$.

The nonvanishing Christoffel symbols are

$$
\begin{gathered}
\Gamma_{v v}^{u}=b(\mathbf{x}, \mathbf{x})+2 u, \quad \Gamma_{v u}^{u}=1, \quad \Gamma_{v a}^{u}=\sum_{b=1}^{n} b_{a b} x^{b} \\
\Gamma_{v v}^{v}=-1, \quad \Gamma_{v v}^{a}=-\sum_{b, c=1}^{n} h^{a b} b_{b c} x^{c} .
\end{gathered}
$$

It is very easy to verify that this metric satisfies our requirements, i.e., that ∂_{u} is a degenerate homogeneous pseudo-Riemannian structure in \mathbf{R}^{n+2} with the metric (4.1). The curvature of $\left(\mathbf{R}^{n+2}, h, b\right)$ is given by

$$
R=-\sum_{a, b=1}^{n} b_{a b}\left(d v \wedge d x^{a}\right) \otimes\left(d v \wedge d x^{b}\right)
$$

The Ricci tensor is

$$
\operatorname{Ricci}=-\operatorname{tr}\left(h^{-1} \cdot b\right) d v \otimes d v
$$

and the scalar curvature vanishes. Therefore, for the right choice of dimension and signature, (4.1) is a solution of Einstein's general relativity equations for a universe filled with a swarm of photons, see [7, p. 579].

The equations of geodesics are

$$
\begin{aligned}
& \ddot{u}+(b(\mathbf{x}, \mathbf{x})+2 u) \dot{v}^{2}+2 b(\mathbf{x}, \dot{\mathbf{x}}) \dot{v}+2 \dot{u} \dot{v}=0 \\
& \ddot{v}-\dot{v}^{2}=0 \\
& \ddot{\mathbf{x}}-\dot{v}^{2} h^{-1} \cdot b \cdot \mathbf{x}=0
\end{aligned}
$$

Then $v=v_{0}-\ln \left(1-\dot{v}_{0} t\right)$. If we put primes to represent differentiation with respect to v, then the third equation becomes $\mathbf{x}^{\prime \prime}=-\mathbf{x}^{\prime}+h^{-1} \cdot b \cdot \mathbf{x}$, whose solution is

$$
\binom{\mathbf{x}(v)}{\mathbf{x}^{\prime}(v)}=\exp \left(\begin{array}{cc}
0 & \left(v-v_{0}\right) I \\
\left(v-v_{0}\right) h^{-1} \cdot b & -\left(v-v_{0}\right) I
\end{array}\right)\binom{\mathbf{x}\left(v_{0}\right)}{\mathbf{x}^{\prime}\left(v_{0}\right)}
$$

or undoing the change:

$$
\begin{aligned}
& \binom{\mathbf{x}(t)}{\left(1-\dot{v}_{0} t\right) / \dot{v}_{0} \dot{\mathbf{x}}(t)} \\
& \quad=\exp \left(\begin{array}{cc}
0 & -\ln \left(1-\dot{v}_{0} t\right) I \\
-\ln \left(1-\dot{v}_{0} t\right) h^{-1} \cdot b & \ln \left(1-\dot{v}_{0} t\right) I
\end{array}\right)\binom{\mathbf{x}_{0}}{\left(\dot{\mathbf{x}}_{0} / \dot{v}_{0}\right)}
\end{aligned}
$$

With the same change, the first equation is now

$$
u^{\prime \prime}+3 u^{\prime}+2 u=-b(\mathbf{x}, \mathbf{x})-2 b\left(\mathbf{x}, \mathbf{x}^{\prime}\right) .
$$

A particular solution is $f(v)=-(1 / 2) h\left(\mathbf{x}(v), \mathbf{x}^{\prime}(v)\right)$. The general solution of $u^{\prime \prime}+3 u^{\prime}+2 u=0$ is $u=e^{v_{0}-v}\left(A+B e^{v_{0}-v}\right)$. Thus,

$$
u(t)=\left(1-\dot{v}_{0} t\right)\left(A+B\left(1-\dot{v}_{0} t\right)-\frac{1}{2 \dot{v}_{0}} h(\mathbf{x}(t), \dot{\mathbf{x}}(t))\right)
$$

and the constants A, B must be determined from the initial conditions. Of course, these formulae hold when $\dot{v}_{0} \neq 0$. If $\dot{v}_{0}=0$, we simply have the equations of straight lines in the hyperplane $v=v_{0}$, that is, $v(t)=v_{0}, u(t)=\dot{u}_{0} t+u_{0}, \mathbf{x}(t)=\dot{\mathbf{x}}_{0} t+\mathbf{x}_{0}$. With the exception of this case, the geodesics are not defined for all t.
5. The homogeneous pseudo-Riemannian space $\left(\mathbf{R}^{n+2}, h, b\right)$. Let \mathcal{G} be $\mathbf{R}^{2 n+2}$ with the product

$$
\begin{align*}
& \left(a_{1}, t_{1}, s_{1}\right) \cdot\left(a_{2}, t_{2}, s_{2}\right) \tag{5.1}\\
& \quad=\left(a_{1}+a_{2} e^{-t_{1}}+\tau\left(s_{1}\right) \cdot J_{t_{1}} \cdot s_{2}, t_{1}+t_{2}, J_{t_{1}} \cdot s_{2}+s_{1}\right)
\end{align*}
$$

where

$$
\begin{gathered}
a_{i}, t_{i} \in \mathbf{R}, \quad s_{i}=\binom{x_{i}}{y_{i}} \in \mathbf{R}^{n} \times \mathbf{R}^{n}, \quad i=1,2, \\
\tau\binom{x}{y}=(y \cdot h,-x \cdot h), \quad J_{t}=\exp \left(\begin{array}{cc}
0 & t I \\
t h^{-1} \cdot b & -t I
\end{array}\right) .
\end{gathered}
$$

Let

$$
\begin{equation*}
\mathcal{H}=\left\{\left(0,0,\binom{0}{y}\right): y \in \mathbf{R}^{n}\right\} \subset \mathcal{G} \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{m}=\left\{\left(a, t,\binom{x}{-x}\right): a, t \in \mathbf{R}, x \in \mathbf{R}^{n}\right\} \subset \mathfrak{g} \tag{5.3}
\end{equation*}
$$

Then $\mathcal{H} \cong\left(\mathbf{R}^{n},+\right)$ is a closed subgroup of $\mathcal{G}, \mathfrak{m}$ is an $\operatorname{Ad}(\mathcal{H})$-invariant subspace of the Lie algebra \mathfrak{g} of \mathcal{G} and the inner product \langle,$\rangle in \mathfrak{m}$ defined by

$$
\begin{equation*}
\left\langle\left(a, t,\binom{x}{-x}\right),\left(a, t,\binom{x}{-x}\right)\right\rangle=a t+h(x, x) \tag{5.4}
\end{equation*}
$$

is $\operatorname{Ad}(\mathcal{H})$-invariant.
Let $\left(\mathbf{R}^{n+2}, h, b\right)$ be as in Proposition 2 and $\mathcal{G}, \mathcal{H}, \mathfrak{m}$ and \langle,$\rangle as in$ (5.1), (5.2), (5.3) and (5.4) above. Then we have

Proposition 3. $\left(\mathbf{R}^{n+2}, h, b\right)$ is isometric to the reductive homogeneous pseudo-Riemannian manifold $\mathcal{G} / \mathcal{H}$ with Lie subspace \mathfrak{m}, endowed with the $\operatorname{Ad}(\mathcal{H})$-invariant inner product \langle,$\rangle .$

As a first step towards this description of $\left(\mathbf{R}^{n+2}, h, b\right)$ as a homogeneous space, we compute the algebra \mathfrak{k} of Killing vector fields of (4.1).

Lemma 4. The vector field $Z \in \mathfrak{X}\left(\mathbf{R}^{n+2}, h, b\right)$ belongs to \mathfrak{k} if and only if it can be written as

$$
\begin{align*}
Z= & \left((p(\mathbf{x})-k) e^{v} u-h\left(q^{\prime}, \mathbf{x}\right)+a e^{-v}\right) \partial_{u} \tag{5.5}\\
& +\left(k e^{v}+l-h(p, \mathbf{x}) e^{v}\right) \partial_{v}+B \cdot \mathbf{x}+u e^{v} p+q
\end{align*}
$$

where $a, k, l \in \mathbf{R} ; p=p^{c} \partial_{c}$ with $p^{c} \in \mathbf{R}$ for $c=1, \ldots, n ; q=q^{a}(v) \partial_{a}$ satisfies $q^{\prime \prime}=-q^{\prime}+h^{-1} \cdot b \cdot q ; B \in \mathfrak{o}(h) \cap \mathfrak{o}(b)$; and, if $b \neq 0$, then $k=0$ and $p=0$.

Proof. Let $Z=U \partial_{u}+V \partial_{v}+X^{a} \partial_{a} \in \mathfrak{X}(M)$. We shall use the summation convention over the indexes $a, b, c, \ldots=1, \ldots, n$. Then
$Z \in \mathfrak{k}$ if and only if the following equations hold:

$$
\begin{gather*}
U+\frac{\partial U}{\partial v}+b(\mathbf{x}, X)+(b(\mathbf{x}, \mathbf{x})+2 u) \frac{\partial V}{\partial v}=0 \tag{5.6}\\
\frac{\partial V}{\partial v}+\frac{\partial U}{\partial u}+(b(\mathbf{x}, \mathbf{x})+2 u) \frac{\partial V}{\partial u}=0 \tag{5.7}\\
\frac{\partial V}{\partial u}=0 \tag{5.8}\\
\frac{\partial U}{\partial x^{a}}+(b(\mathbf{x}, \mathbf{x})+2 u) \frac{\partial V}{\partial x^{a}}+h_{a b} \frac{\partial X^{b}}{\partial v}=0 \tag{5.9}\\
\frac{\partial V}{\partial x^{a}}+h_{a b} \frac{\partial X^{b}}{\partial u}=0 \tag{5.10}\\
h_{a c} \frac{\partial X^{c}}{\partial x^{b}}+h_{b c} \frac{\partial X^{c}}{\partial x^{a}}=0 \tag{5.11}
\end{gather*}
$$

From (5.8) we have $V=V(u, \mathbf{x})$. If we bring this to (5.7) and differentiate with respect to u, we get $\partial^{2} U / \partial u^{2}=0$. Therefore, taking account of (5.7), we conclude that

$$
U=-\frac{\partial V(v, \mathbf{x})}{\partial v} u+B(v, \mathbf{x})
$$

for some function $B(v, \mathbf{x})$. For brevity we put $X_{a}:=h_{a b} X^{b}$. Then (5.11) reads $\partial X_{a} / \partial x^{b}+\partial X_{b} / \partial x^{a}=0$. So there are functions $A_{a b}(u, v)$, $C_{a}(u, v)$ with $A_{a b}(u, v)+A_{b a}(u, v)=0$ such that

$$
X_{a}=A_{a b}(u, v) x^{b}+C_{a}(u, v)
$$

From (5.10), we have

$$
\frac{\partial V(v, \mathbf{x})}{\partial x^{a}}=-\frac{\partial X_{a}}{\partial u}=-\frac{\partial A_{a b}(u, v)}{\partial u} x^{b}-\frac{\partial C_{a}(u, v)}{\partial u}
$$

By anti-differentiation and having in mind that $A_{a b}+A_{b a}=0$, we have

$$
\begin{gather*}
V(v, x)=-\frac{\partial C_{a}(u, v)}{\partial u} x^{a}+C(u, v) \tag{5.12}\\
\frac{\partial A_{a b}(u, v)}{\partial u}=0
\end{gather*}
$$

By differentiation of (5.12) with respect to u, we get $C_{a}(u, v)=$ $p_{a}(v) u+q_{a}(v)$ for some functions $p_{a}(v), q_{a}(v)$. Also $\partial C(u, v) / \partial u=0$. Therefore, the situation is now as follows

$$
\begin{aligned}
X_{a} & =A_{a b}(v) x^{b}+p_{a}(v) u+q_{a}(v) \\
V & =-p_{a}(v) x^{a}+C(v) \\
U & =\left(p_{a}^{\prime}(v) x^{a}-C^{\prime}(v)\right) u+B(v, \mathbf{x})
\end{aligned}
$$

We substitute this in (5.9):

$$
\begin{align*}
& p_{a}^{\prime}(v) u+\frac{\partial B(v, \mathbf{x})}{\partial x^{a}} \tag{5.13}\\
& \quad-(b(\mathbf{x}, \mathbf{x})+2 u) p_{a}(v)+A_{a b}^{\prime}(v) x^{b}+p_{a}^{\prime}(v) u+q_{a}^{\prime}(v)=0
\end{align*}
$$

From the coefficient in u we see that $p_{a}(v)=p_{a} e^{v}$ and the numbers p_{a} can be regarded as the components of a form $p \in\left(\mathbf{R}^{n}\right)^{*}$. By differentiation of the whole formula with respect to x^{b}, we get

$$
\frac{\partial^{2} B(v, \mathbf{x})}{\partial x^{a} \partial x^{b}}+A_{a b}^{\prime}(v)-2 p_{a} e^{v} b_{b c} x^{c}=0
$$

By interchanging indexes a and b and subtracting, we have

$$
A_{a b}^{\prime}(v)-e^{v}\left(p_{a} b_{b c}-p_{b} b_{a c}\right) x^{c}=0
$$

whence $A_{a b}$ is constant (take values for $x^{a}=0$) and $p_{b} b_{a c}=p_{a} b_{b c}$. Assume that some of the p_{a} are not zero, for instance, $p_{1} \neq 0$. Then $p_{1} b_{a c}=p_{a} b_{1 c}$, whence $b_{a c}=\left(p_{a} / p_{1}\right) b_{1 c}$, and further $b_{1 c}=b_{c 1}=$ $\left(p_{c} / p_{1}\right) b_{11}$. Thus,

$$
b_{a c}=\frac{p_{a} p_{c}}{p_{1}^{2}} b_{11}
$$

In other words, b is decomposable, and if we call $r:=b_{11} / p_{1}^{2}$, we have $b(\mathbf{x}, \mathbf{x})=r p(\mathbf{x})^{2}$ where $p(\mathbf{x})=p_{a} x^{a}$. Substituting in (5.13), we have

$$
\begin{aligned}
\frac{\partial B(v, \mathbf{x})}{\partial x^{a}} & =r p_{a} e^{v} p(\mathbf{x})^{2}-q_{a}^{\prime}(v) \\
& =\frac{r e^{v}}{3} \frac{\partial p(\mathbf{x})^{3}}{\partial x^{a}}-q_{a}^{\prime}(v) \\
B(v, \mathbf{x}) & =\frac{r e^{v}}{3} p(\mathbf{x})^{3}-q_{a}^{\prime}(v) x^{a}+a(v) \\
& =\frac{e^{v}}{3} b(\mathbf{x}, \mathbf{x}) p(\mathbf{x})-q_{a}^{\prime}(v) x^{a}+a(v)
\end{aligned}
$$

for some function $a(v)$. After substitution in (5.6), we have

$$
\begin{align*}
& \left(b_{a b} x^{a} h^{b c} p_{c} e^{v}-C^{\prime \prime}(v)+C^{\prime}(v)\right) u \tag{5.14}\\
& \begin{array}{l}
-\frac{e^{v}}{3} b(\mathbf{x}, \mathbf{x}) p(\mathbf{x})+a^{\prime}(v)+a(v)-\left(q_{a}^{\prime \prime}(v)+q_{a}^{\prime}(v)\right) x^{a} \\
\quad+b_{a b} x^{a} h^{b c}\left(A_{c d} x^{d}+q_{c}(v)\right)+b(\mathbf{x}, \mathbf{x}) C^{\prime}(v)=0
\end{array}
\end{align*}
$$

The term of third degree in \mathbf{x} must be zero, that is, $p=0$ or otherwise $b=0$. From the factor in u we get $C(v)=k e^{v}+l$. By differentiation of (5.14) with respect to x^{a} and taking $x^{a}=0$, we see that

$$
q^{\prime \prime}=-q^{\prime}+q \cdot h^{-1} \cdot b
$$

where $q: \mathbf{R} \rightarrow\left(\mathbf{R}^{n}\right)^{*}$ is given by $q(v)=q_{a}(v) d x^{a}$. Note that we usually shall consider a bilinear form b as a map $b: \mathbf{R}^{n} \rightarrow\left(\mathbf{R}^{n}\right)^{*}$. In this same spirit, h^{-1} is conceived as a map $h^{-1}:\left(\mathbf{R}^{n}\right)^{*} \rightarrow \mathbf{R}^{n}$. By evaluating (5.14) at $x^{a}=0$ we see that $a(v)=a e^{-v}$. So (5.14) becomes $b_{a b} h^{b c} A_{c d} x^{a} x^{d}+b(\mathbf{x}, \mathbf{x}) k e^{v}=0$ so that $k=0$ if $b \neq 0$ and $b_{a c} h^{c d} A_{d b}+b_{b c} h^{c d} A_{d a}=0$, or equivalently

$$
\operatorname{sym}\left(b \cdot h^{-1} \cdot A\right)=0
$$

Let us interpret the conditions upon A. If we put $B:=h^{-1}$. $A \in \mathfrak{g l}(n ; \mathbf{R})$, the condition for B to belong to the Lie algebra of the group $O(h)$, that is, the group of linear h-isometries of \mathbf{R}^{n}, is $h(B(\mathbf{v}), \mathbf{w})+h(\mathbf{v}, B(\mathbf{w}))=h\left(h^{-1}(A(\mathbf{v})), \mathbf{w}\right)+h\left(\mathbf{v}, h^{-1}(A(\mathbf{w}))\right)=$ $A(\mathbf{v}, \mathbf{w})+A(\mathbf{w}, \mathbf{v})=0$, and this is the condition of A being skewsymmetric. The condition for B to belong to the Lie algebra of the group $O(b)$ is that $b(B(\mathbf{v}), \mathbf{w})+b(\mathbf{v}, B(\mathbf{w}))=0$ for all $\mathbf{v}, \mathbf{w} \in \mathbf{R}^{n}$. But the lefthand side is

$$
\begin{aligned}
b(B(\mathbf{v}), \mathbf{w})+b(\mathbf{v}, B(\mathbf{w})) & =b\left(\left(h^{-1} \cdot A\right)(\mathbf{v}), \mathbf{w}\right)+b\left(\mathbf{v},\left(h^{-1} \cdot A\right)(\mathbf{w})\right) \\
& =\left(b \cdot h^{-1} \cdot A\right)(\mathbf{v}, \mathbf{w})+\left(b \cdot h^{-1} \cdot A\right)(\mathbf{w}, \mathbf{v})=0
\end{aligned}
$$

Thus the conditions upon A can be expressed as $B \in \mathfrak{o}(h) \cap \mathfrak{o}(b)$.
We now change the notation putting $q:=q \cdot h^{-1}, p:=p \cdot h^{-1}$, $\mathbf{x}:=x^{a} \partial_{a}$ and considering p, q as vector fields in \mathbf{R}^{n+2} given by $q\left(u, v, x^{1}, \ldots, x^{n}\right)=q^{a}(v) \partial_{a}, p\left(u, v, x^{1}, \ldots, x^{n}\right)=p^{a} \partial_{a}$. Then we get the expression stated in the lemma.

Proof of Proposition 3. We consider the subspaces of \mathfrak{k} given by the vector fields as (5.5) with the following additional conditions:

$$
\begin{aligned}
\mathfrak{g} & =\{Z \in \mathfrak{k}: k=0, B=0, p=0\} \\
\mathfrak{h} & =\{Z \in \mathfrak{g}: a=l=0, q(0)=0\} \\
\mathfrak{m} & =\left\{Z \in \mathfrak{g}: q(0)+q^{\prime}(0)=0\right\}
\end{aligned}
$$

Thus a vector $G \in \mathfrak{g}$ is given as $G=\left(-h\left(q^{\prime}, \mathbf{x}\right)+a e^{-v}\right) \partial_{u}+l \partial_{v}+q$, where $a, l \in \mathbf{R}$ and $q=q^{a}(v) \partial_{a}$ satisfies $q^{\prime \prime}=-q^{\prime}+h^{-1} \cdot b \cdot q$.
Let $\varkappa: \mathbf{R} \times \mathbf{R} \times \mathbf{R}^{n} \times \mathbf{R}^{n} \rightarrow \mathfrak{g}$ be the map given by

$$
\varkappa(a, l, x, y)=\left(-h\left(q^{\prime}, \mathbf{x}\right)+(1 / 2) a e^{-v}\right) \partial_{u}+l \partial_{v}+q
$$

where $q: \mathbf{R} \rightarrow \mathbf{R}^{n}$ is the solution of the differential equation $q^{\prime \prime}=$ $-q^{\prime}+K \cdot q, q(0)=x, q^{\prime}(0)=y$, where we have put $K:=h^{-1} \cdot b$. After calculation, we have

$$
\begin{align*}
& {\left[\varkappa\left(a_{1}, l_{1}, x_{1}, y_{1}\right), \varkappa\left(a_{2}, l_{2}, x_{2}, y_{2}\right)\right]} \tag{5.15}\\
& \quad=\varkappa\left(a_{1} l_{2}-a_{2} l_{1}+2\left(h\left(y_{1}, x_{2}\right)-h\left(y_{2}, x_{1}\right)\right), 0, l_{1} y_{2}-l_{2} y_{1}\right. \\
& \left.\quad l_{1} y_{2}+l_{2} y_{1}+K\left(l_{1} x_{2}-l_{2} x_{1}\right)\right)
\end{align*}
$$

In the course of the computation one encounters the expression

$$
\left(h\left(q_{1}^{\prime}, q_{2}\right)-h\left(q_{2}^{\prime}, q_{1}\right)\right) \partial_{u}
$$

But we have

$$
\begin{aligned}
\frac{d}{d v}\left(h\left(q_{1}^{\prime}, q_{2}\right)-h\left(q_{2}^{\prime}, q_{1}\right)\right)= & h\left(-q_{1}^{\prime}+h^{-1} \cdot b \cdot q_{1}, q_{2}\right) \\
& -h\left(-q_{2}^{\prime}+h^{-1} \cdot b \cdot q_{2}, q_{1}\right) \\
= & -h\left(q_{1}^{\prime}, q_{2}\right)+h\left(q_{2}^{\prime}, q_{1}\right) \\
& +b\left(q_{1}, q_{2}\right)-b\left(q_{2}, q_{1}\right) \\
= & -h\left(q_{1}^{\prime}, q_{2}\right)+h\left(q_{2}^{\prime}, q_{1}\right) .
\end{aligned}
$$

Hence $\left(h\left(q_{1}^{\prime}, q_{2}\right)-h\left(q_{2}^{\prime}, q_{1}\right)\right) \partial_{u}=\left(h\left(y_{1}, x_{2}\right)-h\left(y_{2}, x_{1}\right)\right) e^{-v} \partial_{u}$.
From (5.15), we easily see that \mathfrak{g} and \mathfrak{h} are subalgebras of \mathfrak{k}, that $\mathfrak{h}=$ $\varkappa\left(0,0,0, \mathbf{R}^{n}\right)$ is abelian and that $[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}$ so that the decomposition $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$ is reductive. Also, $\mathfrak{g}^{(3)}=0$, whence \mathfrak{g} is solvable.

We endow \mathfrak{m} with the inner product \langle,$\rangle given by g$ at the origin of \mathbf{R}^{n+2}. Thus, if $Y=\varkappa(a, l, x,-x) \in \mathfrak{m}$, we have

$$
\begin{equation*}
\langle Y, Y\rangle=a l+h(x, x) \tag{5.16}
\end{equation*}
$$

Then

$$
\begin{aligned}
\langle[\varkappa(0,0,0, y), Y], Y\rangle & =\langle\varkappa(2 h(y, x), 0,-y, y), Y\rangle \\
& =\operatorname{lh}(y, x)-\operatorname{lh}(y, x)=0 .
\end{aligned}
$$

Therefore, \langle,$\rangle is ad \mathfrak{h}$-invariant.
For describing \mathfrak{g} as a matrix subalgebra, we need some notation. First we put

$$
J:=\left(\begin{array}{cc}
0 & I \\
K & -I
\end{array}\right), \quad J_{t}:=\exp (t J)
$$

where I is the identity in \mathbf{R}^{n}. Now if $s=\binom{x}{y} \in \mathbf{R}^{n} \times \mathbf{R}^{n}$, we shall write $\tau(s)=(y \cdot h,-x \cdot h)$. Evidently, $J_{t_{1}} \cdot J_{t_{2}}=J_{t_{1}+t_{2}}$. From the easily verified fact that $h \cdot K=K \cdot h$, it can be directly proved that

$$
\begin{equation*}
\tau(s) \cdot J=-\tau(J \cdot s+s) \tag{5.17}
\end{equation*}
$$

Now we consider the subspace of $(2 n+2) \times(2 n+2)$ matrices of the form

$$
M(a, l, x, y)=\left(\begin{array}{ccc}
-l & \tau(s) & a \\
0 & l J & s \\
0 & 0 & 0
\end{array}\right)
$$

where $s=\binom{x}{y}$. Then it can be shown at once with the aid of (5.17) that the map

$$
\varkappa(a, l, x, y) \longmapsto M(a, l, x, y)
$$

is a Lie algebra isomorphism. Accordingly, we shall identify \mathfrak{g} with this matrix Lie algebra and \mathfrak{m} with the subspace

$$
\left\{M(a, l, x,-x):(a, l, x) \in \mathbf{R} \times \mathbf{R} \times \mathbf{R}^{n}\right\}
$$

We consider the subset \mathcal{G} of $(2 n+2) \times(2 n+2)$ real matrices of the following form

$$
N(a, t, s)=\left(\begin{array}{ccc}
e^{-t} & \tau(s) \cdot J_{t} & a \\
0 & J_{t} & s \\
0 & 0 & 1
\end{array}\right)
$$

We have

$$
\begin{aligned}
& N\left(a_{1}, t_{1}, s_{1}\right) \cdot N\left(a_{2}, t_{2}, s_{2}\right) \\
& =\left(\begin{array}{ccc}
e^{-\left(t_{1}+t_{2}\right)} & e^{-t_{1}} \tau\left(s_{2}\right) \cdot J_{t_{2}}+\tau\left(s_{1}\right) \cdot J_{t_{1}+t_{2}} & a_{2} e^{-t_{1}}+\tau\left(s_{1}\right) \cdot J_{t_{1}} \cdot s_{2}+a_{1} \\
0 & J_{t_{1}+t_{2}} & J_{t_{1}} \cdot s_{2}+s_{1} \\
0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

Now

$$
\begin{aligned}
\tau\left(J_{t_{1}} \cdot s_{2}+s_{1}\right) \cdot J_{t_{1}+t_{2}}-e^{-t_{1}} & \tau\left(s_{2}\right) \cdot J_{t_{2}}-\tau\left(s_{1}\right) \cdot J_{t_{1}+t_{2}} \\
& =\left(\tau\left(J_{t_{1}} \cdot s_{2}\right) \cdot J_{t_{1}}-e^{-t_{1}} \tau\left(s_{2}\right)\right) \cdot J_{t_{2}} .
\end{aligned}
$$

Hence \mathcal{G} is a group if and only if for every $t \in \mathbf{R}$ and $s \in \mathbf{R}^{2 n}$ we have $\tau\left(J_{t} \cdot s\right) \cdot J_{t}=e^{-t} \tau(s)$. But with the aid of (5.17) we get

$$
\frac{d}{d t}\left(\tau\left(J_{t} \cdot s\right) \cdot J_{t}\right)=\tau\left(J \cdot J_{t} \cdot s\right) \cdot J_{t}+\tau\left(J_{t} \cdot s\right) \cdot J \cdot J_{t}=-\tau\left(J_{t} \cdot s\right) \cdot J_{t}
$$

Therefore, the condition holds and \mathcal{G} is a Lie group whose Lie algebra is \mathfrak{g}. It is clear that \mathcal{G} is diffeomorphic to $\mathbf{R}^{2 n+2}$. Also, let \mathcal{H} be the subgroup of \mathcal{G} given by the matrices

$$
N\left(0,0,\binom{0}{z}\right)
$$

whose Lie algebra is \mathfrak{h}. Then $\mathcal{H} \cong\left(\mathbf{R}^{n},+\right)$. Since

$$
N\left(0,0,\binom{0}{z}\right) \cdot N\left(a, t,\binom{x}{y}\right)=N\left(a+h(x, z), t,\binom{x}{y+z}\right)
$$

the orbits for the left action of \mathcal{H} on \mathcal{G} can be parametrized by the elements $N\left(a, t,\binom{x}{-x}\right)$. Since $\mathcal{G} \backslash \mathcal{H}$ is diffeomorphic to $\mathcal{G} / \mathcal{H}$, we see that $\mathcal{G} / \mathcal{H}$ is diffeomorphic to \mathbf{R}^{n+2}. Finally it can be proved at once that the metric (5.16) for \mathfrak{m} is $\operatorname{Ad}(\mathcal{H})$-invariant.

Remark. We have dropped a direct summand from \mathfrak{k} consisting of vector fields of the form

$$
X=(p(\mathbf{x})-k) e^{v} u \partial_{u}+(k-h(p, \mathbf{x})) e^{v} \partial_{v}+B \cdot \mathbf{x}+u e^{v} p
$$

with the conditions stated in Proposition 4. Thus, in general, \mathcal{G} is not the whole group of isometries of $\left(\mathbf{R}^{n+2}, h, b\right)$.

REFERENCES

1. W. Ambrose and I.M. Singer, On homogeneous Riemannian manifolds, Duke Math. J. 25 (1958), 647-669.
2. E. Abbena and S. Garbiero, Almost Hermitian homogeneous structures, Proc. Edinburgh Math. Soc. (2) 31 (1988), 375-395.
3. P.M. Gadea, A. Montesinos Amilibia and J. Muñoz Masqué, Characterizing the complex hyperbolic space by Kähler homogeneous structures, Math. Proc. Cambridge Philos. Soc., to appear.
4. P.M. Gadea and J.A. Oubiña, Homogeneous pseudo-Riemannian structures and homogeneous almost para-Hermitian structures, Houston J. Math. 18 (1993), 449-465.
5. - Homogeneous almost para-Hermitian structures, Indian J. Pure Appl. Math. 26 (1995), 351-362.
6. , Reductive homogeneous pseudo-Riemannian manifolds, Monatsh. Math. 124 (1997), 17-34.
7. C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, W.H. Freeman and Company, New York 1973.
8. F. Tricerri and L. Vanhecke, Homogeneous structures on Reimannian manifolds, London Math. Soc. Lecture Note Ser. 83, Cambridge Univ. Press, Cambridge, 1983.
[^1]
[^0]: 1991 AMS Mathematics Subject Classification. 53C30, 53C50, 53C15.
 Key words and phrases. Homogeneous structures, pseudo-Riemannian manifolds. Received by the editors on February 11, 1999.

[^1]: Departamento de Geometría y Topología, Universidad de Valencia, 46100 Burjasot (Valencia), Spain
 E-mail address: montesinos@iec.csic.es

