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INDUCTION OF CHARACTERS, KERNELS
AND LOCAL SUBGROUPS

GABRIEL NAVARRO

1. Introduction. Let G be a finite group, and let p be a prime
number. Suppose that K is a subgroup of G having a character α such
that αG ∈ Irr (G). If α(1) ≤ p/2, G.R. Robinson proved in [5] that

(αNK(P ))NG(P ) ∈ Irr (NG(P )),

where P ∈ Syl p(K).

In [2], M. Isaacs proved this result when α(1) = 1 by using elementary
character theory. Robinson’s general proof uses Green theory.

In the present note, we take a different approach and pay attention
to the group K/ker (α) instead of the degree of α.

Theorem A. Let K ⊆ G and suppose that α ∈ Irr (K) induces
αG ∈ Irr (G). Suppose that P ∈ Syl p(K) is such that Pker (α) � K.
Then

(αNK(P ))NG(P ) ∈ Irr (NG(P )).

Notice that if α is linear then K/ker (α) is abelian, and we are in the
hypothesis of Theorem A. Also, by using the Feit-Thompson theorem
on linear groups, we will recover most of Robinson’s theorem. The only
case in the Robinson’s situation which is not treated by our methods
is when α(1) = (p − 1)/2. In this case, in view of the classification of
finite simple groups, a description of the non-p-closed linear groups of
degree (p − 1)/2 is possible. As remarked by the referee, it might be
possible to weaken the hypothesis of p-closure in Theorem A to still
obtain the same conclusion.
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In our opinion, Theorem A has two extreme cases which are worth
mentioning: when K/ker (α) is a p-group and when K/ker (α) is a p′-
group. In the first case, a P -projective irreducible character of NG(P )
is obtained. In the second, Alperin celebrated p-weights appear.

Corollary B. Suppose that αG ∈ Irr (G) where α ∈ Irr (K) and
K/ker (α) is a p′-group. Let P be a Sylow p-subgroup of K. Then

(αNK(P ))NG(P )

is a p-defect zero character of NG(P )/P .

Proof. By Theorem A, we have that the character η = (αNK(P ))NG(P )

is irreducible. Since P ⊆ ker (α), it easily follows that P ⊆ ker (η).
Also it is clear that η is a defect zero character of NG(P )/P since it is
induced from a p′-subgroup of NG(P )/P .

In the hypothesis of Corollary B, we find it interesting to study to
what extend χ uniquely determines (up to G-conjugacy) the p-subgroup
P . This seems to be a difficult problem, however.

2. Proof of Theorem A. The main ingredient in the proof
of Theorem A is the following lemma (which follows directly from
Mackey’s theorem).

2.1 Lemma. Let R ⊆ G and suppose that α ∈ Irr (R). Then αG is
irreducible if and only if we have

[αg
R∩Rg , αR∩Rg ] = 0

for all g ∈ G − R.

Proof. See Lemma (2.1) of [2].

We will repeatedly use the following elementary result, which we state
and prove for the reader’s convenience.
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2.2 Lemma. Suppose that N� G and H⊆G are such that NH = G.
Write M = N ∩ H. Then the restriction map α �→ αH is a bijection
from A = {α ∈ Char (G) | N ⊆ ker (α)} onto B = {β ∈ Char (H) |
M ⊆ ker (β)}. In fact,

[αH , γH ] = [α, γ]

for α, γ ∈ A.

Proof. Since the map hM �→ hN is a group isomorphism, it follows
that there is an additive bijection from B to A (sending Irr (H/M) onto
Irr (G/N)) whose inverse is the restriction map.

2.3 Lemma. Let N, M � G and let P ∈ Syl p(G). Suppose that
G = NNG(P ) = MNG(P ). Let α ∈ Irr (G/N) and β ∈ Irr (G/M).
Then αNG(P ) = βNG(P ) if and only if α = β.

Proof. Assume that αNG(P ) = βNG(P ) and let x ∈ G. We want to
show that α(x) = β(x). We have that the groups G/N and G/M have
a normal Sylow p-subgroup. Therefore, so does G/N ∩ M . Hence,
P (M ∩ N) is also normal in G. Therefore, G = (N ∩ M)NG(P ). Now
we can write x = yz where y ∈ N ∩ M and z ∈ NG(P ). Then

α(x) = α(yz) = α(z) = β(z) = β(yz) = β(x),

as required.

Next is Theorem A from the Introduction.

2.4 Theorem. Let K ⊆ G and suppose that α ∈ Irr (K) induces
αG ∈ Irr (G). Suppose that P ∈ Syl p(K) is such that Pker (α) � K.
Then

(αNK(P ))NG(P ) ∈ Irr (NG(P )).

Proof. Write U = NK(P ), N = NG(P ) and V = ker (α)∩U . By the
Frattini argument, we have that ker (α)U = K. Thus, β = αU ∈ Irr (U)
by Lemma 2.2. We wish to prove that

βN ∈ Irr (N).
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By Lemma 2.1, it suffices to check that, given n ∈ N − U , then

[βn
U∩Un , βU∩Un ] = 0.

Otherwise, let γ ∈ Irr (U ∩Un) be an irreducible constituent of βn
U∩Un

and βU∩Un .

Now P ⊆ U ∩ Un and U ∩ Un = NK∩Kn(P ). Since Pker (α) � K, it
follows that P (ker (α)∩Kn) = Pker (α)∩Kn �K∩Kn. By the Frattini
argument, we have that

K ∩ Kn = (ker (α) ∩ Kn)NK∩Kn(P ) = (ker (α) ∩ Kn)(U ∩ Un).

Also,
NK∩Kn(P ) ∩ ker (α) ∩ Kn = V ∩ Un.

Now γ is an irreducible constituent of βU∩Un = αU∩Un . Hence,
V ∩ Un = ker (α) ∩ (U ∩ Un) is contained in the kernel of γ. By
Lemma 2.2, let

γ̂ ∈ Irr (K ∩ Kn/ker (α) ∩ Kn)

be such that
γ̂U∩Un = γ.

By Lemma 2.2, we have that

[αK∩Kn , γ̂] = [αU∩Un , γ] = 0.

Now we repeat the argument above with Kn and αn. Note first that
Pker (αn) � Kn. Hence, P (ker (αn) ∩ K) = K ∩ Pker (αn) � K ∩ Kn,
and by the Frattini argument we have that

K ∩ Kn = (ker (αn) ∩ K)NK∩Kn(P ) = (ker (αn) ∩ K)(U ∩ Un).

Also,
NK∩Kn(P ) ∩ ker (αn) ∩ K = U ∩ V n.

Now γ is an irreducible constituent of βn
U∩Un = αn

U∩Un . Thus γ has
U ∩ V n in its kernel. By Lemma 2.2 there exists

γ̃ ∈ Irr (K ∩ Kn/ker (αn) ∩ K)
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such that
γ̃U∩Un = γ.

Furthermore, by Lemma 2.2 we have that

[αn
K∩Kn , γ̃] = [αn

U∩Un , γ] = 0.

Now by Lemma 2.3 applied to the normal subgroups ker (αn) ∩K and
ker (α) ∩ Kn of K ∩ Kn, we have that

γ̂ = γ̃ = τ.

Hence, τ is an irreducible constituent of both αn
K∩Kn and αK∩Kn .

This contradicts Lemma 2.1, since αG is irreducible, n ∈ G − K and
K ∩ N = U .

As a consequence of Theorem A, we recover part of Robinson’s
theorem.

2.5 Theorem. Let K ⊆ G and suppose that α ∈ Irr (K) induces
αG ∈ Irr (G). Suppose that P ∈ Syl p(K). If α(1) < (p − 1)/2, then

(αNK(P ))NG(P ) ∈ Irr (NG(P )).

Proof. By the Feit-Thompson theorem on linear groups ([1]), we have
that K/ker (α) has a normal Sylow p-subgroup and Theorem A applies.

Our Corollary B naturally leads us to study characters χ ∈ Irr (G)
which are of the form

χ = αG

for some α ∈ Irr (K) with K/ker (α) a p′-group. To what extent are
the Sylow p-subgroups of K determined by χ? In general, two different
inductions of the same irreducible character have little in common and
are difficult to compare. This is also the case here, and we are unable
to prove or disprove whether or not the Sylow p-subgroups of K are
uniquely determined by χ up to G-conjugacy. We succeed in proving
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this for groups with a normal p-complement, although our proof is
(already) surprisingly hard. (Using Isaacs π-theory, the same result
also holds for groups of odd order.)

2.6 Theorem. Suppose that χ = αG is irreducible, where K ⊆ G,
α ∈ Irr (K) and K/ker (α) is a p′-group. Suppose that G has a normal
p-complement M . Then MK is the stabilizer in G of the character
(αMK)M ∈ Irr (M).

Proof. We argue by induction on |G|.
Notice that αMK has p′-degree because α has p′-degree and |MK : K|

is a p′-number. Hence, by Corollary (11.29) of [3], we have that

θ = (αMK)M ∈ Irr (M).

Now we see that MK stabilizes θ, and by induction we certainly may
assume that θ is G-invariant. So we are forced to prove that MK = G.

Now let P be a Sylow p-subgroup of K. Hence MK = MP and
it suffices to show that P ∈ Syl p(G). By Theorem A we know that
(αNK(P ))NG(P ) is irreducible. Write β = αNK(P ) ∈ Irr (NK(P )). Now
CM (P ) = NG(P ) ∩ M is the normal p-complement of NG(P ). Since
βCM (P )NK(P ) has p′-degree, it follows, using the same argument as in
the second paragraph, that

(βCM (P )NK(P ))CM (P ) = (βCM∩K(P ))CM (P )

is irreducible. Also, αCM∩K(P ) = βCM∩K(P ) is irreducible.

Now M ∩ K is P -invariant, αM∩K is P -invariant and irreducible,
and since αCM∩K(P ) is irreducible, it follows that αCM∩K(P ) is the
P -Glauberman correspondent of αM∩K (by Lemma 3.5 of [4], for
instance). Since

θ = (αMK)M = (αM∩K)M

is irreducible, by Theorem A of [4], we have that θ∗ (the P -Glauberman
correspondent of θ) equals

(αCM∩K(P ))CM (P ) = (βCM (P )NK(P ))CM (P ).
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Assume now that NG(P ) < G. By induction, we have in this case
that the stabilizer of

(βCM (P )NK(P ))CM (P ) = θ∗

in NG(P ) is NK(P )CM (P ) = P ×CM (P ). We claim that, in this case,
P is a Sylow p-subgroup of G. It suffices to show that P is a Sylow p-
subgroup of NG(P ). Assume that P � Q, where Q is some p-subgroup
of G. Since θ is Q-invariant, by the uniqueness in the Glauberman
correspondence (see Theorem 13.1.c of [3]), we deduce that θ∗ is Q-
invariant. Hence, P = Q as claimed. Therefore, G = MK as desired.

Assume now that P �G. Note that KM = M ×P �G. Also, we have
that

αKM = θ × 1P ,

because P ⊆ ker (α). Since (αKM )G is irreducible, we have that
IG(αKM ) = KM by Problem 6.1 of [3]. This implies that IG(θ) =
KM . Since θ is G-invariant, the proof of the theorem is complete.

2.7 Corollary. Suppose that G has a normal p-complement. Let
χ ∈ Irr (G). Suppose that αG = χ = βG, where α ∈ Irr (U), U/ker (α)
is a p′-group, β ∈ Irr (V ) and V/ker (β) is a p′-group. Then the Sylow
p-subgroups of U and V are G-conjugate.

Proof. Let M be the normal p-complement of G. The irreducible
characters (αMU )M and (βMV )M are G-conjugate since they are con-
stituents of χM . Hence, the same happens to their stabilizers, which
are MU and MV by Theorem 2.6. Since the Sylow p-subgroups of U
and V are Sylow p-subgroups of MU and MV , respectively, the proof
of the corollary easily follows.
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