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REAL GENUS ACTIONS OF FINITE SIMPLE GROUPS

COY L. MAY

ABSTRACT. A finite group G can be represented as a
group of dianalytic automorphisms of a compact bordered
Klein surface, that is, G acts effectively on a bordered surface.
The real genus ρ (G) is the minimum algebraic genus of any
bordered surface on which G acts. A real genus action of G
is an action of G on a bordered surface of (algebraic) genus
ρ (G). In this paper we consider real genus actions of finite
simple groups. Let G be a finite simple group, and let X be
a bordered surface of least genus on which G acts. We show
that if G is (2, s, t)-generated, then G is normal in Aut (X),
[AutX : G] divides 4, and AutX embeds faithfully in AutG.
We also consider the real genus actions of each projective
special linear group PSL (2, q).

1. Introduction. In connection with group actions on bordered sur-
faces, there is a natural parameter associated with each finite group.
A finite group G can be represented as a group of dianalytic automor-
phisms of a compact bordered Klein surface, that is, G acts effectively
on a bordered surface. The real genus ρ (G) [12] is the minimum al-
gebraic genus of any bordered surface on which G acts. A real genus
action of G is an action of G on a bordered surface of (algebraic) genus
ρ (G).

There is now a considerable body of work on the real genus parameter,
and genus formulas have been obtained for several classes of groups [12],
[14], [15], [16], [17], [18]. Almost all of this work has concentrated on
solvable groups. Most notably, McCullough calculated the real genus
of each finite abelian group [18].

Here we consider actions of finite simple groups on bordered surfaces;
in this paper simple always means nonabelian simple. We are partic-
ularly interested in the real genus actions of these groups. Our main
result is the following.
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Theorem 1. Let G be a finite simple group, and let X be a bordered
surface of least genus on which G acts. If G is (2, s, t)-generated, then

1) G is normal in AutX,

2) [AutX : G] divides 4, and

3) AutX embeds faithfully in AutG.

The requirement that G be (2, s, t)-generated is not at all restrictive.
There is a long-standing conjecture that every finite simple group can
be (2, s, t)-generated.

We also consider the real genus actions of each projective special
linear group PSL (2, q). Singerman [21] has shown that most of these
groups are M∗-groups. An M∗-group is a group G that acts on a
bordered surface of genus g ≥ 2 such that the order of G is 12(g − 1),
the largest possible. The real genus is then determined for an M∗-
group by its order. The projective special linear groups that are not
M∗-groups are PSL (2, 7), PSL (2, 9) ∼= A6, PSL (2, 11), and the infinite
family PSL (2, 3n) with n odd, n ≥ 3. We find the real genus of each
of these exceptional groups.

Symmetric genus actions of finite simple groups on Riemann surfaces
were considered by Woldar in [22]. Woldar’s results provided the
motivation for our work here.

2. Preliminaries. We shall assume that all surfaces are compact.
A bordered surface X can carry a dianalytic structure [1, p. 46] and be
considered a Klein surface or a nonsingular real algebraic curve. Thus
the surface X has an algebraic genus g. The algebraic genus appears
naturally in bounds for the order of the automorphism group of a Klein
surface, and the real genus of a group is defined in terms of the algebraic
genus.

We use the standard representation of a group G as a quotient of a
non-Euclidean crystallographic (NEC) group Γ by a bordered surface
group K; then G acts on the Klein surface U/K, where U is the open
upper half-plane. A summary of this approach is in [12, Section 2].
Also see the monograph [2], which is an excellent general reference for
the work on Klein surfaces.

There is an upper bound for the real genus of a finite group in terms
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of the orders of the elements in a generating set [12, p. 712]. This
bound will be helpful here.

Theorem A [12]. Let G be a finite group with generators z1, . . . , zc,
where o(zi) = mi. Then

ρ (G) ≤ 1 + o(G)
[
c− 1−

c∑
i=1

1
mi

]
.

A group G is called an (r, s, t)-group in case G is generated by three
distinct elements A, B, C with partial presentation

Ar = Bs = Ct = ABC = 1,

where t ≥ s ≥ r ≥ 2. An (r, s, t)-group is clearly a two-generator group.
We shall be particularly interested in the case r = 2.

Corollary 1. Let G be a finite (2, s, t)-group. Then

ρ (G) ≤ 1 + o(G)
[
1
2
− 1
s

]
.

Lots of interesting groups are (2, s, t)-groups. Among the simple
groups, the alternating groups [3], the sporadic groups, and certain two-
dimensional projective linear groups [8] are generated by an involution
and one additional element. Of course, many other groups have this
property as well.

3. Large groups. Especially important in the study of automor-
phisms of bordered Klein surfaces are the quadrilateral groups. An
extended quadrilateral group is an NEC group with signature

(0; +; [ ]; {(l,m, n, t)},

where
1/l + 1/m+ 1/n+ 1/t < 2.
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We denote a group with this signature Γ [l,m, n, t].

Let the finite groupG act on the bordered Klein surfaceX of algebraic
genus g ≥ 2. Then the order of G is at most 12(g − 1) [9]. If
the order of G is the largest possible, then G is called an M∗-group
[10]; in this case, G = AutX of course. This general upper bound
was established by considering all possible ramification indices of the
covering π : X → X/G and applying the Riemann-Hurwitz formula.
An examination of [9, Section 3] shows that o(G) ≤ 6(g − 1) in all but
three cases. For more details, see [13, Section 3].

Proposition 1. Let the finite group G act on the bordered Klein
surface X of algebraic genus g ≥ 2. If o(G) > 6(g − 1), then o(G)
is one of the following; in each case G is a quotient of the extended
quadrilateral group by a bordered surface group.

1) o(G) = 12(g − 1) Γ [2, 2, 2, 3]

2) o(G) = 8(g − 1) Γ [2, 2, 2, 4]

3) o(G) = 20(g − 1)/3 Γ [2, 2, 2, 5]

In particular, an M∗-group is a quotient of Γ [2, 2, 2, 3], and a large
group of automorphisms of a bordered Klein surface must be a quotient
of one of these three quadrilateral groups.

Corollary. Let G be a finite group with ρ (G) ≥ 2. If G is not a
quotient of one of the three quadrilateral groups Γ [2, 2, 2, 3], Γ [2, 2, 2, 4],
and Γ [2, 2, 2, 5] by a bordered surface group, then

ρ (G) ≥ 1 + o(G)/6.

Proof. Let G act on a bordered surface of genus ρ = ρ (G). Then by
Proposition 1, o(G) ≤ 6(ρ− 1).

If ρ (G) ≥ 2, then we always have ρ (G) ≥ 1 + o(G)/12 [12, Section
4].

Since an extended quadrilateral group is generated by reflections,
Proposition 1 also guarantees that in a large automorphism group, a
normal subgroup has even index.
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Proposition 2. Let the finite group G be a quotient of an extended
quadrilateral group. If N is a proper normal subgroup of G, then the
index of N in G is even.

Proof. The group G and its quotient G/N are generated by involu-
tions.

Large groups of automorphisms also must have a certain type of
partial presentation [13, Section 3]; also see [2, Section 4.1].

Proposition 3 [13]. Let G be a finite group and Γ = Γ [2, 2, 2, n]
an extended quadrilateral group. If G is a quotient of Γ by a bordered
surface group, then G is generated by three distinct nontrivial elements
T, U, V satisfying the relations

(3.1) T 2 = U2 = V 2 = (TU)2 = (TV )n = 1.

One consequence of Proposition 3 is that large automorphism groups
must be quotients of groups in an infinite family that has been studied
quite extensively. Let Gn,q,r [4] be the group with generators A, B and
C and defining relations

An = Bq = Cr = (AB)2 = (BC)2 = (CA)2 = (ABC)2 = 1.

If we set T = BC, U = CA, and V = BCA, then we obtain the
presentation

T 2 = U2 = V 2 = (TU)2 = (TV )n = (UV )q = (TUV )r = 1.

Thus G is a quotient of Γ [2, 2, 2, n] by a bordered surface group if and
only if G is a quotient of the group Gn,q,r for some q and r. This can
be useful if there are enough limitations on n, q and r. The complete
table of the known finite groups Gn,q,r is in [5, pp. 139, 140].

4. Simple groups. Let G be a finite simple (nonabelian) group.
Then the real genus of G is not too small. The groups with real genus
ρ ≤ 5 have been classified [12], [13], [16], and no simple group appears
in the lists. Also, the smallest simple groups have been considered. The
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smallest, A5, is an M∗-group with real genus 6 [10, p. 9]. The next
two simple groups, PSL (2, 7) and A6, are not M∗-groups [11, p. 384].
Other small simple groups are considered in [7, p. 277]; also see [21].

Now we consider the real genus action of a simple group G. Let X be
a surface of least real genus ρ = ρ (G) on which G acts. We know ρ ≥ 6,
and the standard representation X = U/K applies. First we show that
if the simple group is a relatively large group of automorphisms of X,
then it must be normal in AutX.

Proposition 4. Let G be a finite simple group with real genus
action on the bordered Klein surface X of genus g = ρ (G) ≥ 6. If
o(G) > 2(g − 1), then G is normal in AutX and, further, the index
[AutX : G] divides 4.

Proof. Write H = AutX. Then G ⊂ H, and we always have
ρ (G) ≤ ρ (H). But ρ (H) ≤ g, the genus of X. Thus ρ (G) = ρ (H).

The basic upper bound for the size of an automorphism group gives
o(H) ≤ 12(g−1) or g ≥ 1+o(H)/12. But by hypothesis g < 1+o(G)/2.
It follows that 6 > o(H)/o(G) = [H : G]. Therefore 5 ≥ [H : G].

There is a representation θ : H → S5, where N = kernel θ⊂G [19,
p. 48]. Since G is simple, we must have either N = 1 or N = G. If
N = G, then G is normal in H, of course. Suppose N = 1. Then H
is isomorphic to a subgroup of S5 and H contains the simple group G.
The only possibility is G ∼= A5, an M∗-group with ρ = 6; then further
H = G. Thus the simple group G is normal in H = AutX in any case.

We still need to show that the index [H : G] cannot be 3 or 5. Assume
[H : G] ≥ 3. By hypothesis o(G) > 2(g−1). Then o(H) > 6(g−1) and
H is a quotient of an extended quadrilateral group by Proposition 1.
Hence, by Proposition 2 the index [H : G] = 4 in this case. Thus the
only possibilities for [H : G] are 1, 2 and 4.

Next we consider extensions of real genus actions. Let the finite
group G act on the bordered surface X. We say that the finite group
H extends the action of G on X if G is a subgroup of H and H acts
on X such that the action G inherits as a subgroup of H is consistent
with the original action of G on X.

Under certain conditions a real genus action cannot be properly
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extended.

Proposition 5. Let G be a finite group with real genus action on
the bordered Klein surface X of genus g = ρ (G) ≥ 2. Suppose there is
a group H that extends the action of G on X. If G is a quotient group
of H, then G = H.

Proof. Since H extends the action of G on X, we have G ⊂ H ⊂
AutX, and it follows that ρ (H) = ρ (G). Also, by hypothesis, there is
a normal subgroup N of H such that H/N ∼= G.

Let N act on X and set X ′ = X/N . Let g′ be the genus of X ′ and
let φ : X → X ′ be the quotient map. Since X ′ is a quotient space of
X, we have g′ ≤ g. But H/N ∼= G acts on X ′, so that g′ ≥ ρ (G) = g.
Thus g′ = g. Applying the Riemann-Hurwitz formula for coverings of
bordered surfaces [9, p. 201] to φ yields

(2g − 2)/o(N) = 2g − 2 +
∑ (

1 − 1
ei

)
ni,

where the ei’s are the ramification indices and each ni is 1 or 2
depending upon whether the ramification is above a boundary or an
interior point of X ′. Since g ≥ 2, 2g− 2 is positive and it is easy to see
that the only possibility is o(N) = 1. Hence H = G.

Proposition 6. Let G be a finite simple group with real genus action
on the bordered Klein surface X of genus g ≥ 2. Suppose G is normal
in a group H that extends the action of G on X. Then CH(G) = 1. In
particular, if G is normal in AutX, then AutX embeds faithfully in
AutG.

Proof. Assume there were a non-identity element x in CH(G). Since
G is simple, Z(G) = 1 and x /∈ G. But now G × 〈x〉 is a subgroup of
H that extends the action of G on X. Since G is obviously a quotient
of G× 〈x〉, this contradicts Proposition 5. Hence, CH(G) = 1.

Now let H = AutX, and assume that G is normal in H so that
NH(G) = H. But NH(G)/CH(G) is isomorphic to a subgroup of AutG
[20, p. 50]. Thus H embeds faithfully in AutG.



546 C.L. MAY

5. The main result. It is now easy to establish Theorem 1. Let G
be a finite simple group with real genus action on the bordered Klein
surface X of genus g = ρ (G). We know g ≥ 6. Assume G is (2, s, t)-
generated. Then by the corollary to Theorem A, 2(g−1) < o(G). Now
by Proposition 4, G is normal in AutX and the index [AutX : G]
divides 4. Finally AutX embeds faithfully in AutG by Proposition 6.
This completes the proof of Theorem 1.

The simple group A5 is an M∗-group that acts on a real projective
plane W with 6 holes, a nonorientable Klein surface with genus 6 [10,
p. 9]. Here A5 is the full group, that is, A5 = AutW .

The group PGL (2, 7) is an M∗-group with ρ = 29 that acts on
two different topological types of surfaces, one orientable and one
nonorientable [11, p. 385]. Let PGL (2, 7) act on the bordered surface
X of genus 29. Then the simple group G = PSL (2, 7) also acts on X
and, as we shall see, ρ (G) = 29. Here [AutX : G] = 2. Note that
Aut (G) = PGL (2, 7).

We do not know an example of a real genus action of a simple
(nonabelian) group G on a surface X for which [AutX : G] = 4. If
this does occur, then we must have o(G) = 3[ρ (G) − 1] and AutX is
an M∗-group. Further G must be a simple group with [AutG : G] ≥ 4;
this of course restricts the possibilities for G.

A real genus action for which [AutX : G] = 4 can occur. For example,
D3 × D3 and its normal subgroup Z3 × Z3 both have real genus four
[13, Section 5].

6. PSL Groups. Among the best known simple groups are the
projective special linear groups. The group PSL (2, q) is simple in case
q > 3 [19, p. 163]. Singerman [21] has shown that most of these groups
are M∗-groups.

Theorem C [21]. Let q be a prime power other than 2, 7, 11 or 3n,
where n = 2 or n is odd. Then PSL (2, q) is an M∗-group and

ρ (PSL (2, q)) = 1 + (q + 1)(q2 − q)/12d,

where d = (2, q − 1).

The simple groups in this family that are not M∗-groups are



REAL GENUS ACTIONS OF FINITE SIMPLE GROUPS 547

PSL (2, 7), PSL (2, 9) ∼= A6, PSL (2, 11) and PSL (2, 3n) with n odd,
n ≥ 3. We find the real genus of each of these groups. The basic prop-
erties of the projective special linear groups are in [6, Section 15.1].

The group G = PSL (2, 7) is the simple group of order 168; we know
G is not an M∗-group. The group G has elements of order 2, 3, 4,
and 7. Since G has no element of order 5, G cannot be a quotient
of the extended quadrilateral group Γ [2, 2, 2, 5] with kernel a bordered
surface group. Suppose G were a quotient of Γ [2, 2, 2, 4] by a bordered
surface group K. Then G would be a quotient of G4,q,r for some q and
r, where we may take q ≤ r and q and r must be orders of elements
of G. All these groups are finite and too small except G4,7,7; see [5, p.
139] and [4, p. 121]. The group G4,7,7 is infinite, but if G had partial
presentation

T 2 = U2 = V 2 = (TU)2 = (TV )4 = (UV )7 = (TUV )7 = 1,

then 〈U, V 〉 would be a dihedral group of order 14, since the surface
group K contains no analytic elements of finite order. But G has no
subgroup of order 14 at all, and hence G is not a quotient of G4,7,7.
Now G is not a quotient of Γ [2, 2, 2, 4] by a surface group. By the
corollary to Proposition 1, ρ (G) ≥ 1 + o(G)/6 = 29. Since there is an
action of G on a surface of genus 29 [11, p. 385],

ρ (PSL (2, 7)) = 29.

The group G = PSL (2, 11) is the simple group of order 660; G is
not an M∗-group [21, p. 149]. Because G has no element of order
4, G is not a quotient of Γ [2, 2, 2, 4] by a bordered surface group.
However, G ∼= G5,5,5 [5, p. 139]. Thus G is a quotient of Γ [2, 2, 2, 5],
and 660 = 20[ρ (G)− 1]/3. Hence

ρ (PSL (2, 11)) = 100.

The group PSL (2, 9) ∼= A6 is the simple group of order 360; A6 is not
an M∗-group either. The group A6 has no element with order larger
than 5, and it is easy to see that A6 is not a quotient of Gn,q,r, where
n is 4 or 5 and q and r are orders of elements in A6. Consequently, A6

is not a quotient of Γ [2, 2, 2, n] by a surface group. By the Corollary
to Proposition 1, ρ (G) ≥ 1 + o(G)/6 = 61.
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One presentation of A6 is the following [5, p. 137]

L2 = M2 = N2 = (LM)3 = (MN)3 = (LN)4 = (LMN)5 = 1.

Let Γ = Γ [2, 2, 3, 3]. The quadrilateral group Γ is generated by four
reflections t, u, v, w with defining relations

t2 = u2 = v2 = w2 = (tu)2 = (uv)2 = (vw)3 = (tw)3 = 1.

There is a homomorphism φ : Γ → A6 onto A6 defined by

φ(t) = N, φ(u) = 1, φ(v) = L, φ(w) = M,

and kernel φ is a bordered surface group. Then µ(Γ)/2π = 1/6, and
A6 acts on a surface genus g = 1 + 360/6 = 61 [12, Section 2]. Thus

ρ (PSL (2, 9)) = 61.

Finally we consider the infinite family PSL (2, 3n) with n odd, n ≥ 3.
These groups are not M∗-groups [21, p. 149].

Theorem 2. Let q = 3n, where n is odd and n ≥ 3, G = PSL (2, q)
and ρ = ρ (G). Then o(G) = 6(ρ− 1) and

ρ (PSL (2, q)) = 1 + (q + 1)(q2 − q)/12.

Proof. The group G is generated by two elements, one of order 2 and
one of order 3 [8, p. 29]. Thus, by Theorem A, ρ (G) ≤ 1 + o(G)/6.

The order o(G) = 3n(32n − 1)/2 [19, p. 163]. Then, since n is odd,
32n ≡ 4 mod 5 and 32n − 1 ≡ 3 mod 5. Hence 5 does not divide o(G).
Since G has no element of order 5, G cannot be a quotient of the
extended quadrilateral group Γ = Γ [2, 2, 2, 5] with kernel a bordered
surface group.

The Sylow 2-subgroup of G is dihedral and has order 4 [6, p. 418].
Thus G has no element of order 4, and G cannot be a quotient
of Γ [2, 2, 2, 4] by a surface group either. Now by the corollary to
Proposition 1, ρ (G) ≥ 1 + o(G)/6.
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7. Open problems. There are many unsolved problems about real
genus actions of simple groups. Perhaps the most interesting question
in connection with Theorem 1 is whether or not [AutX : G] = 4 can
occur. It would also be interesting to see a proof of the theorem that
omits the (2, s, t)-generation requirement from the hypothesis.

Conder [3] obtained a partial presentation for the alternating group
An that shows that this simple group is an M∗-group for all n > 167.
Consequently, for each n > 167, ρ (An) = 1 + n!/24.

Problem 1. Determine ρ (An) for n ≤ 167.

Other families of simple groups could be considered, as well. A family
with some of the smaller groups is PSL (3, q).

Problem 2. Determine ρ (PSL (3, q)) for each prime power q.

Of course, there is a problem of this type for each family of finite
simple groups.

Problem 3. Let G be a sporadic simple group. Find ρ (G).

In addition, there is the following general problem.

Problem 4. Determine which simple groups are M∗-groups.

This is equivalent to determining which simple groups are quotients
of the extended modular group; see [7, p. 277] and [21, p. 150].

Finally, another related, more general problem is to find the simple
groups that act as full automorphism groups.

Problem 5. Classify all simple groups G for which AutX = G,
where X is a bordered surface of genus ρ (G) on which G acts.

If G is an M∗-group, then G is such a group, of course, but there are
others.
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