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GEOMETRIC THEOREMS AND PROBLEMS
FOR HARMONIC MEASURE

DIMITRIOS BETSAKOS

ABSTRACT. We review some results and open problems
for harmonic measure. Their common element is their simple
geometric character. Such classical results are the projection
estimates of Beurling, Nevanlinna and Hall. Recent projection
theorems are due to Marshall, Sundberg, Solynin and others.
One of the methods of the proofs of these theorems is the
method of extremal metrics and quadratic differentials. The
classical symmetrization result for harmonic measure (origi-
nally proven by the star-function method of Baernstein) can
now be proven by the polarization technique. There remain,
however, several open problems. For most of these problems
there are reasonable conjectures. The paper discusses the
above results, problems and methods. It contains several new
open problems.

1. Introduction. Harmonic measure is one of the most important
conformal invariants. It is a standard tool in complex analysis which
provides a connection between potential theory and geometric function
theory. The name harmonic measure was introduced by Nevanlinna
[56] in 1934 but methods related to harmonic measure had been
used much earlier by Lindelöf, Carleman, Ostrowski and F. and R.
Nevanlinna.

Let D be a domain in the complex plane C, and let E be a Borel
set on the boundary ∂D of D. The harmonic measure of E at z ∈ D
relative to D is the Perron solution u(z) of the Dirichlet problem in
D with boundary values 1 on E and 0 on ∂D \ E. More precisely, let
χE = 1 on E and χE = 0 on ∂D \ E. Then

u(z) = sup{v(z) : v subharmonic in D and
lim sup
w→ζ

v(w) ≤ χE(ζ) for ζ ∈ ∂D}.
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We will use the following notation for harmonic measure: Let Ω ⊂ C
be any open set and K a compact set in C. ω(z,K,Ω) will denote the
harmonic measure at z of the set K ∩ closΩ relative to the component
of Ω \K that contains z. We also set ω(z,K,Ω) = 1 for z ∈ K ∩ closΩ
and ω(z,K,Ω) = 0 for those z that lie in any component of Ω whose
closure does not intersect K. The closures above are taken with respect
to the topology of the extended complex plane. Some more notation:
For A ⊂ C, −A = {−z : z ∈ A} and A = {z̄ : z ∈ A}.
For fixed z and Ω, ω(z,K,Ω), as a function of K, is a probability

measure on closΩ. This probability measure has a beautiful and
important probabilistic interpretation. Let Bt, t > 0, be Brownian
motion on the plane starting from z. Let τ = inf{t > 0 : Bt /∈ Ω \K}
be the first exit time ofBt from Ω\K. Then ω(z,K,Ω) is the probability
that Bτ ∈ K. Powerful probabilistic techniques in function theory are
based on this probabilistic interpretation.

For the main properties of harmonic measure and some of its ap-
plications we refer to [57], [42], [71], [34], [33]. For more details on
its probabilistic interpretation, see [61]. For questions related to the
definition of harmonic measure and its conformal invariance, see [1].

In this paper we survey results on harmonic measure that have a sim-
ple geometric character. We study the behavior of harmonic measure
under geometric transformations such as projection, symmetrization
and polarization, and we review some extremal problems. We also
present several open problems. It is not our aim to survey all results
about harmonic measure. Several important topics are omitted. In the
last section we comment on our main omissions and offer references.

2. Projection theorems and problems. The harmonic measure
can be explicitly computed only for a few pairs of K and D with the
use of conformal maps. Therefore it is of importance to find estimates
for it in terms of majorization principles or monotonicity results.

Theorem 2.1 (The Beurling-Nevanlinna projection theorem). Let
K be a closed set in the unit disk D. Let K1 = {−|z| : z ∈ K}. Then

(2.1) ω(z,K,D) ≥ ω(|z|,K1,D), ∀ z ∈ D.



GEOMETRIC THEOREMS AND PROBLEMS 775

K1 is the circular projection of K on the negative radius [−1, 0] of
the unit disk. Theorem 2.1 was proven independently by Beurling [19]
and Nevanlinna [55] in 1933. It can be generalized in various ways (see
[2], [58], [16]). Here is one of its extensions:

Theorem 2.2 [16]. Let y ∈ (0, 1), and let K,K1 be as in Theo-
rem 2.1. Then

(2.2) ω(iy, ∂D,D \K) + ω(−iy, ∂D,D \K)
≤ ω(iy, ∂D,D \K1) + ω(−iy, ∂D,D \K1).

Beurling [19] also proved a related result which implies the following:

Theorem 2.3 (Beurling’s shove theorem). Let K1 be the union of a
finite number of closed intervals on the radius [−1, 0] of the unit disk.
Let l be the total length of K1. Then

(2.3) ω(0,K1,D) ≥ ω(0, [−1,−1 + l],D).

The basic tool in the proof of Theorems 2.1 and 2.3 is Riesz’s funda-
mental representation theorem for superharmonic functions. ω(·,K,D)
(or ω(·,K1,D)) is a superharmonic function on D. So, by Riesz’s theo-
rem, it is the potential of a measure (Riesz mass) on K (or on K1). We
construct a new potential by sweeping suitably the Riesz mass on K1

(or on [−1,−1 + l]). Then (2.1) (or (2.3)) follows from the comparison
of the two potentials with the help of the maximum principle.

Solynin [68] proved the following generalization of Beurling’s shove
theorem.

Theorem 2.4 (Solynin). Let K ⊂ [−1, 1] be the union of a finite
number of closed intervals of total length 2l. Let K ′ = [−1,−1 + l] ∪
[1− l, 1]. Then

(2.4) ω(0,K,D) ≥ ω(0,K ′,D).
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FIGURE 1. Picture for Theorem 2.4.

This theorem had been conjectured by Segawa [64]. By using the
method of sweeping the Riesz mass, Essén and Haliste [27] had proved
Segawa’s conjecture with the additional assumption that −K = K, i.e.,
when K is symmetric with respect to the imaginary axis. Solynin’s
proof of Theorem 2.4 uses that result of Essén and Haliste. Some other
extensions of Beurling’s shove theorem have been proved in [62] and
[18].

We now present two conjectures related to Beurling’s shove theorem.
The first would be a nice counterpart for Theorem 2.2. The second
implies Theorem 2.4.

Conjecture 1. Let K ⊂ (0, 1) be the union of a finite number of
intervals of total length l. Let K∗ = [1− l, 1]. Then for y ∈ (−1, 1) we
have

(2.5) ω(iy,K,D) ≥ ω(iy,K∗,D).

Conjecture 2 [14]. Let K1 ⊂ [−1, 0) be a finite union of closed
intervals of total length m1. Let K2 ⊂ (0, 1] be a finite union of closed
intervals of total length m2. Then

(2.6) ω(0,K1 ∪K2,D) ≥ ω(0,K ′
1 ∪K ′

2,D),

.iy

K

.iy
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✬✩

✫✪
✬✩

FIGURE 2. Picture for Conjecture 1.
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where K ′
1 = [−1,−1 +m1] and K ′

2 = [1−m2, 1].

In the upper-half-plane H the classical projection theorem is due to
Hall [38]:

Theorem 2.5 (Hall’s lemma). Let E ⊂ H be a closed set and
E1 = {−|z| : z ∈ E} its circular projection on the negative real axis.
Then there exists an absolute constant k, 2/3 < k ≤ 1, such that

(2.7) ω(x+ iy, E,H) ≥ kω(−|x|+ iy, E1,H).

The proof of Hall’s lemma uses an elaboration of the sweeping of the
Riesz mass. Hayman constructed an example which shows that k < 1
(see [40], [53]). On the other hand, Gaier [32] proved that if E is a
single arc with one end-point at the origin then (2.7) is valid with k = 1.
Jenkins [47] proved a generalization of Gaier’s result which takes into
account the location of the other end point of the arc. Finally, Solynin
[69] proved that (2.7) holds with k = 1 for every continuum E ⊂ H.
The problem of determining the exact value of the best constant in
Hall’s lemma is open.

We now review some recent projection theorems.

Theorem 2.6 (FitzGerald-Rodin-Warschawski [30], Solynin [65]).
Let E be a continuum in closD, and let d be the diameter of E. Let
Ed be an arc on ∂D of diameter d. Then

(2.8) ω(0, E,D) ≥ ω(0, Ed,D).

This theorem was also proved by Jenkins [48].

For the radial projection of curves in D the definitive result is the
following:

Theorem 2.7 (Marshall-Sundberg [54]). Let E be the family of all
continua E in closD. For E ∈ E, let Ê = {z/|z| : z ∈ E} be the radial
projection on ∂D and lE the length of Ê.
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(a) Let C ≈ 0.997 be the harmonic measure of the two long sides of
a 3 : 1 rectangle evaluated at its center. Then for all E ∈ E,

(2.9) ω(0, E,D) ≥ Cω(0, Ê,D)

and C is the largest constant for which (2.9) holds for all E ∈ E.

(b) There is an absolute constant K ≈ 2π(350/360) such that if E ∈ E
with lE ≤ K then

(2.10) ω(0, E,D) ≥ ω(0, Ê,D)

and for every l with K < l ≤ 2π, there exists E ∈ E with lE = l for
which ω(0, E,D) < ω(0, Ê,D).

Finally, a result which involves orthogonal projection:

Theorem 2.8 (Solynin [69]). Let E be a continuum in closH, and let
E∗ = {�z : z ∈ E}. Assume that every curve α ⊂ {z ∈ H : �z ∈ E∗}
joining z0 ∈ H and E∗ intersects E. Then

(2.11) ω(z0, E,H) ≥ ω(z0, E∗,H).

For the proof of the above results, Jenkins, Marshall, Sundberg
and Solynin used the method of extremal length. Relations between
extremal length and harmonic measure have been studied by Beurling
[19] and Hersch [44]. It was Jenkins who systematically used extremal
length for the solution of numerous problems for harmonic measure
and other conformal invariants (see the references in [69]). Here is a
brief description of Jenkins’s method: The relation between extremal
length and the harmonic measure of a continuum (the so-called lemma
on the module of a triad [46]) reduces extremal problems for harmonic
measure to extremal problems for moduli of doubly-connected domains.
One can then attack the latter problems using Jenkins’s theory for
extremal moduli which describes the extremal domains with the help
of quadratic differentials, see [45], [49], [50], [54], [69]. This method
has been proved to be very powerful and successful. It has, however,
an important limitation in its application to problems for harmonic
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measure: It can be applied only to problems involving harmonic
measure of a continuum. The following problem is a special case of
a problem of Fuchs ([12, Problem 3.22]).

Problem 1. Find inf{ω(0, γ1 ∪ γ2,D) : γ1, γ2 are curves in D} such
that γ1 ∪ γ2 meets every radius of D.

3. Symmetrization. There exist many types of symmetrization.
Here we deal only with Steiner and circular symmetrization. Let O
be an open set in the plane. The Steiner symmetrization of O with
respect to the real axis is the transformation of O into a symmetric set
SO defined as follows:

(3.1) SO = {z = x+ iy : x ∈ R, 2|y| < l(x,O)},
where l(x,O) is the linear Lebesgue measure of O ∩ {z : �z = x}.
For a compact set E ⊂ C the Steiner symmetrization is

(3.2) SE = {z = x+ iy : E ∩ {�z = x} �= ∅, 2|y| ≤ l(x,E)}.

The circular symmetrizations SO and SE with respect to the positive
semi-axis R+ are

(3.3)
SO = {z = reiθ : O ∩ Tr �= ∅, 2|θ| < s(r,O)}

∪ {−r : O ∩ Tr = Tr}
SE = {z = reiθ : E ∩ Tr �= ∅, 2|θ| ≤ s(r, E)},

where Tr = {z : |z| = r} and s(r,O), respectively s(r, E), is the angular
Lebesgue measure of O ∩ Tr, respectively of E ∩ Tr, r ≥ 0.

The classical symmetrization result for harmonic measure is due to
Baernstein [2] who improved an earlier result of Haliste [36].

Theorem 3.1 (Baernstein). Let D be a domain with D ⊂ D and
let α = ∂D ∩ ∂D. Then for all r ∈ (0, 1) and all increasing convex
functions Φ : R → R

(3.4)
∫ 2π

0

Φ(ω(reiθ, α,D)) dθ ≤
∫ 2π

0

Φ(ω(reiθ,Sα,SD)) dθ.
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FIGURE 3. D, E and their Steiner symmetrizations SD and SE.

Baernstein proved this theorem using the star-function method which
can also give the analogous result for Steiner symmetrization. Essén
and Shea [28] proved an equality statement for Theorem 3.1.

The star-function method is used for the solution of certain extremal
problems for which the competing functions v are subharmonic and the
expected extremal function u is (essentially unique and) harmonic in
a symmetric region. For each v, Baernstein defined a certain maximal
function v∗, the star-function of v, and showed that the solution of the
extremal problem is reduced to the inequality v∗ ≤ u∗. The heart of the
method is the fact that v∗ remains subharmonic, while the symmetry of
the (expected) extremal domain implies that u∗ is harmonic. It follows
that the function v∗ − u∗ is subharmonic and therefore, in order to
prove the desired inequality v∗ − u∗ ≤ 0, one can use the maximum
principle. A detailed account is in [3], [9] or [10].

Baernstein [8] and Fryntov [31] developed a variant of the star-
function method which led Solynin [66] to prove the following theorem,
conjectured by Dubinin [25].

Theorem 3.2 (Solynin). Let D be a domain in {z : �z < 0}, and let
E ⊂ ∂D be a segment on the imaginary axis. Assume that the length of
any segment lying in D parallel to the imaginary axis does not exceed
s > 0. Then for any z ∈ D
(3.5) ω(z, E,D) ≤ ω

(
�z,SE,

{
z : �z < 0, |�z| < s

2

})
.

Solynin proved also an integral inequality like (3.4) with an equality
statement.
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FIGURE 4. A domain D and its polarization PD.

For more information about symmetrization we refer to [2], [3],
[9], [10], [25], [39], [41]. The paper [63] of Pruss contains some
interesting results and open problems related to harmonic measure and
symmetrization.

4. Polarization. Polarization with respect to the real axis is a
geometric transformation that preserves the symmetric part of a set
and moves the nonsymmetric part to the upper half plane. To give the
precise definition we need the following notation: C+ is the upper half
plane and C− is the lower half plane. If F is a closed set in C, then
F+ = closC+ ∩ F and F− = closC− ∩ F . If O is an open set in C,
then O+ = C+ ∩O and O− = C− ∩O.
The polarization PA of a closed or open set A ⊂ C is defined

as follows: If z, z̄ ∈ A then z, z̄ ∈ PA. If neither z, z̄ ∈ A then
neither z, z̄ ∈ PA. If exactly one of z = x + iy, z̄ belongs to A, then
x+ i|y| ∈ PA and x− i|y| /∈ P(A). Below is an equivalent definition.

Definition 4.1. Let A be a closed or open set. The polarization PA
of A with respect to R is PA = (A ∪A)+ ∪ (A ∩A)−.

We also define the polarization PlA of A with respect to any oriented
line l.

Definition 4.2. Let l be an oriented line, and let Tl : Ĉ → Ĉ be
the Möbius transformation that maps ∞ to ∞ and l to R preserving
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FIGURE 5. An illustration for Theorem 4.3.

their orientation. The polarization PlA of A with respect to l is
PA = T−1

l PTlA.

Polarization was discovered by Wolontis [72] who studied the behav-
ior of certain extremal lengths under polarization. However, the idea
of polarization can be traced in the proof of Theorem 2.3 in Beurling’s
dissertation (see [19]). The main polarization result for harmonic mea-
sure is due to Solynin [67] and Betsakos [13], [15] who improved an
earlier result of Øksendal [58] and Baernstein [29].

Let D be a domain in C, regular for the Dirichlet problem. Let
E ⊂ ∂D be a closed set, and assume that E satisfies the condition:

(4.1) E ∩D = ∅.

For the equality statements below it is assumed, in addition, that D
is bounded by a finite number of curves or arcs and E consists of a
finite number of curves or arcs.

We give the names (a), (b) and (c) to the following conditions: (a)
E = PE, D = PD. (b) E = PE, D = PD. (c) D = D.

Theorem 4.3 [67], [15]. With the above notation we have

(4.2) ω(x,E,D) ≤ ω(x,PE,PD), x ∈ R ∩D.
Equality holds in (4.2) for some x ∈ R ∩D if and only if (a) or (b) or
(c) holds.

(4.3) ω(z̄, E,D) ≤ ω(z,PE,PD), z ∈ D−.
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Equality holds in (4.3) for some z ∈ D− if and only if (b) holds.

(4.4) ω(z, E,D) ≤ ω(z,PE,PD), z ∈ D+.

Equality holds in (4.4) for some z ∈ D+ if and only if (a) holds.

(4.5) ω(z, E,D) + ω(z̄, E,D)
≤ ω(z,PE,PD) + ω(z̄,PE,PD), z ∈ D.

Equality holds in (4.5) for some z ∈ D if and only if (a) or (b) or (c)
holds.

(4.6) |ω(z, E,D)− ω(z̄, E,D)|
≤ ω(z,PE,PD)− ω(z̄,PE,PD), z ∈ D+.

Equality holds in (4.6) for some z ∈ D+ if and only if (a) or (b) or (c)
holds.

For all x ∈ R and all increasing convex functions Φ : R → R

(4.7)
∫
Dx

Φ(ω(x+ iy, E,D)) dy ≤
∫
PDx

Φ(ω(x+ iy,PE,PD)) dy,

where Dx = {y : x+ iy ∈ D} and PDx = {y : x+ iy ∈ PD}. Equality
holds in (4.7) for some x ∈ R ∩D and some nonconstant, increasing,
convex function Φ if and only if (a) or (b) or (c) holds.

Øksendal [58] (see also Baernstein’s lemma in [29]) proved (4.2)
with additional assumptions. The basic inequality in Theorem 4.3 is
(4.2). The other inequalities follow easily from (4.2) by the maximum
principle. Equation (4.7) follows from (4.5) and a convexity argument.
The proof of (4.2) in [67] is based only on the maximum principle
applied to suitably chosen functions and domains. The proof of (4.2)
in [13] uses a technique of Øksendal [58] which is based on Brownian
motion and also gives some results on Brownian motion. We present
one of them:

Let D and E be as in Theorem 4.3. Let τD = inf{t > 0 : Bt /∈ D} be
the first exit time from D. For z ∈ D and 0 ≤ τ1 < τ2 ≤ +∞, let

(4.8) ωτ2τ1 (z, E,D) = P z(BτD
∈ E, τ1 < τD < τ2).
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FIGURE 6. D is a domain with a slit K and E is a symmetric closed set on
∂D. SD = D∪K (the slit disappears). PlD has a slit K′ which is further from
x ∈ R than K is. Symmetrization yields a trivial inequality while polarization
gives the nontrivial result ω(x, E, D) ≤ ω(x, E, PlD).

Thus ωτ2τ1 (z, E,D) is the probability that a Brownian motion starting
at z exits D through E, in the time interval (τ1, τ2). For τ1 = 0 and
τ2 = +∞, ωτ2τ1 (z, E,D) is the usual harmonic measure ω(z, E,D).

Theorem 4.4 [15]. With the above notation we have

(4.9) ωτ2τ1 (x,E,D) ≤ ωτ2τ1 (x,PE,PD), x ∈ R ∩D.

Polarization is a transformation simpler than symmetrization in the
sense that it does not change the shape of a set as drastically as
symmetrization does. For an illustration, see Figure 6.

Wolontis [72] made the important observation that circular sym-
metrization results can be proved by the successive application of po-
larizations with respect to suitable axes. This idea has been used in
various ways for the proof of rearrangement inequalities, symmetriza-
tion results for the capacity of condensers, and projection estimates
for harmonic measure, see [11], [25], [58], respectively. Dubinin [25]
used this idea in the following way. Let D be a domain in the plane.
Assume first that ∂D is the union of a finite number of Jordan curves
each consisting of a finite number of horizontal and vertical segments.
By drawing a finite number of vertical lines we divide D into a finite
number of rectangles. Then applying successively a finite number of
polarizations with respect to suitable lines we symmetrize one rectangle
after the other. At the end we obtain the Steiner symmetrization of D.
For general D, we use an approximation argument. Figure 7 shows a
simple application of this technique.
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← L

PlD

R

SD

FIGURE 7. The Steiner symmetrization of SD of the domain D is obtained
by the successive application of two polarizations, first with respect to the
oriented line l and then with respect to the oriented line L: SD = PLPlD.

Øksendal [58] used a similar technique to approximate circular sym-
metrization. Let K ⊂ D. By applying successive polarizations first
with respect to the line {reiθ : r ∈ R, θ = π/2n} and then with respect
to the line {reiθ : r ∈ R, θ = −π/2n}, at the nth step, we obtain (in
the limit) the circular symmetrization of K. Øksendal used, however,
his reflection lemma and obtained only the Beurling-Nevanlinna projec-
tion theorem (Theorem 2.1). If we use the stronger polarization result
(Theorem 4.3) we obtain Theorem 3.1.

The fact that Steiner and circular symmetrizations can be ap-
proximated by a sequence of polarizations leads to simple proofs of
symmetrization results originally proven by Baernstein’s star-function
method. In particular, equality statements for symmetrization inequal-
ities are proven easily via polarization. On the other hand the star-
function method not only proves symmetrization results but also, more
generally, solves extremal problems for which the extremal domains are
symmetric; see [2], [3], [52].

The following conjecture compares the effect of polarization (or sym-
metrization) on harmonic measure with that of domain expansion.

Conjecture 3. Let K ⊂ D be a compact set, and let Dr =
{z : |z| < r}, r > 1. Then

ω(0,K,D)−ω(0,PK,D) ≥ ω(0,K,Dr)−ω(0,PK,Dr),
(4.10)

ω(0,K,D)−ω(0,SK,D) ≥ ω(0,K,Dr)−ω(0,SK,Dr).
(4.11)
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5. Harmonic measure of radial slits. Suppose that K is a
compact set in (0, 1], and let 0 ≤ θ1 < θ2 < · · · < θn < 2π. Consider
the unions of radial slits EK , E∗

K on the unit disk defined by

EK =
n⋃
k=1

exp(iθk)K, E∗
K =

n⋃
k=1

exp(2πi(k − 1)/n)K.

Dubinin [24] invented the method of dissymmetrization for the proof
of the following theorem which had been conjectured by Gonchar (see
[23, Problem 7.45]).

Theorem 5.1 (Dubinin). Assume that K = [ρ, 1], ρ > 0. Then

(5.1) ω(0, EK ,D) ≤ ω(0, E∗
K ,D),

with equality only if EK = eiφE∗
K for some φ ∈ R.

Baernstein [5] generalized Gonchar’s problem as follows:

Conjecture 4 (Baernstein). For all compact sets K ⊂ (0, 1],

(5.2) ω(0, EK ,D) ≤ ω(0, E∗
K ,D),

and more generally

(5.3)
∫ 2π

0

Φ(ω(teiψ, EK ,D))dψ ≤
∫ 2π

0

Φ(ω(teiψ, E∗
K ,D))dψ,

for all t ∈ (0, 1) and all increasing convex functions Φ : R → R.

A similar conjecture was also published by Haliste [37]. Baernstein
[6] proved (5.3) for n = 2 and n = 3. He used dissymmetrization and
the star-function method. Recently Solynin [70] proved (5.2) under
the assumption that K is a closed interval. His proof combines the
method of extremal metric with a new version of dissymmetrization
on Riemann surfaces, and involves computations with elliptic theta
functions. Haliste [37] also used dissymmetrization to prove a theorem
for the harmonic measure of circular slits.
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Dissymmetrization has been particularly successful for problems
where the extremal domains have n-fold symmetry. It has been applied
to extremal problems for various conformal invariants. The main idea is
the following: Suppose that f : ∂D → R is a Lipschitz function with n-
fold symmetry with respect to the points exp(iθ∗) = exp(2πi(k−1)/n),
k = 2, 3, . . . , n. The dissymetrization of f is a certain rearrange-
ment g of f with the properties that g is Lipschitz and g(exp(iθk)) =
f(exp(iθ∗k)). Dubinin’s main achievement was the description of a spe-
cific procedure for the construction of g and the proof that dissym-
metrization preserves the Dirichlet integral. The papers [24], [25], [5],
[37] contain accounts of dissymmetrization and additional references.

6. More research problems and conjectures.

1. Problem 2 (Solynin [69]. Let a ∈ (0, 1), and let F be the family
of all simply connected domains D ⊂ D with −a /∈ D, a /∈ D. Find

sup{ω(0, ∂D, D) : D ∈ F}.

2. Let D ⊂ C be a domain with 0 ∈ D. For R > 0, we set

ωD(R) = ω(0, ∂D ∩ {z : |z| ≥ R}, D)

and

ω̂D(R) = ω(0, {z : |z| = R}, D).

The behavior of the functions ωD and ω̂D near ∞ determines (in some
sense) how large D is (see, e.g., [71, p. 112], [43], [26], [17]). For
example, Essén [26] proved that: Every analytic function f : D → D
belongs to the Hardy space Hp (for some p that depends on f) if and
only if ω̂D(R) ≤ CR−q, for all R ≥ 1, where C, q are positive constants
that depend only on f . A domain D that has the property described
in Essén’s result is called a Hardy domain.

Problem 3. Find a (Euclidean) geometric condition that character-
izes Hardy domains.
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Note that for Bloch domains, BMO domains and domains associated
to the Nevanlinna class such geometric characterizations have been
found (see [4], [57]).

It is not known whether the functions ωD and ω̂D always have the
same behavior when R is near ∞.

Conjecture 5. There exists a positive constant C > 0 such that for
all domains D with 0 ∈ D and all R > 0, we have

(6.1) ωD(R) ≥ Cω̂D(R).

Perhaps this problem becomes easier if we pose some additional
hypothesis on D (starlike, simply connected, BMO domain, etc.).

Next we present another problem for ωD(R). Let B be the family
of all simply connected domains D ⊂ C that have the properties: (a)
there is no disk of radius larger than 1 contained in D and (b) 0 ∈ D.
It is obvious that if D ∈ B then ωD is a decreasing function of R.
In fact, one can prove that ωD decreases exponentially. This follows,
at least intuitively, from the probabilistic interpretation of harmonic
measure as hitting probability of Brownian motion in D: A Brownian
particle starting from the circle |z| = r and stopping when it hits the
boundary of D has small probability to reach the circle |z| = r + 2,
because D ∈ B. Now repeated applications of the Markov property
show that ωD decays exponentially: ωD(R) ≤ Ce−βR, D ∈ B, R > 0
with absolute constants β,C, see [17]. Define

β(D) = sup{β > 0 : ∃C > 0 such that ∀R > 0, ωD(R) ≤ Ce−βR}.

Problem 4. Find the exact value of the number

(6.2) β0 = inf
D∈B

β(D).

This problem, posed by Bishop [21], is the analog for harmonic
measure of the Bloch constant problem. Bishop conjectured that
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FIGURE 8. The comb domain D.

β0 = β(S) = π/2, where S is a strip of width 2. Bishop’s conjecture is
false. In fact it is proved in [17] that

(6.3) 1.1417 ≤ β0 ≤ 0.4286π ≈ 1.3458

The upper bound comes from the study of the comb-domain

(6.4) D0 =

C \
( ⋃
k∈Z

{2kx1 + iy : y ≥ y1} ∪
⋃
k∈Z

{(2k + 1)x1 + iy : y ≤ −y1}
)
,

where x1 ≈ 0.66 and y1 = (1 +
√
1− x2

1)/2 (y1 is chosen so that
D0 ∈ B). Perhaps D0 is an extremal domain for Bishop’s problem. We
note, however, that it is not known even whether an extremal domain
exists.

3. The next problem grew out of discussions with Bañuelos and
Baernstein.

Problem 5. Let B be as in Problem 4, and let B2 = {D ∈ B : D ⊂
{z : |z| < 2}}. Find

(6.5) sup{ω(0, ∂D ∩ {z : |z| = 2}, D) : D ∈ B2}.

4. Most of the problems we presented so far can be formulated as
extremal problems for ω(z, E,D), where E,D satisfy specific Euclidean
geometric conditions. Another class of problems is created when we
pose “conformal conditions” on E or D. As an example of such a
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problem we present a theorem which follows from the work of Grötzsch
[35].

Theorem 6.1. Let K be a continuum in D with 0 ∈ K. Suppose
that

(6.6) caph (K) = caph ([0, r0]),

where r0 ∈ (0, 1). Then

(6.7) ω(reiθ,K,D) ≥ ω(−r, [0, r0],D),

for all r ∈ (0, 1) and all θ ∈ [0, 2π).

Here caph denotes hyperbolic capacity (see [71]). This theorem has
been strengthened in [2].

Another problem with conformal conditions is the following: Let
K = {K ⊂ D : K continuum, 1/2 ∈ K, ω(0,K,D) = 0.1}. Let
D2 = {z : |z| < 2}. Clearly there exist unique numbers m,M such
that [m, (1/2)] ∈ K and [(1/2),M ] ∈ K.

Conjecture 6.

min{ω(0,K,D2) : K ∈ K} = ω(0, [m, (1/2)],D2),(6.8)

max{ω(0,K,D2) : K ∈ K} = ω(0, [(1/2),M ],D2).(6.9)

7. Concluding remarks. We did not mention anything about
higher dimensional analogs of the above theorems and problems. We
refer to [27], [58], [73] for projection problems and to [11], [9] for
symmetrization. The polarization results hold in all dimensions with
essentially the same proofs.

The methods that we briefly discussed in this paper (extremal length-
quadratic differentials, transport of the Riesz mass, polarization, sym-
metrization, star-function) can be applied to many kinds of problems in
function theory, potential theory and partial differential equations (at
least). It is impossible to give detailed references here. The interested
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reader can look at the surveys of Baernstein [3], [7], [9], [10], Brock
and Solynin [22], Dubinin [25], and Kuz’mina [51].

Another important subject that we did not mention is that of the
harmonic measure on domains with complicated boundary. There
exist deep results of Bishop, Carleson, Jones, Makarov, Wolff and
others on the support of the harmonic measure, and the distortion and
boundary behavior of conformal maps. Several references and open
problems appear in Pommerenke’s book [60] and in Bishop’s collection
of problems [20].

For the role played by harmonic measure in results related to the
Hayman-Wu theorem we refer to [29], [33], [59] and the references
therein.
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