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THE WORPITZKY-PRINGSHEIM THEOREM
ON CONTINUED FRACTIONS

A.F. BEARDON

ABSTRACT. We compare the classical convergence theo-
rems of Worpitzky and Pringsheim in the theory of continued
fractions. We give an extension of Worpitzky’s theorem, and
we also discuss inequalities concerning the limit point-limit
circle dichotomy.

1. Introduction. Given complex numbers an and bn, n = 1, 2, . . . ,
where an �= 0 for every n, the continued fraction

(1.1) K(an | bn) =
a1

b1 +
a2

b2 +
a3

b3 + · · ·

converges to the value k if Tn(0) → k as n → ∞, where

(1.2) tn(z) = an/(z + bn), Tn = t1 ◦ t2 ◦ · · · ◦ tn.

Throughout this paper tn and Tn will be defined by (1.2).

In 1865 Worpitzky proved that if |an| ≤ 1/4 for all n, then K(an | 1)
converges, and after rescaling the complex plane by a factor 2 we can
express this as follows.

Worpitzky’s theorem. If |an| ≤ 1 for all n, then K(an | 2)
converges.

Worpitzky’s theorem was later generalized by Pringsheim who, in
1889, proved the following result, see [4, pp. 92 94], [5, pp. 30 35], [6,
p. 58] and [8, p. 42].
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Pringsheim’s theorem. If |bn| ≥ 1+ |an| for all n, then K(an | bn)
converges.

Even though these results are classical, there is still much that can be
said about them, and here we explore the difference between them in
terms of the geometry of Möbius maps. From now on, we shall assume
that for all n,

(1.3) |bn| ≥ 1 + |an|;
this is Pringsheim’s hypothesis and it is equivalent to the geometric
assumption that, for all n, tn(D) ⊂ D where D is the open unit disk
in C and D is its closure. It follows that all of the continued fractions
in this paper are convergent and satisfy

(1.4) Tn(D) ⊂ Tn−1(D) ⊂ · · · ⊂ T1(D) ⊂ D.

Now let rn denote the radius of the disk Tn(D); then r1 ≥ r2 ≥ · · · ≥
rn → r̃ for some r̃ with 0 ≤ r̃ ≤ 1. The continued fraction (1.1) is said
to be of the limit point type when r̃ = 0, and of the limit circle type
when r̃ > 0.

Later we shall make the alternative assumption that, for all n,

(1.5) |bn| ≥ 1 +
√
|an|,

and also the stronger assumption that, for all n,

(1.6) |bn| ≥ 1 + max{|an|,
√
|an|},

which is just the amalgamation of (1.3) and (1.5). Of course, the
relationships between (1.3), (1.5) and (1.6) depend on whether |an| ≤ 1
or |an| ≥ 1, so these inequalities will also appear as assumptions from
time to time.

The ideas in this paper are based on the geometry of the isometric
circle of a Möbius map, and we shall see that this geometry brings
the difference between Pringsheim’s theorem and Worpitzky’s theorem
into sharp focus. First, we define the isometric circle of a Möbius map.
Suppose that

g(z) =
az + b

cz + d
, c �= 0, ad − bc = 1;
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then the isometric circle Cg of g is defined by

Cg = {z : |g′(z)| = 1} = {z : |cz + d| = 1},

(see, for example, [3, p. 25] for more details). Of course, Cg is precisely
the set of points where g acts (infinitesimally) as an Euclidean isometry
and this is the reason for this terminology. Note that |g′(z)| > 1 inside
Cg and that |g′(z)| < 1 outside Cg so the location of Cg determines
where g acts as a (local) contraction or expansion. To be more explicit,
g acts as an inversion in Cg followed by an Euclidean isometry, so that
if we denote inversion in Cg by Ig then, for any disk ∆,

radius [g(∆)] = radius [Ig(∆)].

This is usually the easiest way to compute the radius of g(∆). Another
important geometric fact is that g maps the exterior of Cg onto the
interior of Cg−1 ; thus, if Cg and Cg−1 are exterior to each other, then g
maps the interior of Cg−1 into itself and is a local contraction at each
point interior to this circle. We shall now see what these facts imply in
the context of the Worpitzky and Pringsheim’s theorems.

As

sup
z∈D

|t′n(z)| = sup
z∈D

|an|
|bn + z|2 =

|an|
(|bn| − 1)2

,

the significance of (1.5) is that it holds if and only if |t′n(z)| ≤ 1
throughout D or, equivalently, if and only if the isometric circle of
tn does not meet D. Thus, if (1.5) holds for all n, then every tn
is contracting at every point of D, and this is a powerful condition.
However, (1.5) by itself does not imply that tn maps D into itself, and
this is the reason for introducing (1.6).

Suppose now that we have Pringsheim’s assumption (1.3). As the
isometric circles of tn and t−1

n are |z + bn| =
√|an| and |z| = √|an|,

respectively, and as

|bn| ≥ 1 + |an| ≥ 2
√
|an|,

these two isometric circles are exterior (or externally tangent) to each
other. Now the isometric circle of tn is |z + bn| =

√|an|, and the
center −bn of this lies outside D. However, this isometric circle will be
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disjoint from D if and only if (1.5) holds, and this is not guaranteed
by (1.3) unless |an| ≥ 1. If we now assume that (1.6) holds, then we
have the stronger statement that the isometric circle of tn is exterior
(or externally tangent) to both the isometric circle of t−1

n and ∂D.

In conclusion, both Worpitzky’s hypothesis and Pringsheim’s hypoth-
esis guarantee that the isometric circles of tn and t−1

n are exterior to
each other. In Worpitzky’s theorem the isometric circle of tn is exte-
rior to the unit circle ∂D, whereas in Pringsheim’s theorem these two
circles may intersect. As each tn is locally an expansion at any point
inside its isometric circle and a contraction at any point outside its iso-
metric circle, one may reasonably suppose that it is this difference that
accounts for the known fact that rn → 0 in Worpitzky’s theorem but
not necessarily in Pringsheim’s theorem. The additional assumption
|bn| ≥ 1 +

√|an| prevents the isometric circle of tn from intersecting
the unit circle ∂D, and this is the underlying reason why we will be able
to obtain a useful estimate of rn in this case. We shall now discuss the
results we are able to obtain by using these methods, and our aim is to
obtain estimates on the radii rn and so obtain necessary, or sufficient,
conditions for either the limit point or the limit circle case. Again we
emphasize that all of our results here will contain Pringsheim’s hypoth-
esis (1.3) so that convergence is not an issue.

It is well known that, under Worpitzky’s hypothesis (that is, when
0 < |an| ≤ 1 and bn = 2 for all n),

(1.7) rn ≤ 1
2n + 1

,

this inequality is best possible. We note in passing that the author [1]
has recently given a more delicate inequality in these circumstances,
namely, that

rn ≤ 1
((2/|a1|) + (2/|a1a2|) + · · ·+ (2/|a1 · · · an−1|) + (3/|a1 · · · an|))

≤ 1
2n + 1

.

Our first result lies somewhere between Worpitzky’s theorem and
Pringsheim’s theorem in the sense that it contains Worpitzky’s theorem
but has a stronger hypothesis than Pringsheim’s theorem.
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Theorem 1.1 Suppose that |an| ≤ 1 and |bn| ≥ 1 +
√|an| for all n.

Then rn ≤ 1/(2n + 1), and the continued fraction K(an | bn) is of the
limit point case.

The convergence here is a consequence of Pringsheim’s theorem, and
the real content of this result is the bound (1.7) in circumstances which
are more general than those covered by Worpitzky’s theorem. Further,
Theorem 1.1 is in some sense best possible for, if the numbers a and b
satisfy −1 < a < 0 and 1 + |a| = b, so that |a| < 1 and |b| < 1 +

√|a|,
and if the continued fraction K(an | bn) is defined by an = a and bb = b
for all n, then r̃ > 0 ([7, p. 121]) so that rn does not tend to 0.

To prove Theorem 1.1 we only have to show that rn ≤ 1/(2n + 1).
This, however, is a special case of the following result.

Theorem 1.2. Suppose that for all n, |bn| ≥ 1 + max{|an|,
√|an|}.

Then

(1.8) rn ≤ 1
1 + 2((1/

√|a1|) + · · ·+ (1/
√|an|))

.

Notice that this holds if |bn| ≥ 1 + |an| and |an| ≥ 1 for all n. If, in
addition,

∑
n |an|−1/2 diverges, then r̃ = 0 and the continued fraction

is in the limit point case.

We shall prove Theorem 1.2 in Section 2. In Section 3 we shall
comment on some other results that are concerned with the distinction
between the limit point and limit circle case.

2. The proof of Theorem 1.2. This section contains a lemma and
its proof followed by the proof of Theorem 1.2.

Lemma 2.1. Suppose that Σ and ∆ are disjoint open disks of radius
R and r, respectively, and let I denote inversion in ∂Σ. Then

radius [I(∆)] ≤ rR

R + 2r
.
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Proof. Let d be the distance between the centers of Σ and ∆. Then

radius [I(∆)] =
1
2

(
R2

d − r
− R2

d + r

)
=

R2r

d2 − r2
,

and the result follows as d ≥ r + R.

Proof of Theorem 1.2. We introduce the auxiliary Möbius mappings

hn(t) =
Rnt

2t + Rn
, Rn =

√
|an|.

Note that Rn is the radius of the isometric circle of tn and that each
hn(t) is an increasing function of t for t > 0. Now take any positive
integer n. The unit disk D lies outside the isometric circle of tn, so
its image tn(D) lies in D and has the same radius as the image of D
under inversion in the isometric circle of tn. We deduce that

radius [tn(D)] ≤ hn(1).

As tn(D) lies inside D, it is exterior to the isometric circle of tn−1 so,
as before, we find that

rn = radius [tn−1 ◦ tn(D)]
≤ hn−1(radius (tn(D))
≤ hn−1 ◦ hn(1),

and continuing in this way we find that

rn = radius [t1 ◦ · · · ◦ tn(D)] ≤ h1 ◦ · · · ◦ hn(1).

If we express the auxiliary mappings hn in terms of matrices we find
(by induction) that for n ≥ 2,

(
R1 0
2 R1

)
· · ·

(
Rn 0
2 Rn

)
=

(
R1 · · ·Rn 0

2Tn R1 · · ·Rn

)
,

where

Tn = R1 · · ·Rn

(
1

R1
+ · · ·+ 1

Rn

)
.
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It follows that
rn ≤ h1 ◦ · · · ◦ hn(1)

=
R1 · · ·Rn

2Tn + R1 · · ·Rn

=
1

1 + 2Wn
,

where

Wn =
1

R1
+ · · ·+ 1

Rn
=

1√|a1|
+ · · ·+ 1√|an|

,

and the proof of Theorem 1.2 is complete.

3. Further results. Because of (1.7), every continued fraction
satisfying Worpitzky’s criterion is of the limit point type, but, by
contrast, continued fractions satisfying Pringsheim’s criterion may be
of the limit circle type. The following results give sufficient conditions
for a continued fraction satisfying Pringsheim’s hypothesis to be of limit
point type. The first of these has the virtue of being in terms of the
transformations tn; the remaining results are given in terms of the Tn

and, although these occur in [7], we shall have something to say about
their proofs.

Theorem 3.1. Suppose that |bn| ≥ 1 + |an| for all n; then

rn ≤
n∏

k=1

|ak|
(|bk| − 1)2

.

In particular, if the corresponding infinite product diverges to zero, then
the continued fraction K(an | bn) is of the limit point type.

This is trivial, for if g(z) = a/(b + z) then

sup
z∈D

|g′(z)| = |a|
(|b| − 1)2

.

As tn(D) ⊂ D for all n, Theorem 3.1 follows immediately from the
Chain Rule for derivatives.
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Theorem 3.2 [7]. In any Pringsheim fraction, we have

(3.1) rn ≤ 1
|T−1

1 (∞) · · ·T−1
n−1(∞)|(1 + |T−1

n (∞)|) .

We know that |T−1
n (∞)| > 1 because Tn(D) ⊂ D. If we replace

1 + |T−1
n (∞)| in (3.1) by 2, we obtain the next corollary.

Corollary 3.3. For the continued fraction (1.1), where |bn| ≥
1 + |an|,

(3.2) 2r̃ ≤
( ∞∏

n=1

|T−1
n (∞)|

)−1

.

In particular, if r̃ > 0, then |T−1
n (∞)| → 1.

Finally we consider the tangency case; this is the situation in which
the disks Tn(D) are all tangent to each other and to the disk D at a
point ζ, say, on the unit circle. In this case we can actually give an
explicit expression for the value of r̃.

Theorem 3.4 [7]. Suppose that the Pringsheim continued fraction
(1.1) is the tangency case. Then equality holds in (3.1), and

(3.3) r̃ =
1

2
∏∞

k=1 |T−1
k (∞)| .

Theorems 3.2 and 3.4 occur in [7] (in equation (7.8) and an un-
numbered formula in the middle of page 121), although they are not
stated quite so explicitly there. On page 118 of [7], Thron states that
his proof of Pringsheim’s theorem is approximately the same length
as that in Perron’s text, but gives greater insight. This is certainly
true, but even the exposition in [7] can be made considerably shorter,
and geometrically more transparent, if we focus attention on the map-
pings tn and Tn rather than their coefficients. For example, the for-
mula (7.6) in [7], which follows from a complicated expression for tn,
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is nothing more than the formula Tn(∞) = Tn−1(0). Similarly, the
formula bn = 1/an + Gn−1an on page 120 of [7] (which should read
bn = 1/an − Gn−1an) is derived from an expression for tn(z) that
takes up no less than eight lines of text but is nothing more than
tnT−1

n (∞) = T−1
n−1(∞). Other simplifications along these lines are pos-

sible, but rather than discuss these we prefer to give brief commentary
on similar, but more geometric, proofs of these results. In these we
prefer not to use various intermediate variables (as is done in [7]) for
these tend to conceal the underlying geometry. For an entirely geomet-
ric treatment (and proof) of Pringsheim’s theorem, see [2]; for more
details on Worpitzky’s theorem, see [1].

Proof of Theorem 3.2. The proof of Theorem 3.2 is based on the two
equations

(3.4) |Tn(∞)− cn| = rn|T−1
n (∞)|, |Tn(0)− cn| = rn

|T−1
n (∞)| ,

where cn is the center, and rn the radius, of Tn(∂D). These formulae
are easily derived (by algebra) from Thron’s proof, but they have a
geometric origin which we shall now describe. As inverse points are
preserved under Möbius maps, T−1

n (c) and T−1
n (∞) are inverse points

with respect to ∂D. Let z be the point on ∂D that lies between T−1
n (c)

and T−1
n (∞); thus, we can write

T−1
n (∞) = µn, z = µn/|µn|, T−1

n (c) = µn/|µn|2.
The invariance of cross-ratios under Möbius maps now gives

[µn, µn/|µn|2,∞, µn/|µn|] = [T−1
n (∞), T−1

n (c),∞, z]
= [∞, c, Tn(∞), Tn(z)],

and after taking the modulus of each side, we obtain the first equation in
(3.4). The second equation in (3.4) follows because Tn(0) and Tn(∞)
are inverse points with respect to Tn(∂D). Following Thron [7] and
using the fact that Tn(∞) = Tn−1(0), these equations give

rn|T−1
n (∞)| − rn−1

|T−1
n−1(∞)| = |Tn(∞)− cn| − |Tn−1(0)− cn−1|

≤ |(Tn(∞)− cn)− (Tn−1(0)− cn−1)|(3.5)
= |cn − cn−1|
≤ rn−1 − rn.(3.6)
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This simplifies to

rn(1 + |T−1
n (∞)|) ≤ rn−1(1 + |T−1

n−1(∞)|
|T−1

n−1(∞)| ,

which, in turn, yields

rn(1 + |T−1
n (∞)|) ≤

( n∏
k=1

|T−1
k (∞)

)−1

r1(1 + |T−1
1 (∞)|.

Because T1(∞) = t1(∞) = 0, (3.4) gives

r1(1 + |T−1
1 (∞)| = r1 + |c1| ≤ 1,

and (3.1) follows.

Proof of Theorem 3.4. The conclusion (3.3) in Theorem 3.4 follows
once we have justified the assertion that, in the tangency case, each
inequality (3.5) and (3.6) is an equality. It is a trivial geometric fact
that, in the context of this discussion, equality holds in (3.6) if and only
if the circles Tn(∂D) and Tn−1(∂D) are tangent to each other. Further,
if we assume that all Tn(∂D) are tangent to each other at a point ζ on
∂D, then assuming that ζ = −1 (as we may), we see that the points
−1, cn, cn−1 and Tn−1(0) lie, in this order, along the diameter (−1, 1)
of D (see, for example, [2]) so that equality also holds in (3.5). This
completes the proof of Theorem 3.4.

We end this paper with a remark concerning numerical estimates. It
is well known that we can write

Tn(z) =
An−1z + An

Bn−1z + Bn
,

where(
An

Bn

)
=

(
An−2 An−1

Bn−2 Bn−1

) (
an

bn

)
,

(
A−1 A0

B−1 B0

)
=

(
1 0
0 1

)
.

In this case

T−1
1 (∞) · · ·T−1

m (∞) =
(
− B1

B0

)(
− B2

B1

)
· · ·

(
− Bm

Bm−1

)
= (−1)mBm.



WORPITZKY-PRINGSHEIM THEOREM 399

It follows that in the tangency case we have

r̃ = lim
k→∞

1
2|Bk| .

As the Bn can in principle easily be computed (from the difference
equation given above) we see that we can now obtain numerical esti-
mates of the size of the limit circle (or point) in the tangency case.
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