ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 31, Number 2, Summer 2001

DEGENERATE HOMOGENEOUS STRUCTURES OF TYPE S_1 ON PSEUDO-RIEMANNIAN MANIFOLDS

A. MONTESINOS AMILIBIA

ABSTRACT. We obtain all of the pseudo-Riemannian manifolds endowed with homogeneous structures defined by isotropic vector fields. Thus, the (general pseudo-Riemannian) class S_1 of homogeneous structures is fully determined.

1. Introduction. Ambrose and Singer [1] gave a characterization for a connected, simply connected and complete Riemannian manifold to be homogeneous, in terms of a (1,2) tensor field S on the manifold. This characterization extends the classical one given by Cartan of Riemannian symmetric spaces as the spaces of parallel curvature, which correspond to Ambrose-Singer's case S = 0. That characterization has also permitted Tricerri and Vanhecke [8] to classify those homogeneous Riemannian manifolds into eight classes which are defined by the invariant subspaces of certain space $S_1 \oplus S_2 \oplus S_3$. In [8] it is proved that a connected, simply connected and complete Riemannian manifold admits a nonvanishing homogeneous structure S of type S_1 if and only if it is isometric to the hyperbolic space.

Gadea and Oubiña [4] have extended the characterization in [1] to the pseudo-Riemannian case of any signature and proved that a connected, simply connected and complete pseudo-Riemannian manifold admits a homogeneous pseudo-Riemannian structure if and only if it is reductive homogeneous. As is well known, in the Riemannian case every homogeneous manifold is complete and reductive.

Gadea and Oubiña give in [6] a classification for the pseudo-Riemannian case of any signature similar to that given in [8] for Riemannian homogeneous structures, and they moreover characterize the three primitive classes. From now on we shall focus attention on the first class, S_1 . A connected, simply connected and complete pseudo-Riemannian manifold (M, g) of any signature (M, g) admits [6] a nondegenerate,

Copyright ©2001 Rocky Mountain Mathematics Consortium

¹⁹⁹¹ AMS Mathematics Subject Classification. 53C30, 53C50, 53C15.

Key words and phrases. Homogeneous structures, pseudo-Riemannian manifolds. Received by the editors on February 11, 1999.

see Section 2, homogeneous structure of type S_1 if and only if g is, up to a change of sign, a metric of strictly negative constant curvature. Moreover, the nonflat pseudo-Riemannian space forms of arbitrary signature locally admit nondegenerate homogeneous pseudo-Riemannian structures of type S_1 . By the way, we note that in the complex case the situation is similar to the real one [3]: one of the classes in Abbena-Garbiero's classification [2] (of homogeneous Kahler structures) corresponds to spaces of strictly negative holomorphic curvature.

Thus, to determine the (general pseudo-Riemannian) class S_1 , it only rests upon the degenerate case which is solved in the present paper, proving the following

Theorem. Let (M, \bar{g}) be an n + 2-dimensional connected pseudo-Riemannian manifold with a degenerate homogeneous structure of type S_1 . Then (M, \bar{g}) is locally isometric to \mathbf{R}^{n+2} with the pseudo-Riemannian metric

$$q = du \otimes dv + dv \otimes du + (b(\mathbf{x}, \mathbf{x}) + 2u) dv \otimes dv + h,$$

where b and h are symmetric bilinear forms in \mathbb{R}^n , h is nondegenerate, x is the position vector in \mathbb{R}^n and u, v are the coordinates in \mathbb{R}^2 .

As we shall see in Proposition 3, (\mathbf{R}^{n+2}, h, b) is isometric to the reductive homogeneous pseudo-Riemannian manifold \mathcal{G}/\mathcal{H} with group \mathcal{G} , isotropy group \mathcal{H} and Lie subspace \mathfrak{m} endowed with the Ad (\mathcal{H}) -invariant inner product as defined in Section 5; but \mathcal{G} is not in general the whole group of isometries of (\mathbf{R}^{n+2}, h, b) . Moreover, (\mathbf{R}^{n+2}, h, b) is an example of a reductive homogeneous pseudo-Riemannian manifold which is noncomplete.

2. Preliminaries. Let (M, g) be a connected C^{∞} pseudo-Riemannian manifold with Levi-Civita connection ∇ and curvature R. Then, in the same vein as [8], Gadea and Oubiña [4] define a homogeneous pseudo-Riemannian structure on (M, g) as a tensor field S of type (1,2) on M such that the connection $\tilde{\nabla} = \nabla - S$ satisfies $\tilde{\nabla}g = \tilde{\nabla}R = \tilde{\nabla}S = 0$. Such a structure is said to be of type S_1 if there is a vector field $\xi \in \mathfrak{X}(M)$ that defines S by

$$S(X,Y) = g(X,Y)\xi - g(Y,\xi)X,$$

and it is said to be degenerate or not according to ξ being isotropic or not.

Gadea and Oubiña [6] have studied nondegenerate homogeneous structures of type S_1 . They turn out to be defined on certain subsets of pseudo-Riemannian manifolds of strictly negative constant curvature.

Here we treat the case of degenerate homogeneous pseudo-Riemannian structures of type S_1 .

Let (M, g) be a connected C^{∞} pseudo-Riemannian manifold with dim M = n + 2, and let $0 \neq \xi \in \mathfrak{X}(M)$ be isotropic, that is, $g(\xi, \xi) = 0$. We assume that if we put

$$\tilde{\nabla}_X Y := \nabla_X Y - g(X, Y)\xi + g(Y, \xi)X,$$

then $\tilde{\nabla}g = \tilde{\nabla}R = \tilde{\nabla}S = 0$, where $S(X, Y) = g(X, Y)\xi - g(Y, \xi)X$. The condition $\tilde{\nabla}g = 0$ is automatically satisfied. As for $\tilde{\nabla}S$ we have

$$(\tilde{\nabla}_X S)(Y,Z) = g(Y,Z)\tilde{\nabla}_X \xi - g(Z,\tilde{\nabla}_X \xi)Y = 0.$$

Let W be any nonisotropic (local) vector field. Since dim $M \geq 2$, we can take Y nonisotropic and orthogonal to W and Z = Y. Then $g(Y,Y)g(\tilde{\nabla}_X\xi,W) = 0$, whence $g(\tilde{\nabla}_X\xi,W) = 0$. Since this is true for any nonisotropic W we conclude $\tilde{\nabla}\xi = 0$. Thus,

$$\nabla_X \xi = g(X,\xi)\xi,$$

or if we put $\alpha = g(\xi)$, we have

$$\nabla \xi = \alpha \otimes \xi, \qquad \nabla \alpha = \alpha \otimes \alpha.$$

Then

$$d\alpha = 0.$$

As for the curvature, we first fix the notation. We define

$$\begin{split} R(X,Y)Z &= \nabla_{[X,Y]}Z + \nabla_{Y}\nabla_{X}Z - \nabla_{X}\nabla_{Y}Z,\\ R(X,Y,Z,W) &= g(R(X,Y)Z,W). \end{split}$$

We have $\nabla_Y \nabla_X \xi = 2\alpha(Y)\alpha(X)\xi + \alpha(\nabla_Y X)\xi$, whence evidently

$$R(X,Y)\xi = 0, \qquad R(X,Y,Z,\xi) = 0.$$

By expanding the condition $\tilde{\nabla}R = 0$, we get

$$(\nabla_X R)(Y, Z, W, U) = \alpha(Y)R(X, Z, W, U) + \alpha(Z)R(Y, X, W, U) + \alpha(W)R(Y, Z, X, U) + \alpha(U)R(Y, Z, W, X).$$

If we take the cyclic sum in X, Y, Z and apply Bianchi identities we get

$$\mathfrak{S}_{XYZ}\alpha(X)R(Y,Z,W,U) = 0.$$

In other terms, for every $W, U \in \mathcal{X}(M)$, we have

$$\alpha \wedge R(.,.,W,U) = 0,$$

and if we bring this into the formula for $\nabla_X R$, we get

$$\nabla_X R = 2\alpha(X)R$$

Now since $d\alpha = 0$ for each point of M there must be a function v defined in some connected neighborhood of it that satisfies $\alpha = dv$. But then $\nabla_X(de^{-v}) = 0$. Thus, if we put $w = e^{-v}$ and restrict our study to that neighborhood, we have the following situation:

(2.1)

$$w \in C^{\infty}(M), \quad \mathbf{z} := g^{-1}(dw), \quad \mathbf{z} \neq 0, \quad g(\mathbf{z}, \mathbf{z}) = 0,$$

$$\nabla \mathbf{z} = 0, \quad \nabla dw = 0,$$

$$dw \wedge R(., ., X, Y) = 0, \quad X, Y \in \mathfrak{X}(M),$$

$$\nabla R = -\frac{2}{w} dw \otimes R.$$

3. The local canonical form of the metric.

Proposition 1. The metric on \mathbf{R}^{n+2} has the canonical form

$$g = du \otimes dv + dv \otimes du + (b(\mathbf{x}, \mathbf{x}) + 2u) dv \otimes dv + \sum_{a=1}^{n} \varepsilon_{a} dx^{a} \otimes dx^{a},$$

and we have

$$\xi = \partial_u, \qquad \alpha = dv.$$

Proof. Since M is connected and there is some point where dw does not vanish, we conclude that dw is everywhere nonzero because $\nabla dw = 0$. Thus, for each $t \in \mathbf{R}$ the subset $H_t = w^{-1}(\{t\})$ is a regular hypersurface of M. Let $\gamma : I \to M$ be a geodesic and put $w(t) = (w \circ \gamma)(t)$; then

$$\begin{split} \dot{w} &= \left((dw) \circ \gamma \right) (\dot{\gamma}), \\ \ddot{w} &= \left((\nabla_{\dot{\gamma}} dw) \circ \gamma) (\dot{\gamma}) + (dw \circ \gamma) (\nabla_{\dot{\gamma}} \dot{\gamma}) = 0 \end{split}$$

So if for some value $t \in \mathbf{R}$, $\dot{\gamma}_t$ is tangent to $H_{w(t)}$, then γ remains in that hypersurface. On the contrary, if $\dot{w}(0) = 1$, then we always have $\dot{w}(t) = 1$.

Let $e_w \in \mathfrak{X}(M)$ be such that $e_w(w) = dw(e_w) = 1$. By inner multiplication of (2.1) with e_w we have

$$R(.,.,X,Y) = dw \wedge R(e_w,.,X,Y).$$

Thus $R(Z, W, X, Y) = Z(w)R(e_w, W, X, Y) - W(w)R(e_w, Z, X, Y)$. By using the symmetries of R we can write

 $\begin{aligned} R(e_w, Z, X, Y) &= R(X, Y, e_w, Z) \\ &= X(w)R(e_w, Y, e_w, Z) - Y(w)R(e_w, X, e_w, Z), \end{aligned}$

so that if we put $m(X, Y) := R(e_w, X, e_w, Y)$, then

$$(3.1) R = (dw \otimes dw) \wedge m$$

where the wedge stands for the product of double forms.

If $X, Y \in \mathfrak{X}(H_t)$ we have $dw(\nabla_X Y) = \nabla_X(dw(Y)) - (\nabla_X dw)(Y) = 0$ because dw is parallel. Hence $\nabla_X Y \in \mathfrak{X}(H_t)$. Thus, ∇ induces on H_t a torsionless connection whose curvature, due to (3.1), vanishes. Therefore, the parallel displacement along H_t does not depend (locally) on the path. This will allow for a suitable choice of coordinates.

Assume that $H_0 \neq \emptyset$ and that $p \in H_0$. Since $\mathbf{z}_p \in T_p H_0$ because $\mathbf{z}_p(w) = (dw)_p(\mathbf{z}_p) = g(\mathbf{z}_p, \mathbf{z}_p) = 0$, and \mathbf{z}_p is orthogonal to the whole $T_p H_0$, we can take vectors $e_1(0), \ldots, e_n(0)$ of $T_p H_0$ such that if we call

$$e_z(0) := \mathbf{z}_p,$$

we have

$$g(e_z(0), e_z(0)) = 0,$$

$$g(e_z(0), e_a(0)) = 0, \quad a = 1, \dots, n,$$

$$g(e_a(0), e_b(0)) = \varepsilon_a \delta_{ab}, \quad a, b = 1, \dots, n, \quad \varepsilon_a = \pm 1.$$

The two-dimensional subspace of T_pM which is orthogonal to that generated by the vectors $e_1(0), \ldots, e_n(0)$ has a nondegenerate metric induced by g and contains $e_z(0)$ which is an isotropic vector. Therefore, a vector $e_w(0) \in T_pM$ exists such that

$$g(e_w(0), e_z(0)) = 1,$$

$$g(e_w(0), e_w(0)) = 0,$$

$$g(e_w(0), e_a(0)) = 0, \quad a = 1, \dots, n.$$

Now we consider the geodesic γ in M with initial condition $\gamma_0 = p$, $\dot{\gamma}_0 = e_w(0)$. By parallel displacement of the basis $\{e_z(0), e_w(0), e_a(0)\}$ along γ we obtain the basis $\{e_z(t), e_w(t), e_a(t)\}$ of $T_{\gamma(t)}M$ and we have $\gamma_t \in H_t$ because $\dot{\gamma}_0(w) = dw(e_w(0)) = g(\mathbf{z}_p, e_w(0)) = g(e_z(0), e_w(0)) =$ 1, whence w(t) = t. Starting from the point γ_t we make the parallel displacement of $e_a(t)$ along H_t . Since initially $(dw)_p(e_a(0)) = 0$ and dw is parallel, we have that $e_a(t) \in T_{\gamma_t}H_t$. Therefore, that parallel displacement does not depend on the path. Thus, there is a neighborhood V of p on which we have vector fields $e_z = \mathbf{z}, e_a \in \mathfrak{X}(V)$ such that $\nabla e_z = 0, \nabla_{e_a} e_b = 0, \nabla_{e_z} e_a = 0, a, b = 1, \ldots, n$. Therefore, $[e_z, e_a] = [e_a, e_b] = 0, a, b = 1, \ldots, n$. Consequently, the flows ϕ_s^a, ϕ_s^z of these vector fields commute. Thus, there is a neighborhood of $0 \in \mathbf{R}^{n+2}$ where there is a well-defined map

$$\psi(z, w, x^1, \dots, x^n) = (\phi_z^z \circ \phi_{x^1}^1 \circ \dots \circ \phi_{x^n}^n)(\gamma_w)$$

which is the inverse of a chart for M with coordinates (z, w, x^a) such that the coordinate w is the function w, and such that

$$\partial_z := \frac{\partial}{\partial z} = e_z = \mathbf{z}, \qquad \partial_a := \frac{\partial}{\partial x^a} = e_a, \quad a = 1, \dots, n,$$

 $\partial_w(w) = \frac{\partial}{\partial w}(w) = 1.$

We put

$$b := g(\partial_w, \partial_w), \qquad s_a := g(\partial_w, \partial_a)$$

Then, having in mind that $g(\mathbf{z}) = g(\partial_z) = dw$, that $g(\partial_z, \partial_z) = g(\mathbf{z}, \mathbf{z}) = 0$ and that $g(\partial_a, \partial_b) = \varepsilon_a \delta_{ab}$, we have

$$g = dz \otimes dw + dw \otimes dz + bdw \otimes dw + \sum_{a=1}^{n} s_a (dw \otimes dx^a + dx^a \otimes dw) + \sum_{a=1}^{n} \varepsilon_a dx^a \otimes dx^a.$$

Also we have the initial conditions

(3.2)
$$b_{(z=0,x^a=0)} = g(\dot{\gamma}_w, \dot{\gamma}_w) = g(\dot{\gamma}_0, \dot{\gamma}_0) = g(e_w(0), e_w(0)) = 0,$$

(3.3)
$$s_{a(z=0,x^a=0)} = g(e_w(w), e_a(w)) = 0.$$

Since $\nabla \mathbf{z} = \nabla \partial_z = 0$, we have immediately $\mathcal{L}_{\partial_z} g = 0$, that is,

$$\frac{\partial b}{\partial z} = \frac{\partial s_a}{\partial z} = 0.$$

Conversely, these conditions guarantee that $\nabla \mathbf{z} = 0$ and also that $\nabla_{\partial z} \partial_{e_a} = 0$, as is easily verified. Now we need to impose the condition $\nabla_{\partial_a} \partial_{e_b} = 0$. The usual formula for Christoffel symbols gives

$$\nabla_{\partial_a}\partial_{e_b} = \frac{1}{2} \left(\frac{\partial s_a}{\partial x^b} + \frac{\partial s_b}{\partial x^a} \right) \partial_z,$$

and we conclude that

$$\frac{\partial s_a}{\partial x^b} + \frac{\partial s_b}{\partial x^a} = 0.$$

But then, if we call

$$s_{abc} := \frac{\partial^2 s_a}{\partial x^b \partial x^c}$$

we have $s_{abc} = s_{acb}$ and $s_{abc} = -s_{bac}$. Thus, as is well known, $s_{abc} \equiv 0$. Since, by (3.3), we have $s_{a(z=0,x^a=0)} = 0$, we conclude that there are some functions $S_{ab}(w)$ such that

$$S_{ab}(w) + S_{ba}(w) = 0,$$

$$s_a = \sum_{b=1}^n S_{ab}(w) x^b.$$

From this, we get $\Gamma_{wa}^b = \varepsilon_b S_{ba}(w)$. But along γ we have $(\nabla_{\partial_w} \partial_a) \circ \gamma = \nabla_{\dot{\gamma}} e_a = 0$; this implies that $\Gamma_{wa}^b = 0$ at the points where $z = x^1 = \cdots = x^n = 0$. And this leads to $S_{ab}(w) = 0$, $\Gamma_{wa}^b \equiv 0$ and $s_a \equiv 0$.

After computation, we get the Christoffel symbols that are not identically zero:

$$\Gamma^{z}_{ww} = \frac{1}{2} \frac{\partial b}{\partial w}, \qquad \Gamma^{a}_{ww} = -\frac{1}{2} \varepsilon_{a} \frac{\partial b}{\partial x^{a}}, \qquad \Gamma^{z}_{wa} = \frac{1}{2} \frac{\partial b}{\partial x^{a}}.$$

With the aid of these formulae, we can easily compute the components $m_{ab} = R(\partial_w, \partial_a, \partial_w, \partial_b)$ which completely determine the curvature. We get

(3.4)
$$m_{ab} = -\frac{1}{2} \frac{\partial^2 b}{\partial x^a \partial x^b}.$$

Thus the curvature is given by $R = \sum_{a,b=1}^{n} m_{ab} (dw \wedge dx^a) \otimes (dw \wedge dx^b)$. Then

$$\nabla_{\partial_w} R = \sum_{a,b=1}^n \frac{\partial m_{ab}}{\partial w} (dw \wedge dx^{\alpha}) \otimes (dw \wedge dx^b),$$
$$\nabla_{\partial_c} R = \sum_{a,b=1}^n \frac{\partial m_{ab}}{\partial x^c} (dw \wedge dx^a) \otimes (dw \wedge dx^b).$$

Hence, the condition $\nabla R + (2/w) dw \otimes R = 0$ requires that

(3.5)
$$\frac{\partial m_{ab}}{\partial w} + \frac{2m_{ab}}{w} = \frac{1}{w^2} \frac{\partial w^2 m_{ab}}{\partial w} = 0, \qquad \frac{\partial m_{ab}}{\partial x^c} = 0,$$
$$a, b, c, = 1, \dots, n.$$

If we bring (3.4) to the last formula, we have

$$\frac{\partial^3 b}{\partial x^a \partial x^b \partial x^c} = 0, \quad a, b, c = 1, \dots, n.$$

Now at the points on which $z = x^1 = \cdots = x^n = 0$ we have $\Gamma_{wa}^z = (1/2)(\partial b/\partial x^a) = 0$. Since, by (3.2), b vanishes at those points, we conclude that $b = \sum_{a,b=1}^n B_{ab}(w)x^ax^b$ and $m_{ab} = -B_{ab}(w)$. The first formula of (3.5) now implies that

$$B_{ab}(w) = \frac{1}{w^2} b_{ab}, \quad b_{ab} \in \mathbf{R}.$$

Thus we get the following form of the metric

$$g = dz \otimes dw + dw \otimes dz + \frac{1}{w^2} b(\mathbf{x}, \mathbf{x}) \, dw \otimes dw + \sum_{a=1}^n \varepsilon_a \, dx^a \otimes dx^a,$$

where we have put $b(\mathbf{x}, \mathbf{x}) = \sum_{a,b=1}^{n} b_{ab} x^a x^b$ and $\mathbf{x} = (x^1, \ldots, x^n)$ is the position vector in \mathbf{R}^n . Now we substitute $w = e^{-v}$, $u := -e^{-v}z$ and finally obtain the canonical form of the metric given in the statement, which is a pseudo-Riemannian metric defined in all of \mathbf{R}^{n+2} .

4. The curvature and geodesics of this metric.

Proposition 2. Let (\mathbf{R}^{n+2}, h, b) denote \mathbf{R}^{n+2} equipped with the metric

$$g = du \otimes dv + dv \otimes du + \left(b(\mathbf{x}, \mathbf{x}) + 2u\right) dv \otimes dv + \sum_{a,b=1}^{n} h_{ab} dx^{a} \otimes dx^{b}.$$

Then its curvature and its Ricci tensor are given by

$$R = -\sum_{a,b=1}^{n} b_{ab} (dv \wedge dx^{a}) \otimes (dv \wedge dx^{b}),$$

Ricci = $-tr(h^{-1} \cdot b) dv \otimes dv.$

Except for the straight lines in the hyperplane $v = v_0$, the geodesics are not defined for all t. Thus (\mathbf{R}^{n+2}, h, b) is a connected, simply connected and noncomplete pseudo-Riemannian manifold.

Proof. For brevity, we shall put $h = \sum_{a,b=1}^{n} h_{ab} dx^a \otimes dx^b$ with det $h_{ab} \neq 0$ so that h is a constant nondegenerate pseudo-Riemannian metric on \mathbf{R}^n . Then the metric of M is locally given by

(4.1)
$$g = du \otimes dv + dv \otimes du + (b(\mathbf{x}, \mathbf{x}) + 2u) dv \otimes dv + h,$$
$$g^{-1} = \partial_u \otimes \partial_v + \partial_v \otimes \partial_u - (b(\mathbf{x}, \mathbf{x}) + 2u) \partial_u \otimes \partial_u + h^{-1},$$

where $h^{-1} = h^{ab} \partial_a \otimes \partial_b$ and the matrix (h^{ab}) is the inverse of (h_{ab}) .

The nonvanishing Christoffel symbols are

$$\Gamma_{vv}^{u} = b(\mathbf{x}, \mathbf{x}) + 2u, \qquad \Gamma_{vu}^{u} = 1, \qquad \Gamma_{va}^{u} = \sum_{b=1}^{n} b_{ab} x^{b},$$
$$\Gamma_{vv}^{v} = -1, \qquad \Gamma_{vv}^{a} = -\sum_{b,c=1}^{n} h^{ab} b_{bc} x^{c}.$$

It is very easy to verify that this metric satisfies our requirements, i.e., that ∂_u is a degenerate homogeneous pseudo-Riemannian structure in \mathbf{R}^{n+2} with the metric (4.1). The curvature of (\mathbf{R}^{n+2}, h, b) is given by

$$R = -\sum_{a,b=1}^{n} b_{ab}(dv \wedge dx^{a}) \otimes (dv \wedge dx^{b}).$$

The Ricci tensor is

$$\operatorname{Ricci} = -\operatorname{tr}\left(h^{-1} \cdot b\right) dv \otimes dv,$$

and the scalar curvature vanishes. Therefore, for the right choice of dimension and signature, (4.1) is a solution of Einstein's general relativity equations for a universe filled with a swarm of photons, see [7, p. 579].

The equations of geodesics are

$$\ddot{u} + (b(\mathbf{x}, \mathbf{x}) + 2u)\dot{v}^2 + 2b(\mathbf{x}, \dot{\mathbf{x}})\dot{v} + 2\dot{u}\dot{v} = 0,$$

$$\ddot{v} - \dot{v}^2 = 0,$$

$$\ddot{\mathbf{x}} - \dot{v}^2 h^{-1} \cdot b \cdot \mathbf{x} = 0.$$

Then $v = v_0 - \ln(1 - \dot{v}_0 t)$. If we put primes to represent differentiation with respect to v, then the third equation becomes $\mathbf{x}'' = -\mathbf{x}' + h^{-1} \cdot b \cdot \mathbf{x}$, whose solution is

$$\begin{pmatrix} \mathbf{x}(v) \\ \mathbf{x}'(v) \end{pmatrix} = \exp \begin{pmatrix} 0 & (v-v_0)I \\ (v-v_0)h^{-1} \cdot b & -(v-v_0)I \end{pmatrix} \begin{pmatrix} \mathbf{x}(v_0) \\ \mathbf{x}'(v_0) \end{pmatrix},$$

or undoing the change:

$$\begin{pmatrix} \mathbf{x}(t) \\ (1-\dot{v}_0 t)/\dot{v}_0 \,\dot{\mathbf{x}}(t) \end{pmatrix}$$

= $\exp \begin{pmatrix} 0 & -\ln(1-\dot{v}_0 t)I \\ -\ln(1-\dot{v}_0 t)h^{-1} \cdot b & \ln(1-\dot{v}_0 t)I \end{pmatrix} \begin{pmatrix} \mathbf{x}_0 \\ (\dot{\mathbf{x}}_0/\dot{v}_0) \end{pmatrix}.$

With the same change, the first equation is now

$$u'' + 3u' + 2u = -b(\mathbf{x}, \mathbf{x}) - 2b(\mathbf{x}, \mathbf{x}').$$

A particular solution is $f(v) = -(1/2)h(\mathbf{x}(v), \mathbf{x}'(v))$. The general solution of u'' + 3u' + 2u = 0 is $u = e^{v_0 - v}(A + Be^{v_0 - v})$. Thus,

$$u(t) = (1 - \dot{v}_0 t) \left(A + B(1 - \dot{v}_0 t) - \frac{1}{2\dot{v}_0} h(\mathbf{x}(t), \dot{\mathbf{x}}(t)) \right),$$

and the constants A, B must be determined from the initial conditions. Of course, these formulae hold when $\dot{v}_0 \neq 0$. If $\dot{v}_0 = 0$, we simply have the equations of straight lines in the hyperplane $v = v_0$, that is, $v(t) = v_0, u(t) = \dot{u}_0 t + u_0, \mathbf{x}(t) = \dot{\mathbf{x}}_0 t + \mathbf{x}_0$. With the exception of this case, the geodesics are not defined for all t. \Box

5. The homogeneous pseudo-Riemannian space (\mathbf{R}^{n+2}, h, b) . Let \mathcal{G} be \mathbf{R}^{2n+2} with the product

(5.1)
$$(a_1, t_1, s_1) \cdot (a_2, t_2, s_2)$$

= $(a_1 + a_2 e^{-t_1} + \tau(s_1) \cdot J_{t_1} \cdot s_2, t_1 + t_2, J_{t_1} \cdot s_2 + s_1),$

where

$$a_i, t_i \in \mathbf{R}, \quad s_i = \begin{pmatrix} x_i \\ y_i \end{pmatrix} \in \mathbf{R}^n \times \mathbf{R}^n, \quad i = 1, 2,$$
$$\tau \begin{pmatrix} x \\ y \end{pmatrix} = (y \cdot h, -x \cdot h), \quad J_t = \exp \begin{pmatrix} 0 & tI \\ th^{-1} \cdot b & -tI \end{pmatrix}.$$

Let

(5.2)
$$\mathcal{H} = \left\{ \left(0, 0, \begin{pmatrix} 0\\ y \end{pmatrix} \right) : y \in \mathbf{R}^n \right\} \subset \mathcal{G}$$

and

(5.3)
$$\mathfrak{m} = \left\{ \left(a, t, \begin{pmatrix} x \\ -x \end{pmatrix} \right) : a, t \in \mathbf{R}, \ x \in \mathbf{R}^n \right\} \subset \mathfrak{g}.$$

Then $\mathcal{H} \cong (\mathbf{R}^n, +)$ is a closed subgroup of \mathcal{G} , \mathfrak{m} is an Ad (\mathcal{H}) -invariant subspace of the Lie algebra \mathfrak{g} of \mathcal{G} and the inner product \langle , \rangle in \mathfrak{m} defined by

(5.4)
$$\left\langle \left(a, t, \begin{pmatrix} x \\ -x \end{pmatrix}\right), \left(a, t, \begin{pmatrix} x \\ -x \end{pmatrix}\right) \right\rangle = at + h(x, x)$$

is $\operatorname{Ad}(\mathcal{H})$ -invariant.

Let (\mathbf{R}^{n+2}, h, b) be as in Proposition 2 and \mathcal{G} , \mathcal{H} , \mathfrak{m} and \langle , \rangle as in (5.1), (5.2), (5.3) and (5.4) above. Then we have

Proposition 3. (\mathbf{R}^{n+2}, h, b) is isometric to the reductive homogeneous pseudo-Riemannian manifold \mathcal{G}/\mathcal{H} with Lie subspace \mathfrak{m} , endowed with the Ad (\mathcal{H}) -invariant inner product \langle , \rangle .

As a first step towards this description of (\mathbf{R}^{n+2}, h, b) as a homogeneous space, we compute the algebra \mathfrak{k} of Killing vector fields of (4.1).

Lemma 4. The vector field $Z \in \mathfrak{X}(\mathbb{R}^{n+2}, h, b)$ belongs to \mathfrak{k} if and only if it can be written as

(5.5)
$$Z = \left((p(\mathbf{x}) - k)e^{v}u - h(q', \mathbf{x}) + ae^{-v} \right) \partial_{u} + (ke^{v} + l - h(p, \mathbf{x})e^{v}) \partial_{v} + B \cdot \mathbf{x} + ue^{v}p + q.$$

where $a, k, l \in \mathbf{R}$; $p = p^c \partial_c$ with $p^c \in \mathbf{R}$ for c = 1, ..., n; $q = q^a(v)\partial_a$ satisfies $q'' = -q' + h^{-1} \cdot b \cdot q$; $B \in \mathfrak{o}(h) \cap \mathfrak{o}(b)$; and, if $b \neq 0$, then k = 0and p = 0.

Proof. Let $Z = U\partial_u + V\partial_v + X^a\partial_a \in \mathfrak{X}(M)$. We shall use the summation convention over the indexes $a, b, c, \ldots = 1, \ldots, n$. Then

 $Z \in \mathfrak{k}$ if and only if the following equations hold:

(5.6)
$$U + \frac{\partial U}{\partial v} + b(\mathbf{x}, X) + \left(b(\mathbf{x}, \mathbf{x}) + 2u\right)\frac{\partial V}{\partial v} = 0,$$

(5.7)
$$\frac{\partial V}{\partial v} + \frac{\partial U}{\partial u} + \left(b(\mathbf{x}, \mathbf{x}) + 2u\right)\frac{\partial V}{\partial u} = 0,$$

(5.8)
$$\frac{\partial V}{\partial u} = 0,$$

(5.9)
$$\frac{\partial U}{\partial x^a} + \left(b(\mathbf{x}, \mathbf{x}) + 2u\right) \frac{\partial V}{\partial x^a} + h_{ab} \frac{\partial X^b}{\partial v} = 0,$$

(5.10)
$$\frac{\partial V}{\partial x^a} + h_{ab} \frac{\partial X^b}{\partial u} = 0,$$

(5.11)
$$h_{ac} \frac{\partial X^c}{\partial x^b} + h_{bc} \frac{\partial X^c}{\partial x^a} = 0.$$

From (5.8) we have $V = V(u, \mathbf{x})$. If we bring this to (5.7) and differentiate with respect to u, we get $\partial^2 U/\partial u^2 = 0$. Therefore, taking account of (5.7), we conclude that

$$U = -\frac{\partial V(v, \mathbf{x})}{\partial v} u + B(v, \mathbf{x}),$$

for some function $B(v, \mathbf{x})$. For brevity we put $X_a := h_{ab}X^b$. Then (5.11) reads $\partial X_a / \partial x^b + \partial X_b / \partial x^a = 0$. So there are functions $A_{ab}(u, v)$, $C_a(u, v)$ with $A_{ab}(u, v) + A_{ba}(u, v) = 0$ such that

$$X_a = A_{ab}(u, v)x^b + C_a(u, v).$$

From (5.10), we have

$$\frac{\partial V(v, \mathbf{x})}{\partial x^a} = -\frac{\partial X_a}{\partial u} = -\frac{\partial A_{ab}(u, v)}{\partial u} x^b - \frac{\partial C_a(u, v)}{\partial u}.$$

By anti-differentiation and having in mind that $A_{ab} + A_{ba} = 0$, we have

(5.12)
$$V(v,x) = -\frac{\partial C_a(u,v)}{\partial u} x^a + C(u,v),$$
$$\frac{\partial A_{ab}(u,v)}{\partial u} = 0.$$

By differentiation of (5.12) with respect to u, we get $C_a(u,v) = p_a(v)u + q_a(v)$ for some functions $p_a(v), q_a(v)$. Also $\partial C(u, v)/\partial u = 0$. Therefore, the situation is now as follows

$$X_{a} = A_{ab}(v)x^{b} + p_{a}(v)u + q_{a}(v),$$

$$V = -p_{a}(v)x^{a} + C(v),$$

$$U = (p'_{a}(v)x^{a} - C'(v))u + B(v, \mathbf{x}).$$

We substitute this in (5.9):

(5.13)
$$p'_{a}(v)u + \frac{\partial B(v,\mathbf{x})}{\partial x^{a}} - \left(b(\mathbf{x},\mathbf{x}) + 2u\right)p_{a}(v) + A'_{ab}(v)x^{b} + p'_{a}(v)u + q'_{a}(v) = 0.$$

From the coefficient in u we see that $p_a(v) = p_a e^v$ and the numbers p_a can be regarded as the components of a form $p \in (\mathbf{R}^n)^*$. By differentiation of the whole formula with respect to x^b , we get

$$\frac{\partial^2 B(v, \mathbf{x})}{\partial x^a \partial x^b} + A'_{ab}(v) - 2p_a e^v b_{bc} x^c = 0$$

By interchanging indexes a and b and subtracting, we have

$$A'_{ab}(v) - e^{v}(p_{a}b_{bc} - p_{b}b_{ac})x^{c} = 0,$$

whence A_{ab} is constant (take values for $x^a = 0$) and $p_b b_{ac} = p_a b_{bc}$. Assume that some of the p_a are not zero, for instance, $p_1 \neq 0$. Then $p_1 b_{ac} = p_a b_{1c}$, whence $b_{ac} = (p_a/p_1)b_{1c}$, and further $b_{1c} = b_{c1} = (p_c/p_1)b_{11}$. Thus,

$$b_{ac} = \frac{p_a p_c}{p_1^2} \, b_{11}.$$

In other words, b is decomposable, and if we call $r := b_{11}/p_1^2$, we have $b(\mathbf{x}, \mathbf{x}) = rp(\mathbf{x})^2$ where $p(\mathbf{x}) = p_a x^a$. Substituting in (5.13), we have

$$\begin{aligned} \frac{\partial B(v,\mathbf{x})}{\partial x^a} &= rp_a e^v p(\mathbf{x})^2 - q_a'(v) \\ &= \frac{re^v}{3} \frac{\partial p(\mathbf{x})^3}{\partial x^a} - q_a'(v), \\ B(v,\mathbf{x}) &= \frac{re^v}{3} p(\mathbf{x})^3 - q_a'(v) x^a + a(v) \\ &= \frac{e^v}{3} b(\mathbf{x},\mathbf{x}) p(\mathbf{x}) - q_a'(v) x^a + a(v), \end{aligned}$$

for some function a(v). After substitution in (5.6), we have

(5.14)
$$(b_{ab}x^{a}h^{bc}p_{c}e^{v} - C''(v) + C'(v)) u - \frac{e^{v}}{3}b(\mathbf{x},\mathbf{x})p(\mathbf{x}) + a'(v) + a(v) - (q''_{a}(v) + q'_{a}(v)) x^{a} + b_{ab}x^{a}h^{bc} (A_{cd}x^{d} + q_{c}(v)) + b(\mathbf{x},\mathbf{x})C'(v) = 0.$$

The term of third degree in **x** must be zero, that is, p = 0 or otherwise b = 0. From the factor in u we get $C(v) = ke^v + l$. By differentiation of (5.14) with respect to x^a and taking $x^a = 0$, we see that

$$q'' = -q' + q \cdot h^{-1} \cdot b,$$

where $q : \mathbf{R} \to (\mathbf{R}^n)^*$ is given by $q(v) = q_a(v) dx^a$. Note that we usually shall consider a bilinear form b as a map $b : \mathbf{R}^n \to (\mathbf{R}^n)^*$. In this same spirit, h^{-1} is conceived as a map $h^{-1} : (\mathbf{R}^n)^* \to \mathbf{R}^n$. By evaluating (5.14) at $x^a = 0$ we see that $a(v) = ae^{-v}$. So (5.14) becomes $b_{ab}h^{bc}A_{cd}x^ax^d + b(\mathbf{x},\mathbf{x})ke^v = 0$ so that k = 0 if $b \neq 0$ and $b_{ac}h^{cd}A_{db} + b_{bc}h^{cd}A_{da} = 0$, or equivalently

$$\operatorname{sym}\left(b\cdot h^{-1}\cdot A\right)=0.$$

Let us interpret the conditions upon A. If we put $B := h^{-1} \cdot A \in \mathfrak{gl}(n; \mathbf{R})$, the condition for B to belong to the Lie algebra of the group O(h), that is, the group of linear h-isometries of \mathbf{R}^n , is $h(B(\mathbf{v}), \mathbf{w}) + h(\mathbf{v}, B(\mathbf{w})) = h(h^{-1}(A(\mathbf{v})), \mathbf{w}) + h(\mathbf{v}, h^{-1}(A(\mathbf{w}))) = A(\mathbf{v}, \mathbf{w}) + A(\mathbf{w}, \mathbf{v}) = 0$, and this is the condition of A being skew-symmetric. The condition for B to belong to the Lie algebra of the group O(b) is that $b(B(\mathbf{v}), \mathbf{w}) + b(\mathbf{v}, B(\mathbf{w})) = 0$ for all $\mathbf{v}, \mathbf{w} \in \mathbf{R}^n$. But the lefthand side is

$$\begin{split} b(B(\mathbf{v}),\mathbf{w}) + b(\mathbf{v},B(\mathbf{w})) &= b\big((h^{-1}\cdot A)(\mathbf{v}),\mathbf{w}\big) + b\big(\mathbf{v},(h^{-1}\cdot A)(\mathbf{w})\big) \\ &= (b\cdot h^{-1}\cdot A)(\mathbf{v},\mathbf{w}) + (b\cdot h^{-1}\cdot A)(\mathbf{w},\mathbf{v}) = 0. \end{split}$$

Thus the conditions upon A can be expressed as $B \in \mathfrak{o}(h) \cap \mathfrak{o}(b)$.

We now change the notation putting $q := q \cdot h^{-1}$, $p := p \cdot h^{-1}$, $\mathbf{x} := x^a \partial_a$ and considering p, q as vector fields in \mathbf{R}^{n+2} given by $q(u, v, x^1, \ldots, x^n) = q^a(v)\partial_a$, $p(u, v, x^1, \ldots, x^n) = p^a\partial_a$. Then we get the expression stated in the lemma.

Proof of Proposition 3. We consider the subspaces of \mathfrak{k} given by the vector fields as (5.5) with the following additional conditions:

$$\begin{split} & \mathfrak{g} = \{ Z \in \mathfrak{k} : k = 0, \ B = 0, \ p = 0 \}, \\ & \mathfrak{h} = \{ Z \in \mathfrak{g} : a = l = 0, \ q(0) = 0 \}, \\ & \mathfrak{m} = \{ Z \in \mathfrak{g} : q(0) + q'(0) = 0 \}. \end{split}$$

Thus a vector $G \in \mathfrak{g}$ is given as $G = (-h(q', \mathbf{x}) + ae^{-v})\partial_u + l\partial_v + q$, where $a, l \in \mathbf{R}$ and $q = q^a(v)\partial_a$ satisfies $q'' = -q' + h^{-1} \cdot b \cdot q$.

Let $\varkappa:\mathbf{R}\times\mathbf{R}\times\mathbf{R}^n\times\mathbf{R}^n\to\mathfrak{g}$ be the map given by

$$\varkappa(a,l,x,y) = (-h(q',\mathbf{x}) + (1/2)ae^{-v})\partial_u + l\partial_v + q,$$

where $q : \mathbf{R} \to \mathbf{R}^n$ is the solution of the differential equation $q'' = -q' + K \cdot q$, q(0) = x, q'(0) = y, where we have put $K := h^{-1} \cdot b$. After calculation, we have

(5.15)

$$\begin{split} [\varkappa(a_1,l_1,x_1,y_1),\,\varkappa(a_2,l_2,x_2,y_2)] \\ &=\varkappa \Big(a_1l_2-a_2l_1+2(h(y_1,x_2)-h(y_2,x_1)),\,0,\,l_1y_2-l_2y_1,\\ &\quad l_1y_2+l_2y_1+K(l_1x_2-l_2x_1)\Big). \end{split}$$

In the course of the computation one encounters the expression

$$\left(h(q_1',q_2)-h(q_2',q_1)\right)\partial_u$$

But we have

$$\frac{d}{dv} \left(h(q_1', q_2) - h(q_2', q_1) \right) = h(-q_1' + h^{-1} \cdot b \cdot q_1, q_2) - h(-q_2' + h^{-1} \cdot b \cdot q_2, q_1) = -h(q_1', q_2) + h(q_2', q_1) + b(q_1, q_2) - b(q_2, q_1) = -h(q_1', q_2) + h(q_2', q_1).$$

Hence $(h(q'_1, q_2) - h(q'_2, q_1))\partial_u = (h(y_1, x_2) - h(y_2, x_1))e^{-v}\partial_u$.

From (5.15), we easily see that \mathfrak{g} and \mathfrak{h} are subalgebras of \mathfrak{k} , that $\mathfrak{h} = \varkappa(0,0,0,\mathbf{R}^n)$ is abelian and that $[\mathfrak{h},\mathfrak{m}] \subset \mathfrak{m}$ so that the decomposition $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ is reductive. Also, $\mathfrak{g}^{(3)} = 0$, whence \mathfrak{g} is solvable.

We endow \mathfrak{m} with the inner product \langle , \rangle given by g at the origin of \mathbf{R}^{n+2} . Thus, if $Y = \varkappa(a, l, x, -x) \in \mathfrak{m}$, we have

(5.16)
$$\langle Y, Y \rangle = al + h(x, x).$$

Then

$$\langle [\varkappa(0,0,0,y),Y],Y \rangle = \langle \varkappa(2h(y,x),0,-y,y),Y \rangle$$

= $lh(y,x) - lh(y,x) = 0.$

Therefore, \langle , \rangle is ad \mathfrak{h} -invariant.

For describing ${\mathfrak g}$ as a matrix subalgebra, we need some notation. First we put

$$J := \begin{pmatrix} 0 & I \\ K & -I \end{pmatrix}, \qquad J_t := \exp(tJ),$$

where I is the identity in \mathbf{R}^n . Now if $s = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbf{R}^n \times \mathbf{R}^n$, we shall write $\tau(s) = (y \cdot h, -x \cdot h)$. Evidently, $J_{t_1} \cdot J_{t_2} = J_{t_1+t_2}$. From the easily verified fact that $h \cdot K = K \cdot h$, it can be directly proved that

(5.17)
$$\tau(s) \cdot J = -\tau(J \cdot s + s).$$

Now we consider the subspace of $(2n+2) \times (2n+2)$ matrices of the form

$$M(a, l, x, y) = \begin{pmatrix} -l & \tau(s) & a \\ 0 & lJ & s \\ 0 & 0 & 0 \end{pmatrix},$$

where $s = \begin{pmatrix} x \\ y \end{pmatrix}$. Then it can be shown at once with the aid of (5.17) that the map

$$\varkappa(a,l,x,y)\longmapsto M(a,l,x,y)$$

is a Lie algebra isomorphism. Accordingly, we shall identify $\mathfrak g$ with this matrix Lie algebra and $\mathfrak m$ with the subspace

$$\{M(a,l,x,-x):(a,l,x)\in \mathbf{R}\times\mathbf{R}\times\mathbf{R}^n\}.$$

We consider the subset \mathcal{G} of $(2n+2) \times (2n+2)$ real matrices of the following form

$$N(a,t,s) = \begin{pmatrix} e^{-t} & \tau(s) \cdot J_t & a \\ 0 & J_t & s \\ 0 & 0 & 1 \end{pmatrix}.$$

We have

$$\begin{split} N(a_1,t_1,s_1) \cdot N(a_2,t_2,s_2) \\ = & \begin{pmatrix} e^{-(t_1+t_2)} & e^{-t_1}\tau(s_2) \cdot J_{t_2} + \tau(s_1) \cdot J_{t_1+t_2} & a_2e^{-t_1} + \tau(s_1) \cdot J_{t_1} \cdot s_2 + a_1 \\ 0 & J_{t_1+t_2} & J_{t_1} \cdot s_2 + s_1 \\ 0 & 0 & 1 \end{pmatrix}. \end{split}$$

Now

$$\tau(J_{t_1} \cdot s_2 + s_1) \cdot J_{t_1 + t_2} - e^{-t_1} \tau(s_2) \cdot J_{t_2} - \tau(s_1) \cdot J_{t_1 + t_2} = (\tau(J_{t_1} \cdot s_2) \cdot J_{t_1} - e^{-t_1} \tau(s_2)) \cdot J_{t_2}.$$

Hence \mathcal{G} is a group if and only if for every $t \in \mathbf{R}$ and $s \in \mathbf{R}^{2n}$ we have $\tau(J_t \cdot s) \cdot J_t = e^{-t}\tau(s)$. But with the aid of (5.17) we get

$$\frac{d}{dt}\left(\tau(J_t \cdot s) \cdot J_t\right) = \tau(J \cdot J_t \cdot s) \cdot J_t + \tau(J_t \cdot s) \cdot J \cdot J_t = -\tau(J_t \cdot s) \cdot J_t.$$

Therefore, the condition holds and \mathcal{G} is a Lie group whose Lie algebra is \mathfrak{g} . It is clear that \mathcal{G} is diffeomorphic to \mathbb{R}^{2n+2} . Also, let \mathcal{H} be the subgroup of \mathcal{G} given by the matrices

$$N\left(0,0,\begin{pmatrix}0\\z\end{pmatrix}\right),$$

whose Lie algebra is \mathfrak{h} . Then $\mathcal{H} \cong (\mathbf{R}^n, +)$. Since

$$N\left(0,0,\begin{pmatrix}0\\z\end{pmatrix}\right)\cdot N\left(a,t,\begin{pmatrix}x\\y\end{pmatrix}\right) = N\left(a+h(x,z),t,\begin{pmatrix}x\\y+z\end{pmatrix}\right),$$

the orbits for the left action of \mathcal{H} on \mathcal{G} can be parametrized by the elements $N(a, t, \begin{pmatrix} x \\ -x \end{pmatrix})$. Since $\mathcal{G} \setminus \mathcal{H}$ is diffeomorphic to \mathcal{G}/\mathcal{H} , we see that \mathcal{G}/\mathcal{H} is diffeomorphic to \mathbb{R}^{n+2} . Finally it can be proved at once that the metric (5.16) for \mathfrak{m} is Ad (\mathcal{H})-invariant. \Box

Remark. We have dropped a direct summand from $\mathfrak k$ consisting of vector fields of the form

$$X = (p(\mathbf{x}) - k)e^{v}u\partial_{u} + (k - h(p, \mathbf{x}))e^{v}\partial_{v} + B \cdot \mathbf{x} + ue^{v}p,$$

with the conditions stated in Proposition 4. Thus, in general, \mathcal{G} is not the whole group of isometries of (\mathbf{R}^{n+2}, h, b) .

REFERENCES

1. W. Ambrose and I.M. Singer, On homogeneous Riemannian manifolds, Duke Math. J. 25 (1958), 647–669.

2. E. Abbena and S. Garbiero, *Almost Hermitian homogeneous structures*, Proc. Edinburgh Math. Soc. (2) **31** (1988), 375–395.

3. P.M. Gadea, A. Montesinos Amilibia and J. Muñoz Masqué, *Characterizing the complex hyperbolic space by Kähler homogeneous structures*, Math. Proc. Cambridge Philos. Soc., to appear.

4. P.M. Gadea and J.A. Oubiña, Homogeneous pseudo-Riemannian structures and homogeneous almost para-Hermitian structures, Houston J. Math. **18** (1993), 449–465.

5. ———, *Homogeneous almost para-Hermitian structures*, Indian J. Pure Appl. Math. **26** (1995), 351–362.

6. ——, Reductive homogeneous pseudo-Riemannian manifolds, Monatsh. Math. **124** (1997), 17–34.

7. C.W. Misner, K.S. Thorne and J.A. Wheeler, *Gravitation*, W.H. Freeman and Company, New York 1973.

8. F. Tricerri and L. Vanhecke, *Homogeneous structures on Reimannian manifolds*, London Math. Soc. Lecture Note Ser. 83, Cambridge Univ. Press, Cambridge, 1983.

DEPARTAMENTO DE GEOMETRÍA Y TOPOLOGÍA, UNIVERSIDAD DE VALENCIA, 46100 BURJASOT (VALENCIA), SPAIN *E-mail address:* montesinos@iec.csic.es