
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 32, Number 2, Summer 2002

LEONARD PAIRS FROM
24 POINTS OF VIEW

PAUL TERWILLIGER

ABSTRACT. Let K denote a field and let V denote a vector
space over K with finite positive dimension. We consider a
pair of linear transformations A : V → V and A∗ : V → V
that satisfy both conditions below:

(i) There exists a basis for V with respect to which the
matrix representing A is diagonal and the matrix representing
A∗ is irreducible tridiagonal.

(ii) There exists a basis for V with respect to which the ma-
trix representing A∗ is diagonal and the matrix representing
A is irreducible tridiagonal.

We call such a pair a Leonard pair on V . Referring to the
above Leonard pair, we investigate 24 bases for V on which
the action of A and A∗ take an attractive form. Our bases are
described as follows. Let Ω denote the set consisting of four
symbols 0, d, 0∗, d∗. We identify the symmetric group S4 with
the set of all linear orderings of Ω. For each element g of S4, we
define an (ordered) basis for V , which we denote by [g]. The
24 resulting bases are related as follows. For all elements wxyz
in S4, the transition matrix from the basis [wxyz] to the basis
[xwyz], (respectively [wyxz]), is diagonal, (respectively lower
triangular). The basis [wxzy] is the basis [wxyz] in inverted
order. The transformations A and A∗ act on the 24 bases
as follows: For all g ∈ S4, let Ag, (respectively A∗g), denote
the matrix representing A, (respectively A∗), with respect to
[g]. To describe Ag and A∗g, we refer to 0∗, d∗ as the starred
elements of Ω. Writing g = wxyz, if neither of y, z are starred
then Ag is diagonal and A∗g is irreducible tridiagonal. If y is
starred but z is not, then Ag is lower bidiagonal and A∗g is
upper bidiagonal. If z is starred but y not, then Ag is upper
bidiagonal and A∗g is lower bidiagonal. If both of y, z are
starred, then Ag is irreducible tridiagonal and A∗g is diagonal.

We define a symmetric binary relation on S4 called adja-
cency. An element wxyz of S4 is by definition adjacent to
each of xwyz, wyxz, wxzy and no other elements of S4. For
all ordered pairs of adjacent elements g, h in S4, we find the
entries of the transition matrix from the basis [g] to the basis
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[h]. We express these entries in terms of the eigenvalues of A,
the eigenvalues of A∗, and two sequences of parameters called
the first split sequence and the second split sequence. For all
g ∈ S4, we compute the entries of Ag and A∗g in terms of the
eigenvalues of A, the eigenvalues of A∗, the first split sequence
and the second split sequence.

1. Leonard pairs. Throughout this paper, K will denote an
arbitrary field, and K̃ will denote the algebraic closure of K.

We begin by recalling the notion of a Leonard pair.

Definition 1.1 [44]. Let V denote a vector space over K with finite
positive dimension. By a Leonard pair on V , we mean an ordered pair
A,A∗, where A : V → V and A∗ : V → V are linear transformations
that satisfy both (i) and (ii) below.

(i) There exists a basis for V with respect to which the matrix
representing A is diagonal and the matrix representing A∗ is irreducible
tridiagonal.

(ii) There exists a basis for V with respect to which the matrix
representing A∗ is diagonal and the matrix representing A is irreducible
tridiagonal.

(A tridiagonal matrix is said to be irreducible whenever all entries
immediately above and below the main diagonal are nonzero.)

Note 1.2. According to a common notational convention, for a linear
transformation A the conjugate-transpose of A is denoted A∗. We
emphasize we are not using this convention. In a Leonard pair A,A∗,
the linear transformations A and A∗ are arbitrary subject to (i) and
(ii) above.

Here is an example of a Leonard pair. Set V = K4 (column vectors),
set

A =




0 3 0 0
1 0 2 0
0 2 0 1
0 0 3 0


 , A∗ =




3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3


 ,

and view A and A∗ as linear transformations from V to V . We assume
the characteristic of K is not 2 or 3, to ensure A is irreducible. Then
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A,A∗ is a Leonard pair on V . Indeed, condition (ii) in Definition 1.1
is satisfied by the basis for V consisting of the columns of the 4 by 4
identity matrix. To verify condition (i), we display an invertible matrix
P such that P−1AP is diagonal and P−1A∗P is irreducible tridiagonal.
Set

P =




1 3 3 1
1 1 −1 −1
1 −1 −1 1
1 −3 3 −1


 .

By matrix multiplication P 2 = 8I, where I denotes the identity, so
P−1 exists. Also by matrix multiplication

(1) AP = PA∗.

Apparently P−1AP equals A∗ and is therefore diagonal. By (1), and
since P−1 is a scalar multiple of P , we find P−1A∗P equals A and is
therefore irreducible tridiagonal. Now condition (i) of Definition 1.1 is
satisfied by the basis for V consisting of the columns of P .

The above example is a member of the following infinite family of
Leonard pairs. For any nonnegative integer d, the pair

(2)
A =




0 d 0
1 0 d− 1

2 · ·
· · ·

· · 1
0 d 0


 ,

A∗ = diag (d, d− 2, d− 4, . . . ,−d)

is a Leonard pair on the vector space Kd+1 provided the characteristic
of K is zero or an odd prime greater than d. This can be proved by
modifying the proof for d = 3 given above. One shows P 2 = 2dI and
AP = PA∗, where P denotes the matrix with ij entry

(3) Pij =
(
d
j

)
2F1

(−i,−j
−d

∣∣∣∣2
)
, 0 ≤ i, j ≤ d.

We follow the standard notation for hypergeometric series [10]. The
details of the above calculations are given in Section 16 below.
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To motivate our results we mention some background on Leonard
pairs. There is a connection between Leonard pairs and certain or-
thogonal polynomials contained in the Askey scheme [26]. Observe
the 2F1 that appears in (3) is a Krawtchouk polynomial [26]. There
exist families of Leonard pairs similar to the one above in which the
Krawtchouk polynomial is replaced by one of the following:

type polynomial

4F3 Racah

3F2 Hahn, dual Hahn

2F1 Krawtchouk

4φ3 q-Racah

3φ2 q-Hahn, dual q-Hahn

2φ1 q-Krawtchouk (classical, affine, quantum, dual)

The above polynomials are defined in Koekoek and Swarttouw [26],
and the connection to Leonard pairs is given in [44, Chapter 15] and
[4, page 260]. This connection is also discussed in Section 16 below.

Leonard pairs play a role in representation theory. For instance,
Leonard pairs arise naturally in the representation theory of the Lie
algebra sl2 [25], the quantum algebra Uq(sl2) [27], [28], [29], [30],
[31], [35, Chapter 4], [42], [43], the Askey-Wilson algebra [12], [13],
[14], [15], [16], [45], [46], [47] and the tridiagonal algebra [25], [43],
[44].

Leonard pairs play a role in combinatorics. For instance, there is a
combinatorial object called a P - and Q-polynomial association scheme
[4], [5], [33], [37], [41]. Leonard pairs have been used to describe
certain irreducible modules for the subconstituent algebra of these
schemes [38], [39], [40], (see [6], [8], [11], [24], [25], [36] for more
information on Leonard pairs and association schemes).

Leonard pairs are closely related to the work of Grunbaum and Haine
on the “bispectral problem” [19, 20]. See [17, 18, 21 23] for related
work.

We now give an overview of the present paper. Let V denote a vector
space over K with finite positive dimension, and let A,A∗ denote a
Leonard pair on V . Using this pair we define 24 bases for V which we
find attractive. In our study of these 24 bases, we will be concerned
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FIGURE 1. How the 24 bases are related. Each vertex represents one of the 24
bases. Solid arc: transition matrix is diagonal. Dashed arc: transition matrix is
lower triangular. Dotted arc: inversion.

with (i) how these bases are related to each other and (ii) for each basis,
the matrices that represent A and A∗. We will elaborate on these two
points below, but first we sharpen our notation. By a basis for V , we
mean a sequence of vectors in V that are linearly independent and span
V . We emphasize the ordering is important. Let v0, v1, . . . , vd denote
a basis for V . Then the sequence vd, vd−1, . . . , v0 is a basis for V which
we call the inversion of v0, v1, . . . , vd.

When we define our 24 bases, we will find they are related to each
other according to the diagram in Figure 1. In that diagram each vertex
represents one of the 24 bases. For each pair of bases in the diagram
that are connected by an arc, consider the transition matrix from one of
these bases to the other. The shading on the arc indicates the nature
of this transition matrix. If the arc is solid, the transition matrix is
diagonal. If the arc is dashed, the transition matrix is lower triangular.
If the arc is dotted, the two bases are the inversion of one another.

The reader might observe the above diagram is a Cayley graph for
the symmetric group S4. Apparently, there is a connection between
our 24 bases and S4. We now make this connection explicit.

Let Ω denote the set consisting of four symbols 0, d, 0∗, d∗. We
identify the symmetric group S4 with the set of all linear orderings
of Ω. For i = 1, 2, 3 we define a symmetric binary relation on S4
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which we call i-adjacency. Each element wxyz of S4 is by definition 1-
adjacent, (respectively 2-adjacent), (respectively 3-adjacent), to xwyz,
(respectively wyxz), (respectively wxzy) and no other elements of S4.
Two elements in S4 will be called adjacent whenever they are i-adjacent
for some i, (1 ≤ i ≤ 3). If we draw a diagram in which we represent the
elements of S4 by vertices and, for i = 1, 2, 3, we represent i-adjacency
by solid, dashed, and dotted arcs, respectively, we get the diagram in
Figure 1.

For each element g of S4 we will define a certain basis for V which we
denote by [g]. We will find that for all pairs g, h of adjacent elements
in S4,

(i) if g, h are 1-adjacent the transition matrix from [g] to [h] is
diagonal,

(ii) if g, h are 2-adjacent the transition matrix from [g] to [h] is lower
triangular,

(iii) if g, h are 3-adjacent then [g] is the inversion of [h].

When we define our 24 bases, we will find that A and A∗ act on them
as follows. For all g ∈ S4, let Ag, (respectively A∗g), denote the matrix
representing A, (respectively A∗), with respect to [g]. To describe
Ag and A∗g, we refer to 0∗, d∗ as the starred elements of Ω. Writing
g = wxyz, we will find

(i) if neither of y, z are starred then Ag is diagonal and A∗g is
irreducible tridiagonal.

(ii) if y is starred, but z is not, then Ag is lower bidiagonal and A∗g

is upper bidiagonal.

(iii) if z is starred but y is not, then Ag is upper bidiagonal and A∗g

is lower bidiagonal.

(iv) if both of y, z are starred, then Ag is irreducible tridiagonal and
A∗g is diagonal.

(A square matrix is said to be lower bidiagonal whenever all nonzero
entries lie either on or immediately below the main diagonal. A
matrix is said to be upper bidiagonal whenever the transpose is lower
bidiagonal.)

For all ordered pairs g, h of adjacent elements in S4, we find the
entries of the transition matrix from the basis [g] to the basis [h]. We
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express these entries in terms of the eigenvalues of A, the eigenvalues
of A∗ and two sequences of scalars called the first split sequence and
the second split sequence. For all g ∈ S4, we compute the entries of
Ag and A∗g in terms of the eigenvalues of A, the eigenvalues of A∗, the
first split sequence and the second split sequence.

2. Leonard systems. When working with a Leonard pair, it is often
convenient to consider a closely related and somewhat more abstract
object, which we call a Leonard system. In order to define this, we first
make an observation about Leonard pairs.

Lemma 2.1 [44]. Let V denote a vector space over K with finite
positive dimension, and let A,A∗ denote a Leonard pair on V . Then
the eigenvalues of A are distinct and contained in K. Moreover, the
eigenvalues of A∗ are distinct and contained in K.

To prepare for our definition of a Leonard system, we recall a few
concepts from elementary linear algebra. Let d denote a nonnegative
integer, and let Matd+1(K) denote the K-algebra consisting of all d+1
by d+1 matrices with entries in K. We index the rows and columns by
0, 1, . . . , d. Let A denote a K-algebra isomorphic to Matd+1(K). Let A
denote an element of A. By an eigenvalue of A, we mean a root of the
minimal polynomial of A. The eigenvalues of A are contained in the
algebraic closure of K. The element A will be called multiplicity-free
whenever it has d + 1 distinct eigenvalues, all of which are in K. Let
A denote a multiplicity-free element of A. Let θ0, θ1, . . . , θd denote an
ordering of the eigenvalues of A, and for 0 ≤ i ≤ d, put

(4) Ei =
∏

0≤j≤d
j �=i

A− θjI
θi − θj ,

where I denotes the identity of A. By elementary linear algebra,

AEi = EiA = θiEi, 0 ≤ i ≤ d,(5)
EiEj = δijEi, 0 ≤ i, j ≤ d,(6)
d∑

i=0

Ei = I.(7)
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From this, one finds E0, E1, . . . , Ed is a basis for the subalgebra of
A generated by A. We refer to Ei as the primitive idempotent of A
associated with θi. It is helpful to think of these primitive idempotents
as follows. Let V denote the irreducible left A-module. Then

(8) V = E0V + E1V + · · · + EdV, direct sum.

For 0 ≤ i ≤ d, EiV is the (one-dimensional) eigenspace of A in V
associated with the eigenvalue θi, and Ei acts on V as the projection
onto this eigenspace.

Definition 2.2 [44]. Let d denote a nonnegative integer, let K denote
a field, and let A denote a K-algebra isomorphic to Matd+1(K). By a
Leonard system in A, we mean a sequence

(9) Φ = (A;E0, E1, . . . , Ed;A∗;E∗
0 , E

∗
1 , . . . , E

∗
d)

that satisfies (i) (v) below.

(i) A,A∗ are both multiplicity-free elements in A.

(ii) E0, E1, . . . , Ed is an ordering of the primitive idempotents of A.

(iii) E∗
0 , E

∗
1 , . . . , E

∗
d is an ordering of the primitive idempotents of A∗.

(iv) EiA
∗Ej =

{
0 if |i− j| > 1
�= 0 if |i− j| = 1;

0 ≤ i, j ≤ d.

(v) E∗
i AE

∗
j =

{
0 if |i− j| > 1
�= 0 if |i− j| = 1;

0 ≤ i, j ≤ d.

We refer to d as the diameter of Φ and say Φ is over K. We sometimes
write A = A(Φ), K = K(Φ). For notational convenience, we set
E−1 = 0, Ed+1 = 0, E∗

−1 = 0, E∗
d+1 = 0.

In the two lemmas below, we explain the relationship between the
notions of Leonard pair and Leonard system. We will use the following
notation. Let V denote a vector space over K with finite positive
dimension. We let End (V ) denote the K-algebra consisting of all
linear transformations from V to V . We recall End (V ) is K-algebra
isomorphic to Matd+1(K), where d+ 1 = dimV .

Lemma 2.3. Let V denote a vector space over K with finite positive
dimension. Let A,A∗ denote a Leonard pair on V , and observe each
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of A,A∗ is multiplicity-free by Lemma 2.1. Let v0, v1, . . . , vd denote a
basis for V that satisfies Definition 1.1 (i). For 0 ≤ i ≤ d, observe vi is
an eigenvector for A; let θi denote the corresponding eigenvalue, and let
Ei denote the primitive idempotent of A associated with θi. Similarly,
let v∗0 , v∗1 , . . . , v∗d denote a basis for V that satisfies Definition 1.1 (ii).
For 0 ≤ i ≤ d, observe v∗i is an eigenvector for A∗; let θ∗i denote the
corresponding eigenvalue, and let E∗

i denote the primitive idempotent
of A∗ associated with θ∗i . Then the sequence

(A;E0, E1, . . . , Ed;A∗;E∗
0 , E

∗
1 , . . . , E

∗
d)

is a Leonard system in End (V ).

Proof. We verify the conditions (i) (v) of Definition 2.2. Condition (i)
is immediate from Lemma 2.1 and the definition of multiplicity-free.
Conditions (ii) and (iii) are immediate from the construction. Condi-
tion (iv) holds, since by Definition 1.1(i) the matrix representing A∗

with respect to the basis v0, v1, . . . , vd is irreducible tridiagonal. Con-
dition (v) holds, since by Definition 1.1(ii) the matrix representing A
with respect to the basis v∗0 , v∗1 , . . . , v∗d is irreducible tridiagonal.

Lemma 2.4. Let Φ denote the Leonard system in (9), and let V
denote the irreducible left A-module. For 0 ≤ i ≤ d, let vi denote
a nonzero vector in EiV . Then v0, v1, . . . , vd is a basis for V with
respect to which the matrix representing A is diagonal and the matrix
representing A∗ is irreducible tridiagonal. For 0 ≤ i ≤ d, let v∗i denote
a nonzero vector in E∗

i V . Then v∗0 , v∗1 , . . . , v∗d is a basis for V with
respect to which the matrix representing A∗ is diagonal and the matrix
representing A is irreducible tridiagonal. Moreover the pair A,A∗ is a
Leonard pair on V .

Proof. Routine.

We mention a few basics concerning Leonard systems.

Let Φ denote the Leonard system in (9), and let σ : A → A′ denote
an isomorphism of K-algebras. We write

(10) Φσ := (Aσ;Eσ
0 , E

σ
1 , . . . , E

σ
d ;A∗σ;E∗σ

0 , E
∗σ
1 , . . . , E

∗σ
d ),
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and observe Φσ is a Leonard system in A′.

Definition 2.5 [44]. Let Φ and Φ′ denote Leonard systems over K.
By an isomorphism of Leonard systems from Φ to Φ′, we mean an
isomorphism of K-algebras σ : A(Φ) → A(Φ′) such that Φσ = Φ′. The
Leonard systems Φ,Φ′ are said to be isomorphic whenever there exists
an isomorphism of Leonard systems from Φ to Φ′.

We finish this section with a remark. Let d denote a nonnegative
integer, and let A denote a K-algebra isomorphic to Matd+1(K). Let
σ : A → A denote any map. Then by the Skolem-Noether theorem
[9], σ is an isomorphism of K-algebras if and only if there exists an
invertible S ∈ A such that Xσ = SXS−1 for all X ∈ A.

3. The structure of a Leonard system. Let Φ denote the
Leonard system in (9). In this section we show there does not exist
an isomorphism of Leonard systems from Φ to itself, other than the
identity map. We begin with a lemma.

Lemma 3.1. Let Φ denote the Leonard system in (9). Then the
elements

(11) ArE∗
0A

s, 0 ≤ r, s ≤ d
form a basis for A.

Proof. The number of elements in (11) equals (d + 1)2, and this
number is the dimension of A. Therefore it suffices to show the
elements in (11) are linearly independent. To do this we represent
the elements in (11) by matrices. Let V denote the irreducible left
A-module. For 0 ≤ i ≤ d, let vi denote a nonzero vector in E∗

i V
and observe v0, v1, . . . , vd is a basis for V . For the purposes of this
proof, let us identify each element of A with the matrix in Matd+1(K)
that represents it with respect to the basis v0, v1, . . . , vd. Adopting
this point of view, A is irreducible tridiagonal and A∗ is diagonal. For
0 ≤ r, s ≤ d, we show the entries of ArE∗

0A
s satisfy

(12) (ArE∗
0A

s)ij =




0 if i > r or j > s

0 ≤ i, j ≤ d
�= 0 if i = r and j = s,

.
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Observe that for 0 ≤ i, j ≤ d, the ijth entry of E∗
0 is one if both

i = 0, j = 0 and zero otherwise. From this we find

(13) (ArE∗
0A

s)ij = Ar
i0A

s
0j , 0 ≤ i, j ≤ d.

Since A is irreducible tridiagonal, we find that for 0 ≤ i ≤ d, the i0th
entry of Ar is zero if i > r and nonzero if i = r. Similarly for 0 ≤ j ≤ d,
the 0jth entry of As is zero if j > s and nonzero if j = s. Combining
these facts with (13) we routinely obtain (12) and it follows that the
elements (11) are linearly independent. Apparently the elements (11)
form a basis for A, as desired.

Corollary 3.2. Let Φ denote the Leonard system in (9). Then
the elements A,E∗

0 together generate A. Moreover, the elements A,A∗

together generate A.

Proof. The first assertion is immediate from Lemma 3.1. The
second assertion follows from the first and the observation that E∗

0

is a polynomial in A∗.

We mention a useful consequence of Corollary 3.2.

Corollary 3.3. Let Φ denote the Leonard system (9), and let X
denote an element in A that commutes with both A and A∗. Then X
is a scalar multiple of the identity. Put another way, there does not
exist an isomorphism of Leonard system from Φ to itself, other than
the identity map.

Proof. Since A,A∗ together generate A, we find X commutes with
everything in A. Now X is a scalar multiple of the identity by
elementary linear algebra. The last assertion follows in view of our
remark at the end of Section 2.

We mention an implication of Lemma 3.1 that will be useful later in
the paper.

Lemma 3.4. Let Φ denote the Leonard system in (9). Let D denote
the subalgebra of A generated by A, and observe D has dimension d+1
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since A is multiplicity-free. Let X0, X1, . . . , Xd denote a basis for D.
Then the elements

(14) XrE
∗
0Xs, 0 ≤ r, s ≤ d

form a basis for A.

Proof. The number of elements in (14) is (d + 1)2, and this number
is the dimension of A. Therefore it suffices to show the elements (14)
span A. But this is immediate from Lemma 3.1 and, since each element
in (11) is contained in the span of the elements (14).

Corollary 3.5. Let Φ denote the Leonard system in (9). Then the
elements

(15) ErE
∗
0Es, 0 ≤ r, s ≤ d

form a basis for A.

Proof. Immediate from Lemma 3.4, with Xi = Ei for 0 ≤ i ≤ d.

4. The relatives of a Leonard system. A given Leonard system
can be modified in several ways to get a new Leonard system. For
instance, let Φ denote the Leonard system in (9). Then each of the
following three sequences is a Leonard system in A.

Φ∗ := (A∗;E∗
0 , E

∗
1 , . . . , E

∗
d ;A;E0, E1, . . . , Ed),(16)

Φ↓ := (A;E0, E1, . . . , Ed;A∗;E∗
d , E

∗
d−1, . . . , E

∗
0 ),(17)

Φ⇓ := (A;Ed, Ed−1, . . . , E0;A∗;E∗
0 , E

∗
1 , . . . , E

∗
d).(18)

We refer to Φ∗, (respectively Φ↓), (respectively Φ⇓), as the dual,
(respectively first inversion), (respectively second inversion), of Φ.
Viewing ∗, ↓,⇓ as permutations on the set of all Leonard systems,

∗∗ =↓2=⇓2= 1,(19)
⇓ ∗ = ∗ ↓, ↓ ∗ = ∗ ⇓, ↓⇓=⇓↓ .(20)

The group generated by symbols ∗, ↓,⇓ subject to the relations (19) and
(20) is the dihedral group D4. We recall D4 is the group of symmetries
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of a square and has 8 elements. Apparently ∗, ↓,⇓ induce an action of
D4 on the set of all Leonard systems. Two Leonard systems will be
called relatives whenever they are in the same orbit of this D4 action.
The relatives of Φ are as follows:

name relative
Φ (A;E0, E1, . . . , Ed;A∗;E∗

0 , E
∗
1 , . . . , E

∗
d)

Φ↓ (A;E0, E1, . . . , Ed;A∗;E∗
d , E

∗
d−1, . . . , E

∗
0)

Φ⇓ (A;Ed, Ed−1, . . . , E0;A∗;E∗
0 , E

∗
1 , . . . , E

∗
d)

Φ↓⇓ (A;Ed, Ed−1, . . . , E0;A∗;E∗
d , E

∗
d−1, . . . , E

∗
0 )

Φ∗ (A∗;E∗
0 , E

∗
1 , . . . , E

∗
d ;A;E0, E1, . . . , Ed)

Φ↓∗ (A∗;E∗
d , E

∗
d−1, . . . , E

∗
0 ;A;E0, E1, . . . , Ed)

Φ⇓∗ (A∗;E∗
0 , E

∗
1 , . . . , E

∗
d ;A;Ed, Ed−1, . . . , E0)

Φ↓⇓∗ (A∗;E∗
d , E

∗
d−1, . . . , E

∗
0 ;A;Ed, Ed−1, . . . , E0)

We remark that there may be some isomorphisms among the above
Leonard systems.

We finish this section by recalling some parameters that will help us
describe a given Leonard system.

Definition 4.1 [44]. Let Φ denote the Leonard system in (9). For
0 ≤ i ≤ d, we let θi, (respectively θ∗i ), denote the eigenvalue of A,
(respectively A∗), associated with Ei, (respectively E∗

i ). We refer to
θ0, θ1, . . . , θd as the eigenvalue sequence of Φ. We refer to θ∗0 , θ

∗
1 , . . . , θ

∗
d

as the dual eigenvalue sequence of Φ. We observe θ0, θ1, . . . , θd are
mutually distinct and contained in K. Similarly, θ∗0 , θ∗1 , . . . , θ∗d are
mutually distinct and contained in K.

5. The standard basis and the split basis. Let Φ denote the
Leonard system in (9), and let V denote the irreducible left A-module.
As we mentioned earlier, we will obtain 24 bases for V . One way to
view our construction is as follows. Using Φ we define three bases for
V , called the Φ-standard basis, the Φ-split basis and the Φ-inverted split
basis. In each of the three cases, the basis is defined up to multiplication
of each element by the same nonzero scalar in K. Our set of 24 bases
will consist of a Ψ-standard basis, a Ψ-split basis and a Ψ-inverted split
basis for each relative Ψ of Φ.
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We now define the notion of a standard basis.

Lemma 5.1. Let Φ denote the Leonard system in (9) and let V
denote the irreducible left A-module. Let u denote a nonzero element
of E∗

0V . Then for 0 ≤ i ≤ d, the element Eiu is nonzero and hence a
basis for EiV . Moreover the sequence

(21) E0u,E1u, . . . , Edu

is a basis for V .

Proof. Let the integer i be given. Recall E∗
0V has dimension 1

and u is a nonzero vector in E∗
0V , so u spans E∗

0V . Apparently Eiu
spans EiE

∗
0V . Observe EiE

∗
0 is nonzero by Corollary 3.5 so EiE

∗
0V is

nonzero. Apparently Eiu is nonzero and is therefore a basis for EiV as
desired. The sequence (21) is a basis for V in view of (8).

Definition 5.2. Let Φ denote the Leonard system in (9) and let V
denote the irreducible left A-module. By a Φ-standard basis for V , we
mean a sequence (21) where u is a nonzero vector in E∗

0V . When the
identity of Φ is clear, we will occasionally speak of a standard basis
instead of a Φ-standard basis.

Let Φ denote the Leonard system in (9), and let V denote the
irreducible left A-module. With respect to any Φ-standard basis for
V , the matrix representing A is

diag (θ0, θ1, . . . , θd),

where the θi are from Definition 4.1. Moreover, by Lemma 2.4, the
matrix representing A∗ is irreducible tridiagonal. We will work out the
entries of this tridiagonal matrix in due course, but it is convenient to
wait until after we have introduced some more bases. For those who
wish to skip ahead, the entries of this tridiagonal matrix can be found
in the second table of Theorem 11.2, row 1.

We now define the notion of a split basis. In the process we will recall
two sequences of scalars which we will find useful. These sequences are
called the first split sequence of Φ and the second split sequence of Φ.
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In order to define a split basis, we review some results of [25],
[44]. Let Φ denote the Leonard system in (9), and let V denote the
irreducible left A-module. For 0 ≤ i ≤ d, we define

(22) Ui = (E∗
0V + E∗

1V + · · · + E∗
i V ) ∩ (EiV + Ei+1V + · · · + EdV ).

We showed in [25] that each of U0, U1, . . . , Ud has dimension 1 and that

(23) V = U0 + U1 + · · · + Ud, direct sum.

Moreover,

U0 + U1 + · · · + Ui = E∗
0V + E∗

1V + · · · + E∗
i V,(24)

Ui + Ui+1 + · · · + Ud = EiV + Ei+1V + · · · + EdV(25)

for 0 ≤ i ≤ d. The elements A and A∗ act on the Ui as follows. We
showed in [44] that

(A− θiI)Ui = Ui+1, 0 ≤ i ≤ d− 1, (A− θdI)Ud = 0,
(26)

(A∗ − θ∗i I)Ui = Ui−1, 1 ≤ i ≤ d, (A∗ − θ∗0I)U0 = 0,
(27)

where the θi, θ∗i are from Definition 4.1. Pick an integer i, (1 ≤
i ≤ d). By (27) we find (A∗ − θ∗i I)Ui = Ui−1 and by (26) we find
(A − θi−1I)Ui−1 = Ui. Apparently Ui is an eigenspace for (A −
θi−1I)(A∗−θ∗i I) and the corresponding eigenvalue is a nonzero element
of K. We denote this eigenvalue by ϕi. We refer to the sequence
ϕ1, ϕ2, . . . , ϕd as the first split sequence of Φ. We let φ1, φ2, . . . , φd

denote the first split sequence for Φ⇓ and call this the second split
sequence of Φ. For notational convenience, we define ϕ0 = 0, ϕd+1 = 0,
φ0 = 0, φd+1 = 0.

We obtain our split basis as follows. Setting i = 0 in (24) we find
U0 = E∗

0V . Combining this with (26), we find

(28) Ui = (A− θ0I)(A− θ1I) · · · (A− θi−1I)E∗
0V, 0 ≤ i ≤ d.

Let u denote a nonzero vector in E∗
0V . From (28) we find that for

0 ≤ i ≤ d, the vector (A− θ0I) · · · (A− θi−1I)u is a basis for Ui. From
this and (23) we find the sequence

(29) (A− θ0I)(A− θ1I) · · · (A− θi−1I)u, 0 ≤ i ≤ d



842 P. TERWILLIGER

is a basis for V .

Definition 5.3. Let Φ denote the Leonard system in (9), and let V
denote the irreducible left A-module. By a Φ-split basis for V , we
mean a sequence (29) where u is a nonzero vector in E∗

0V . When the
identity of Φ is clear, we will occasionally speak of a split basis instead
of a Φ-split basis.

Let Φ denote the Leonard system in (9), and let V denote the
irreducible left A-module. From (29) and the lines below (27), we find
that with respect to any Φ-split basis for V , the matrices representing
A and A∗ are

(30)




θ0 0
1 θ1

1 θ2
· ·

· ·
0 1 θd


 ,




θ∗0 ϕ1 0
θ∗1 ϕ2

θ∗2 ·
· ·

· ϕd

0 θ∗d


 ,

respectively.

We now define the notion of an inverted split basis. As its name
implies, an inverted split basis is nothing but the inversion of a split
basis. To be concrete, we make the following definition.

Definition 5.4. Let Φ denote the Leonard system in (9), and let V
denote the irreducible left A-module. By a Φ-inverted split basis for
V , we mean a sequence

(31) (A− θ0I)(A− θ1I) · · · (A− θd−i−1I)u, 0 ≤ i ≤ d,

where u is a nonzero vector in E∗
0V . When the identity of Φ is clear, we

will occasionally speak of an inverted split basis instead of a Φ-inverted
split basis.

Let Φ denote the Leonard system in (9), and let V denote the
irreducible left A-module. Combining (30) with Definition 5.4, we find
that with respect to any Φ-inverted split basis for V , the matrices
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representing A and A∗ are
(32)


θd 1 0
θd−1 1

θd−2 ·
· ·

· 1
0 θ0


 ,




θ∗d 0
ϕd θ∗d−1

ϕd−1 θ∗d−2

· ·
· ·

0 ϕ1 θ∗0


 ,

respectively.

6. A classification of Leonard systems. In the preceding section
we defined the first and second split sequence of a Leonard system.
The scalars involved in these sequences are related by many equations.
To describe these relationships we recall our classification of Leonard
systems.

Theorem 6.1 [44]. Let d denote a nonnegative integer, and let

θ0, θ1, . . . , θd; θ∗0 , θ
∗
1 , . . . , θ

∗
d;(33)

ϕ1, ϕ2, . . . , ϕd; φ1, φ2, . . . , φd(34)

denote scalars in K. Then there exists a Leonard system Φ over
K with eigenvalue sequence θ0, θ1, . . . , θd, dual eigenvalue sequence
θ∗0 , θ

∗
1 , . . . , θ

∗
d, first split sequence ϕ1, ϕ2, . . . , ϕd, and second split se-

quence φ1, φ2, . . . , φd if and only if (i) (v) hold below.

(i) ϕi �= 0, φi �= 0, 1 ≤ i ≤ d,
(ii) θi �= θj , θ∗i �= θ∗j if i �= j, 0 ≤ i, j ≤ d,
(iii) ϕi = φ1

∑i−1
h=0

θh−θd−h

θ0−θd
+ (θ∗i − θ∗0)(θi−1 − θd), 1 ≤ i ≤ d,

(iv) φi = ϕ1

∑i−1
h=0

θh−θd−h

θ0−θd
+ (θ∗i − θ∗0)(θd−i+1 − θ0), 1 ≤ i ≤ d,

(v) The expressions

(35)
θi−2 − θi+1

θi−1 − θi ,
θ∗i−2 − θ∗i+1

θ∗i−1 − θ∗i
are equal and independent of i for 2 ≤ i ≤ d− 1.
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Moreover, if (i) (v) hold above, then Φ is unique up to isomorphism
of Leonard systems.

We view Theorem 6.1 as a linear algebraic version of a theorem of
Leonard [32], [4, page 260]. This is discussed in [44].

One nice feature of the parameter sequences (33) and (34) is that
they are modified in a simple way as one passes from a given Leonard
system to a relative. Our result is the following

Theorem 6.2 [44]. Let Φ denote a Leonard system with eigenvalue
sequence θ0, θ1, . . . , θd, dual eigenvalue sequence θ∗0 , θ∗1 , . . . , θ∗d, first
split sequence ϕ1, ϕ2, . . . , ϕd and second split sequence φ1, φ2, . . . , φd.
Then (i) (iii) hold below.

(i) The eigenvalue and dual eigenvalue sequences of Φ∗ are given
by θ∗0 , θ

∗
1 , . . . , θ

∗
d and θ0, θ1, . . . , θd, respectively. The first and second

split sequences of Φ∗ are given by ϕ1, ϕ2, . . . , ϕd and φd, φd−1, . . . , φ1,
respectively.

(ii) The eigenvalue and dual eigenvalue sequences of Φ↓ are given by
θ0, θ1, . . . , θd and θ∗d, θ

∗
d−1, . . . , θ

∗
0, respectively. The first and second

split sequences of Φ↓ are given by φd, φd−1, . . . , φ1 and ϕd, ϕd−1, . . . , ϕ1,
respectively.

(iii) The eigenvalue and dual eigenvalue sequences of Φ⇓ are given by
θd, θd−1, . . . , θ0 and θ∗0 , θ

∗
1 , . . . , θ

∗
d, respectively. The first and second

split sequences of Φ⇓ are given by φ1, φ2, . . . , φd and ϕ1, ϕ2, . . . , ϕd,
respectively.

7. Four flags for V . Let Φ denote the Leonard system in (9),
and let V denote the irreducible left A-module. We mentioned earlier
we will obtain 24 bases for V . In Section 5 we described these bases
to some extent, but we stopped short of displaying them. The reason
is we wish to first introduce our labeling scheme. As we indicated in
Section 1, it is appropriate to label our bases with elements of S4. We
begin with a definition.

Definition 7.1. Let Ω denote the set consisting of four symbols
0, d, 0∗, d∗. We identify the symmetric group S4 with the set of all linear
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orderings of Ω. For i = 1, 2, 3, we define a symmetric binary relation on
S4 which we call i-adjacency. An element wxyz of S4 is by definition 1-
adjacent, (respectively 2-adjacent), (respectively 3-adjacent), to xwyz,
(respectively wyxz), (respectively wxzy), and no other elements of S4.
Two elements in S4 will be called adjacent whenever they are i-adjacent
for some i, (1 ≤ i ≤ 3).

Let Φ denote the Leonard system in (9), and let V denote the
irreducible left A-module. We recall the notion of a flag on V . By
a flag on V , we mean a sequence F0, F1, . . . , Fd consisting of subspaces
of V such that Fi−1 ⊆ Fi for 1 ≤ i ≤ d and such that Fi has dimension
i+ 1 for 0 ≤ i ≤ d. We refer to Fi as the ith component of the flag.

The following construction yields a flag on V . To explain the
construction we make a definition. By a decomposition of V , we mean
a sequence L0, L1, . . . , Ld consisting of one-dimensional subspaces of V
such that

(36) V = L0 + L1 + · · · + Ld, (direct sum).

Let L0, L1, . . . , Ld denote a decomposition of V , and set

Fi = L0 + L1 + · · · + Li

for 0 ≤ i ≤ d. Then the sequence F0, F1, . . . , Fd is a flag on V .

We will be concerned with the following four flags on V .

Definition 7.2. Let Φ denote the Leonard system in (9), and let V
denote the irreducible left A-module. Let the set Ω be as in Definition
7.1. For each element z ∈ Ω, we define a flag on V which we denote by
[z]. To define this flag, we display its ith component for 0 ≤ i ≤ d.

z ith component of the flag [z]
0 E0V + E1V + · · · + EiV

d EdV + Ed−1V + · · · + Ed−iV

0∗ E∗
0V + E∗

1V + · · · + E∗
i V

d∗ E∗
dV + E∗

d−1V + · · · + E∗
d−iV

Let Φ denote the Leonard system in (9), and let V denote the
irreducible left A-module. We recall what it means for two flags on
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V to be opposite. Suppose we are given two flags on V , denoted
F0, F1, . . . , Fd and G0, G1, . . . , Gd. These flags are said to be opposite
whenever

(37) Fi ∩Gj = 0 if i+ j < d, 0 ≤ i, j ≤ d.

Given a decomposition of V , the following construction yields an
ordered pair of opposite flags on V . Let L0, L1, . . . , Ld denote a
decomposition of V , and set

(38)
Fi = L0 + L1 + · · · + Li,

Gi = Ld + Ld−1 + · · · + Ld−i

for 0 ≤ i ≤ d. Then the sequences F0, F1, . . . , Fd and G0, G1, . . . , Gd

are opposite flags on V .

We now turn things around. Given an ordered pair of opposite
flags on V , the following construction yields a decomposition of V .
Suppose we are given an ordered pair of opposite flags on V , denoted
F0, F1, . . . , Fd and G0, G1, . . . , Gd. Set

(39) Li = Fi ∩Gd−i, 0 ≤ i ≤ d.

Then the sequence L0, L1, . . . , Ld is a decomposition of V .

Let D denote the set consisting of all decompositions of V , and let
F denote the set consisting of all ordered pairs of opposite flags on V .
In the previous two paragraphs, we defined a map from D to F and a
map from F to D. It is routine to show that these maps are inverses
of one another [34]. In particular, each of these maps is a bijection.

We now return to the Leonard system Φ.

Theorem 7.3. The four flags in Definition 7.2 are mutually oppo-
site.

Proof. It is immediate from the construction that flags [0], [d] are
opposite, and that flags [0∗], [d∗] are opposite. We now show the flags
[0∗], [d] are opposite. For 0 ≤ i ≤ d, let Ui denote the subspace of
V from (22). By the two lines following (22), we find the sequence
U0, U1, . . . , Ud is a decomposition of V . By (24), (25) and the line
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following (38), we find the flags [0∗], [d] are opposite. Applying this
fact to the relatives of Φ, we see that the remaining pairs of flags in
Definition 7.2 are opposite.

8. Twelve decompositions of V . Let Φ denote the Leonard
system in (9), let V denote the irreducible left A-module, and let the
set Ω be as in Definition 7.1. In this section we obtain for each ordered
pair yz of distinct elements in Ω, a decomposition of V which we denote
by [yz].

Definition 8.1. Let Φ denote the Leonard system in (9), let V denote
the irreducible left A-module and let the set Ω be as in Definition 7.1.
Let yz denote an ordered pair of distinct elements in Ω. Set

Li = Fi ∩Gd−i, 0 ≤ i ≤ d,

where Fj , (respectively Gj), denotes the jth component of the flag [y],
(respectively [z]), for 0 ≤ j ≤ d. Recall [y] and [z] are opposite, so
the sequence L0, L1, . . . , Ld is a decomposition of V . We denote this
decomposition by [yz].

With reference to Definition 8.1, we remark on the difference be-
tween [yz] and [zy]. To do this we use the following notation. Let
L0, L1, . . . , Ld denote a decomposition of V . Then the sequence
Ld, Ld−1, . . . , L0 is a decomposition of V , which we call the inversion
of L0, L1, . . . , Ld.

Lemma 8.2. Let Φ denote the Leonard system in (9), let V denote
the irreducible left A-module, and let the set Ω be as in Definition 7.1.
Let y, z denote distinct elements in Ω. Then each of the decompositions
[yz], [zy] is the inversion of the other.

Proof. Immediate from Definition 8.1 and the definition of inversion.

Let Φ denote the Leonard system in (9), let V denote the irreducible
left A-module, and let the set Ω be as in Definition 7.1. In Definition 8.1
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we obtained for each ordered pair yz of distinct elements in Ω, a
decomposition of V denoted [yz]. This gives 12 decompositions of V .
By Lemma 8.2 these consist of six pairs of inverse decompositions. To
be concrete, we now display these decompositions.

Theorem 8.3. Let Φ denote the Leonard system in (9), let V denote
the irreducible left A-module, and let the set Ω be as in Definition 7.1.
Let yz denote an ordered pair of distinct elements in Ω, and consider
the corresponding decomposition [yz] of V from Definition 8.1. For
0 ≤ i ≤ d, the ith subspace of [yz] is given in the following table.

yz ith subspace of decomposition [yz]
0∗d (E∗

0V + · · · + E∗
i V ) ∩ (EiV + · · · + EdV )

d0∗ (E∗
0V + · · · + E∗

d−iV ) ∩ (Ed−iV + · · · + EdV )
0d∗ (E0V + · · · + EiV ) ∩ (E∗

i V + · · · + E∗
dV )

d∗0 (E0V + · · · + Ed−iV ) ∩ (E∗
d−iV + · · · + E∗

dV )
00∗ (E0V + · · · + EiV ) ∩ (E∗

d−iV + · · · + E∗
0V )

0∗0 (E0V + · · · + Ed−iV ) ∩ (E∗
i V + · · · + E∗

0V )
dd∗ (EdV + · · · + Ed−iV ) ∩ (E∗

i V + · · · + E∗
dV )

d∗d (EdV + · · · + EiV ) ∩ (E∗
d−iV + · · · + E∗

dV )
0d EiV

d0 Ed−iV

0∗d∗ E∗
i V

d∗0∗ E∗
d−iV

Describing our 12 decompositions from another point of view, we have
the following.

Theorem 8.4. Let Φ denote the Leonard system in (9), let V denote
the irreducible left A-module, and let the set Ω be as in Definition 7.1.
Let yz denote an ordered pair of distinct elements in Ω, and consider
the corresponding decomposition [yz] from Definition 8.1. Let us denote
this decomposition by L0, L1, . . . , Ld. Then for 0 ≤ i ≤ d, the sums
L0 + L1 + · · · + Li and Li + Li+1 + · · · + Ld are given as follows.
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yz L0 + · · · + Li Li + · · · + Ld

0∗d E∗
0V + · · · + E∗

i V EiV + · · · + EdV

d0∗ EdV + · · · + Ed−iV E∗
d−iV + · · · + E∗

0V

0d∗ E0V + · · · + EiV E∗
i V + · · · + E∗

dV

d∗0 E∗
dV + · · · + E∗

d−iV Ed−iV + · · · + E0V

00∗ E0V + · · · + EiV E∗
d−iV + · · · + E∗

0V

0∗0 E∗
0V + · · · + E∗

i V Ed−iV + · · · + E0V

dd∗ EdV + · · · + Ed−iV E∗
i V + · · · + E∗

dV

d∗d E∗
dV + · · · + E∗

d−iV EiV + · · · + EdV

0d E0V + · · · + EiV EiV + · · · + EdV

d0 EdV + · · · + Ed−iV Ed−iV + · · · + E0V

0∗d∗ E∗
0V + · · · + E∗

i V E∗
i V + · · · + E∗

dV

d∗0∗ E∗
dV + · · · + E∗

d−iV E∗
d−iV + · · · + E∗

0V

9. 24 bases for V . Let Φ denote the Leonard system in (9), and
let V denote the irreducible left A-module. For each element g ∈ S4,
we display a basis for V , denoted [g]. To describe our procedure we use
the following notation.

Let u0, u1, . . . , ud denote a basis for V , and set Li = Span (ui) for
0 ≤ i ≤ d. Observe the sequence L0, L1, . . . , Ld is a decomposition of
V . We say this decomposition is induced by u0, u1, . . . , ud.

Let the set Ω be as in Definition 7.1, and let yz denote an ordered pair
of distinct elements of Ω. Consider the corresponding decomposition of
V , denoted [yz]. We define two bases for V , both of which induce [yz].
We denote these bases by [wxyz] and [xwyz] where w and x denote
the elements in Ω other than y, z. Apparently this procedure yields,
for each g ∈ S4, a basis [g] for V . These 24 bases are displayed below.

Theorem 9.1. Let Φ denote the Leonard system in (9), and let V
denote the irreducible left A-module. Let η0, ηd, η∗0 , η

∗
d denote nonzero

vectors in V such that

(40) η0 ∈ E0V, ηd ∈ EdV, η∗0 ∈ E∗
0V, η∗d ∈ E∗

dV.

With reference to Definition 7.1, let g denote an element of S4 and
consider row g of the table below. For 0 ≤ i ≤ d, the vector vi given
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in that row is a basis for the subspace given to its right. Moreover, the
sequence v0, v1, . . . , vd is a basis for V . We denote this basis by [g].

g vi vi is basis for

d∗00∗d (A − θ0) · · · (A − θi−1)η∗
0 (E∗

0V + · · · + E∗
i V ) ∩ (EiV + · · · + EdV )

0d∗0∗d (A∗ − θ∗d) · · · (A∗ − θ∗i+1)ηd (E∗
0V + · · · + E∗

i V ) ∩ (EiV + · · · + EdV )

d∗0d0∗ (A − θ0) · · · (A − θd−i−1)η∗
0 (E∗

0V + · · · + E∗
d−iV ) ∩ (Ed−iV + · · · + EdV )

0d∗d0∗ (A∗ − θ∗d) · · · (A∗ − θ∗d−i+1)ηd (E∗
0V + · · · + E∗

d−iV ) ∩ (Ed−iV + · · · + EdV )

d0∗0d∗ (A∗ − θ∗0) · · · (A∗ − θ∗i−1)η0 (E0V + · · · + EiV ) ∩ (E∗
i V + · · · + E∗

dV )

0∗d0d∗ (A − θd) · · · (A − θi+1)η∗
d (E0V + · · · + EiV ) ∩ (E∗

i V + · · · + E∗
dV )

d0∗d∗0 (A∗ − θ∗0) · · · (A∗ − θ∗d−i−1)η0 (E0V + · · · + Ed−iV ) ∩ (E∗
d−iV + · · · + E∗

dV )

0∗dd∗0 (A − θd) · · · (A − θd−i+1)η∗
d (E0V + · · · + Ed−iV ) ∩ (E∗

d−iV + · · · + E∗
dV )

dd∗00∗ (A∗ − θ∗d) · · · (A∗ − θ∗d−i+1)η0 (E0V + · · · + EiV ) ∩ (E∗
d−iV + · · · + E∗

0V )

d∗d00∗ (A − θd) · · · (A − θi+1)η∗
0 (E0V + · · · + EiV ) ∩ (E∗

d−iV + · · · + E∗
0V )

dd∗0∗0 (A∗ − θ∗d) · · · (A∗ − θ∗i+1)η0 (E0V + · · · + Ed−iV ) ∩ (E∗
i V + · · · + E∗

0V )

d∗d0∗0 (A − θd) · · · (A − θd−i+1)η∗
0 (E0V + · · · + Ed−iV ) ∩ (E∗

i V + · · · + E∗
0V )

00∗dd∗ (A∗ − θ∗0) · · · (A∗ − θ∗i−1)ηd (EdV + · · · + Ed−iV ) ∩ (E∗
i V + · · · + E∗

dV )

0∗0dd∗ (A − θ0) · · · (A − θd−i−1)η∗
d (EdV + · · · + Ed−iV ) ∩ (E∗

i V + · · · + E∗
dV )

00∗d∗d (A∗ − θ∗0) · · · (A∗ − θ∗d−i−1)ηd (EdV + · · · + EiV ) ∩ (E∗
d−iV + · · · + E∗

dV )

0∗0d∗d (A − θ0) · · · (A − θi−1)η∗
d (EdV + · · · + EiV ) ∩ (E∗

d−iV + · · · + E∗
dV )

d∗0∗0d Eiη
∗
0 EiV

0∗d∗0d Eiη
∗
d EiV

d∗0∗d0 Ed−iη
∗
0 Ed−iV

0∗d∗d0 Ed−iη
∗
d Ed−iV

d00∗d∗ E∗
i η0 E∗

i V

0d0∗d∗ E∗
i ηd E∗

i V

d0d∗0∗ E∗
d−iη0 E∗

d−iV

0dd∗0∗ E∗
d−iηd E∗

d−iV

Proof. Concerning the first row of the above table, our assertions
follow from the lines preceding (29). Concerning the third row of the
above table, our assertions follow upon replacing i by d − i in the
first row. We have now proved our assertions for the first and third
rows of the table. Applying these assertions to the relatives of Φ, we
obtain the first 16 rows of the table. Consider the next remaining row,
where g equals d∗0∗0d. For this row, our assertions are immediate from
Lemma 5.1. Applying this result to the relatives of Φ, we obtain the
remaining rows of the table.
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We record a few observations.

Lemma 9.2. Referring to Theorem 9.1, for all elements wxyz in
S4, the basis [wxyz] from Theorem 9.1 induces the decomposition [yz]
of V from Definition 8.1.

Proof. Compare the data in Theorem 9.1 with the data in Theo-
rem 8.3.

Lemma 9.3. Let Φ denote the Leonard system in (9), and let V de-
note the irreducible left A-module. In the table below each basis for V
contained the first column, (respectively second column), (respectively
third column), is a Ψ-standard basis, (respectively Ψ-split basis), (re-
spectively Ψ-inverted split basis), where Ψ is the relative of Φ given to
the left of this basis.

Ψ Ψ-standard basis Ψ-split basis Ψ-inv. split basis
Φ [d∗0∗0d] [d∗00∗d] [d∗0d0∗]
Φ↓ [0∗d∗0d] [0∗0d∗d] [0∗0dd∗]
Φ⇓ [d∗0∗d0] [d∗d0∗0] [d∗d00∗]
Φ↓⇓ [0∗d∗d0] [0∗dd∗0] [0∗d0d∗]
Φ∗ [d00∗d∗] [d0∗0d∗] [d0∗d∗0]
Φ↓∗ [d0d∗0∗] [dd∗00∗] [dd∗0∗0]
Φ⇓∗ [0d0∗d∗] [00∗dd∗] [00∗d∗d]
Φ↓⇓∗ [0dd∗0∗] [0d∗d0∗] [0d∗0∗d]

Proof. Immediate from inspecting the table in Theorem 9.1.

Later in the paper we will compute, for each ordered pair g, h of
adjacent elements in S4, the entries in the transition matrix from the
basis [g] to the basis [h]. Before going that far, we say something
about the general nature of these transition matrices. First we recall
our terms.

Let Φ denote the Leonard system in (9), and let V denote the
irreducible left A-module. Suppose we are given two bases for V ,
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written u0, u1, . . . , ud and v0, v1, . . . , vd. By the transition matrix from
u0, u1, . . . , ud to v0, v1, . . . , vd, we mean the matrix T in Matd+1(K)
satisfying

(41) vj =
d∑

i=0

Tijui, 0 ≤ j ≤ d.

We recall a few properties of transition matrices. Let T denote the
transition matrix from u0, u1, . . . , ud to v0, v1, . . . , vd. Then T−1 exists
and equals the transition matrix from v0, v1, . . . , vd to u0, u1, . . . , ud.
Let w0, w1, . . . , wd denote a basis for V , and let S denote the transition
matrix from v0, v1, . . . , vd to w0, w1, . . . , wd. Then TS is the transition
matrix from u0, u1, . . . , ud to w0, w1, . . . , wd.

Lemma 9.4. Let Φ denote the Leonard system in (9), and let V
denote the irreducible left A-module. With reference to Definition 7.1,
let g, h denote adjacent elements in S4, and consider the corresponding
bases [g], [h] for V given in Theorem 9.1. Then (i) (iii) hold below.

(i) Suppose g, h are 1-adjacent. Then the transition matrix from [g]
to [h] is diagonal.

(ii) Suppose g, h are 2-adjacent. Then the transition matrix from [g]
to [h] is lower triangular.

(iii) Suppose g, h are 3-adjacent. Then [g] is the inversion of [h].

Proof. For notational convenience we write g = wxyz.

(i) In this case h = xwyz. Observe [g] and [h] both induce the
decomposition [yz] by Lemma 9.2, so the transition matrix from [g] to
[h] is diagonal.

(ii) In this case h = wyxz. By Lemma 9.2 the bases [g] and [h] induce
the decompositions [yz] and [xz], respectively. When we consider how
the decompositions [yz] and [xz] are related, we find the transition
matrix from [g] to [h] is lower triangular.

(iii) In this case h = wxzy. In the table of Theorem 9.1, for each
block we compare rows 1,3 and rows 2,4. We find in all cases [g] is the
inversion of [h].
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10. Some scalars. Our next goal is to compute the matrices
representing A and A∗ with respect to each of the bases in Theorem 9.1.
To describe the entries of these matrices, we will use the following
parameters.

Definition 10.1. Let Φ denote the Leonard system in (9). We define

(42) ai = trAE∗
i , a∗i = trA∗Ei, 0 ≤ i ≤ d,

where tr means trace.

The scalars ai, a
∗
i have the following interpretation.

Lemma 10.2. With reference to Definition 10.1,

E∗
i AE

∗
i = aiE

∗
i , 0 ≤ i ≤ d,(43)

EiA
∗Ei = a∗iEi, 0 ≤ i ≤ d.(44)

Proof. Concerning (43), let i be given. Since E∗
i is a rank 1

idempotent, a scalar αi ∈ K exists such that

(45) E∗
i AE

∗
i = αiE

∗
i .

Taking the trace of both sides of (45), and recalling XY, Y X have the
same trace, we routinely find αi = ai. We have now proved (43).
Applying this to Φ∗, we obtain (44).

Lemma 10.3. Let Φ denote the Leonard system in (9). Then for
0 ≤ i ≤ d, the scalar ai equals both

(46) θi +
ϕi

θ∗i − θ∗i−1

+
ϕi+1

θ∗i − θ∗i+1

, θd−i +
φi

θ∗i − θ∗i−1

+
φi+1

θ∗i − θ∗i+1

,

where θ∗−1, θ
∗
d+1 denote indeterminants. Moreover, the scalar a∗i equals

both

(47) θ∗i +
ϕi

θi − θi−1
+

ϕi+1

θi − θi+1
, θ∗d−i +

φd−i+1

θi − θi−1
+

φd−i

θi − θi+1
,
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where θ−1, θd+1 denote indeterminants.

Proof. Let the integer i be given. The scalar ai equals the expression
on the left in (46) by [44, Lemma 5.1]. Applying this fact to Φ⇓, and
using Theorem 6.2(iii), we find ai equals the expression on the right
in (46). We have now shown ai equals the two expressions in (46).
Applying this to Φ∗ and using Theorem 6.2(i), we find a∗i equals the
two expressions in (47).

11. The 24 bases; matrices representing A and A∗. In this
section we return to the 24 bases in Theorem 9.1. For each g ∈ S4, we
compute the matrices representing A and A∗ with respect to the basis
[g].

We use the following notation.

Definition 11.1. Let Φ denote the Leonard system in (9), and let V
denote the irreducible left A-module. With reference to Definition 7.1,
let g denote an element in S4. For all X ∈ A, we let Xg denote the
matrix in Matd+1(K) that represents X with respect to the basis [g],
where [g] is from Theorem 9.1. Denoting this basis by v0, v1, . . . , vd,
we have

Xvj =
d∑

i=0

Xg
ijvi, 0 ≤ j ≤ d.

We observe the map X → Xg is a K-algebra isomorphism from A to
Matd+1(K).

Theorem 11.2. Let g denote an element of S4. With reference to
Definition 11.1, the entries of Ag and A∗g are given in the tables below.
Any entry not displayed is zero.
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g Ag
i,i−1 Ag

ii Ag
i−1,i A∗g

i,i−1 A∗g
ii A∗g

i−1,i

d∗00∗d 1 θi 0 0 θ∗i ϕi

0d∗0∗d ϕi θi 0 0 θ∗i 1
d∗0d0∗ 0 θd−i 1 ϕd−i+1 θ∗d−i 0
0d∗d0∗ 0 θd−i ϕd−i+1 1 θ∗d−i 0
d0∗0d∗ 0 θi ϕi 1 θ∗i 0
0∗d0d∗ 0 θi 1 ϕi θ∗i 0
d0∗d∗0 ϕd−i+1 θd−i 0 0 θ∗d−i 1
0∗dd∗0 1 θd−i 0 0 θ∗d−i ϕd−i+1

dd∗00∗ 0 θi φd−i+1 1 θ∗d−i 0
d∗d00∗ 0 θi 1 φd−i+1 θ∗d−i 0
dd∗0∗0 φi θd−i 0 0 θ∗i 1
d∗d0∗0 1 θd−i 0 0 θ∗i φi

00∗dd∗ 0 θd−i φi 1 θ∗i 0
0∗0dd∗ 0 θd−i 1 φi θ∗i 0
00∗d∗d φd−i+1 θi 0 0 θ∗d−i 1
0∗0d∗d 1 θi 0 0 θ∗d−i φd−i+1

g Ag
ii A∗g

i,i−1

d∗0∗0d θi φd−i+1
(θi−θd)···(θi−θi+1)

(θi−1−θd)···(θi−1−θi)

0∗d∗0d θi ϕi
(θi−θd)···(θi−θi+1)

(θi−1−θd)···(θi−1−θi)

d∗0∗d0 θd−i ϕd−i+1
(θd−i−θ0)···(θd−i−θd−i−1)

(θd−i+1−θ0)···(θd−i+1−θd−i)

0∗d∗d0 θd−i φi
(θd−i−θ0)···(θd−i−θd−i−1)

(θd−i+1−θ0)···(θd−i+1−θd−i)
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A∗g
ii A∗g

i−1,i

a∗i ϕi
(θi−1−θ0)···(θi−1−θi−2)

(θi−θ0)···(θi−θi−1)

a∗i φd−i+1
(θi−1−θ0)···(θi−1−θi−2)

(θi−θ0)···(θi−θi−1)

a∗d−i φi
(θd−i+1−θd)···(θd−i+1−θd−i+2)

(θd−i−θd)···(θd−i−θd−i+1)

a∗d−i ϕd−i+1
(θd−i+1−θd)···(θd−i+1−θd−i+2)

(θd−i−θd)···(θd−i−θd−i+1)

g Ag
i,i−1 Ag

ii

d00∗d∗ φi
(θ∗

i −θ∗
d)···(θ∗

i −θ∗
i+1)

(θ∗
i−1−θ∗

d
)···(θ∗

i−1−θ∗
i
) ai

0d0∗d∗ ϕi
(θ∗

i −θ∗
d)···(θ∗

i −θ∗
i+1)

(θ∗
i−1−θ∗

d
)···(θ∗

i−1−θ∗
i
) ai

d0d∗0∗ ϕd−i+1
(θ∗

d−i−θ∗
0 )···(θ∗

d−i−θ∗
d−i−1)

(θ∗
d−i+1−θ∗

0 )···(θ∗
d−i+1−θ∗

d−i
) ad−i

0dd∗0∗ φd−i+1
(θ∗

d−i−θ∗
0 )···(θ∗

d−i−θ∗
d−i−1)

(θ∗
d−i+1−θ∗

0 )···(θ∗
d−i+1−θ∗

d−i
) ad−i

Ag
i−1,i A∗g

ii

ϕi
(θ∗

i−1−θ∗
0 )···(θ∗

i−1−θ∗
i−2)

(θ∗
i
−θ∗

0 )···(θ∗
i
−θ∗

i−1) θ∗i

φi
(θ∗

i−1−θ∗
0 )···(θ∗

i−1−θ∗
i−2)

(θ∗
i
−θ∗

0 )···(θ∗
i
−θ∗

i−1)
θ∗i

φd−i+1
(θ∗

d−i+1−θ∗
d)···(θ∗

d−i+1−θ∗
d−i+2)

(θ∗
d−i

−θ∗
d
)···(θ∗

d−i
−θ∗

d−i+1) θ∗d−i

ϕd−i+1
(θ∗

d−i+1−θ∗
d)···(θ∗

d−i+1−θ∗
d−i+2)

(θ∗
d−i

−θ∗
d
)···(θ∗

d−i
−θ∗

d−i+1)
θ∗d−i
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Proof. Consider the first row of the first table where g equals d∗00∗d.
As indicated in the table of Lemma 9.3, row 1, column 2, the basis [g]
is a Φ-split basis. From the line above (30), we find Ag, (respectively
A∗g), is given on the left, (respectively right), in (30). From this we
obtain our results for the first row of the first table. Now consider the
third row of the first table, where g equals d∗0d0∗. From the table of
Lemma 9.3, row 1, column 3, the basis [d∗0d0∗] is a Φ-inverted split
basis. From the line above (32) we find Ag, (respectively A∗g), is given
on the left, (respectively right), in (32). From this we obtain our results
for the third row of the first table. We have now proved our assertions
for rows 1 and 3 of the first table. Applying this result to the relatives
of Φ, and using Theorem 6.2 we obtain the remaining rows of the first
table. Consider the first row of the second table, where g equals d∗0∗0d.
From the table of Theorem 9.1, row 17, we find the corresponding basis
[g] is

(48) E0η
∗
0 , E1η

∗
0 , . . . , Edη

∗
0 .

For 0 ≤ i ≤ d, the vector Eiη
∗
0 is an eigenvector for A, with eigenvalue

θi. Therefore,

(49) Ag = diag (θ0, θ1, . . . , θd).

We now find A∗g. From the construction and since A,A∗ is a Leonard
pair, the matrix A∗g is irreducible tridiagonal. From (44) we find the
diagonal entries A∗g

ii = a∗i for 0 ≤ i ≤ d. We show

(50) A∗g
i−1,i = ϕi

(θi−1 − θ0)(θi−1 − θ1) · · · (θi−1 − θi−2)
(θi − θ0)(θi − θ1) · · · (θi − θi−1)

for 1 ≤ i ≤ d. To see (50), we momentarily return to the basis [d∗00∗d].
From the table of Theorem 9.1, row 1, we find that for 0 ≤ j ≤ d the
jth vector in the basis [d∗00∗d] is given by

(51) (A− θ0I)(A− θ1I) · · · (A− θj−1I)η∗0 .

We write (51) in terms of (48). Recall the sum E0+E1+· · ·+Ed equals
the identity I. Applying this sum to the vector (51) and simplifying
the result using (5), we find the vector (51) equals

(52)
d∑

i=0

(θi − θ0)(θi − θ1) · · · (θi − θj−1)Eiη
∗
0 .
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Let L denote the matrix in Matd+1(K) with ijth entry (θi−θ0) · · · (θi−
θj−1) for 0 ≤ i, j ≤ d. Apparently L is the transition matrix from the
basis [d∗0∗0d] to the basis [d∗00∗d]. By linear algebra, we obtain

(53) A∗gL = LA∗h,

where we recall g = d∗0∗0d and we abbreviate h = d∗00∗d. For
1 ≤ i ≤ d, we compute the i−1, i entry in (53). Since A∗g is tridiagonal,
and since L is lower triangular, we find the i−1, i entry of A∗gL equals
A∗g

i−1,iLii or in other words

(54) A∗g
i−1,i(θi − θ0)(θi − θ1) · · · (θi − θi−1).

We mentioned above the matrix A∗h is given on the right in (30).
Since A∗h is upper bidiagonal and since L is lower triangular, we find
the i− 1, i entry of LA∗h equals Li−1,i−1A

∗h
i−1,i or in other words

(55) (θi−1 − θ0)(θi−1 − θ1) · · · (θi−1 − θi−2)ϕi.

Equating (54) and (55), we obtain (50). Applying (50) to Φ⇓ and using
Theorem 6.2, we routinely find

A∗g
i,i−1 = φd−i+1

(θi − θd)(θi − θd−1) · · · (θi − θi+1)
(θi−1 − θd)(θi−1 − θd−1) · · · (θi−1 − θi)

for 1 ≤ i ≤ d. We have now proved our assertions for the first row of
the second table. Applying these facts to the relatives of Φ and using
Theorem 6.2, we obtain the remaining rows of the second table and all
rows of the third table.

Summarizing the data from Theorem 11.2, we have the following.

Lemma 11.3. Referring to Theorem 11.2, pick any g ∈ S4 and
consider the form of Ag and A∗g. Writing g = wxyz, this form is
given as follows.
y ∈ {0∗, d∗} z ∈ {0∗, d∗} Ag A∗g

No No diagonal irred. tridiagonal
Yes No lower bidiagonal upper bidiagonal
No Yes upper bidiagonal lower bidiagonal
Yes Yes irred. tridiagonal diagonal
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We remark the number of elements in S4 satisfying each of the above
four cases is 4, 8, 8, 4, respectively.

Proof. Follows from the data in Theorem 11.2.

12. The eigenvalues and dual eigenvalues. Our next goal is
to compute, for each ordered pair g, h of adjacent elements in S4,
the entries in the transition matrix from the basis [g] to the basis
[h]. In order to describe these entries, we make some comments about
eigenvalues and define some expressions. In this section we focus on
eigenvalues.

Let β denote a scalar in K. Let d denote a nonnegative integer, and
let σ0, σ1, . . . , σd denote a sequence of scalars taken from K. We say
this sequence is β-recurrent whenever σi−1−βσi+σi+1 is independent of
i for 1 ≤ i ≤ d− 1. Let Φ denote the Leonard system in Theorem 6.1.
Then by condition (v) of that theorem, the eigenvalue sequence and
the dual eigenvalue sequence of Φ are β-recurrent, where β + 1 is the
common value of (35). These two sequences are the ones we wish to
discuss in this section, but since what we have to say about them applies
to all β-recurrent sequences, we keep things general.

We begin by mentioning some well-known formula concerning β-
recurrent sequences. Recall K̃ denotes the algebraic closure of the field
K.

Lemma 12.1. Let d denote a nonnegative integer, and let σ0, σ1, . . . ,
σd denote a sequence of scalars taken from K. Let β denote a scalar in
K, and assume σ0, σ1, . . . , σd is β-recurrent. Let q denote a nonzero
scalar in K̃ such that q + q−1 = β.

(i) Suppose q �= 1, q �= −1. Then there exist scalars a, b, c in K̃ such
that

(56) σi = a+ bqi + cq−i, 0 ≤ i ≤ d.

(ii) Suppose q = 1. Then there exist scalars a, b, c in K such that

σi = a+ bi+ ci(i− 1)/2, 0 ≤ i ≤ d.
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(iii) Suppose q = −1, and that the characteristic of K is not 2. Then
there exist scalars a, b, c in K such that

σi = a+ b(−1)i + ci(−1)i, 0 ≤ i ≤ d.

Referring to case (ii) above, if K has characteristic 2, we interpret the
expression i(i− 1)/2 as 0 if i = 0 or i = 1 (mod 4), and as 1 if i = 2
or i = 3 (mod 4).

Definition 12.2. Let q denote a nonzero scalar in K̃, and let n denote
an integer. We let [n]q denote the following scalar in K̃.

First assume n is odd. In this case we define

(57) [n]q =

{
qn/2−q−n/2

q1/2−q−1/2 if q �= 1;
n if q = 1.

We observe

[n]q = q(n−1)/2 + q(n−3)/2 + · · · + q(3−n)/2 + q(1−n)/2, if n > 0

and that [−n]q = −[n]q. For example,

[−5]q = −q2 − q − 1 − q−1 − q−2, [−3]q = −q − 1 − q−1, [−1]q = −1,
[1]q = 1, [3]q = q + 1 + q−1, [5]q = q2 + q + 1 + q−1 + q−2.

Next assume n is even. In this case we define

(58) [n]q =




qn/2−q−n/2

q−q−1 if q �= 1, q �= −1;

n/2 if q = 1;
(−1)n/2−1n/2 if q = −1.

We observe

[n]q = qn/2−1 + qn/2−3 + · · · + q3−n/2 + q1−n/2, if n ≥ 0

and that [−n]q = −[n]q. For example,

[−6]q = −q2 − 1 − q−2, [−4]q = −q − q−1, [−2]q = −1, [0]q = 0,
[2]q = 1, [4]q = q + q−1, [6]q = q2 + 1 + q−2.
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Referring to the cases q = 1, q = −1 of (58), if K has characteristic 2,
we interpret n/2 as 1 if n = 2 (mod 4) and as 0 if n = 0 (mod 4).

We mention a handy recursion.

Lemma 12.3. Let q denote a nonzero scalar in K̃. Then for all
integers n,
(59) (q + q−1)[n]q = [n+ 2]q + [n− 2]q.

Proof. Routine calculation using (57) and (58).

Corollary 12.4. Let q denote a nonzero element of K̃ such that
q + q−1 ∈ K. Then [n]q ∈ K for all integers n.

Proof. The scalars [0]q and [2]q are contained in K since these equal 0
and 1, respectively. By this and a routine induction using Lemma 12.3,
we find [n]q is contained in K for all even integers n. The scalars [−1]q
and [1]q are contained in K since these equal −1 and 1, respectively. By
this and a routine induction using Lemma 12.3, we find [n]q is contained
in K for all odd integers n.

Lemma 12.5. Let d denote a nonnegative integer, and let σ0, σ1, . . . ,
σd denote a sequence of scalars taken from K. Let β denote a scalar in
K, and assume σ0, σ1, . . . , σd is β-recurrent. Let q denote a nonzero
scalar in K̃ such that q + q−1 = β. Then for 0 ≤ i, j, r, s ≤ d, we have
(60) [r − s]q(σi − σj) = [i− j]q(σr − σs),
provided i+ j = r + s.

Proof. Let the integers i, j, r, s be given and assume i+j = r+s. First
suppose q �= 1, q �= −1. Let n denote the common value of i+ j, r+ s,
and for convenience set e = q1/2 − q−1/2, (if n is odd), and e = q− q−1

(if n is even). Observe r− s and r+ s = n have the same parity, so by
Definition 12.2,

(61)
[r − s]q = (q(r−s)/2 − q(s−r)/2)e−1

= (qr − qs)e−1q−n/2.
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Similarly

(62) [i− j]q = (qi − qj)e−1q−n/2.

By Lemma 12.1(i) there exist scalars a, b, c in K̃ such that σ0, σ1, . . . , σd

are given by (56). Observe

(63)
σi − σj = b(qi − qj) + c(q−i − q−j)

= (qi − qj)(b− cq−n).

Similarly

(64) σr − σs = (qr − qs)(b− cq−n).

Combining (61) (64) we obtain (60). We have now proved the lemma
for the case q �= 1, q �= −1. The proof for the cases q = 1, q = −1 is
similar and omitted.

Let q denote a nonzero scalar in K̃, and let r, s, t denote nonnegative
integers. A bit later in the paper, we will define some expressions
[r, s, t]q that make sense under the assumption [i]q �= 0 for 1 ≤ i ≤
r + s + t. We comment on this assumption. First observe [1]q and
[2]q are nonzero, since these scalars both equal 1. For i ≥ 3, it could
happen that [i]q = 0; we explain how in the next result.

Lemma 12.6. Let q denote a nonzero scalar in K̃, and let i denote
a positive integer. Then (i) (vi) hold below.

(i) Assume q �= 1, q �= −1. Then [i]q = 0 if and only if qi = 1.

(ii) Assume q = 1 and that K has characteristic 0. Then [i]q �= 0.

(iii) Assume q = 1 and that K has characteristic p, p ≥ 3. Then
[i]q = 0 if and only if p divides i.

(iv) Assume q = −1 and that K has characteristic 0. Then [i]q �= 0.

(v) Assume q = −1 and that K has characteristic p, p ≥ 3. Then
[i]q = 0 if and only if 2p divides i.

(vi) Assume q = 1 and that K has characteristic 2. Then [i]q = 0 if
and only if 4 divides i.
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Proof. First assume q �= 1, q �= −1. Then [i]q is a nonzero scalar
multiple of qi − 1 by Definition 12.2 and assertion (i) follows. Next as-
sume q = 1 and that the characteristic of K is not 2. Then the sequence
[1]q, [2]q, . . . is given by 1, 1, 3, 2, 5, 3, 7, 4 . . . and assertions (ii) and (iii)
follow. Next assume q = −1 and that the characteristic of K is not 2.
Then the sequence [1]q, [2]q, . . . is given by 1, 1,−1,−2, 1, 3,−1,−4, . . .
and assertions (iv) and (v) follow. Now assume q = 1 and that
K has characteristic 2. Then the sequence [1]q, [2]q, . . . is given by
1, 1, 1, 0, 1, 1, 1, 0, . . . and assertion (vi) follows.

Lemma 12.7. Let d denote an integer at least 3. Let σ0, σ1, . . . , σd

denote a sequence of distinct scalars taken from K, and assume

(65)
σi−2 − σi+1

σi−1 − σi

is independent of i for 2 ≤ i ≤ d− 1. Let q denote a nonzero scalar in
K̃ such that q+q−1 +1 equals the common value of (65). Then [i]q �= 0
for 1 ≤ i ≤ d.

Proof. Abbreviate β = q + q−1, and observe σ0, σ1, . . . , σd is β-
recurrent. First suppose q �= 1 and q �= −1. Then for 1 ≤ i ≤ d we have
qi �= 1; otherwise σi = σ0 by Lemma 12.1(i). The result now follows
by Lemma 12.6(i). Next suppose q = 1 and that K has characteristic
0. Then the result holds by Lemma 12.6(ii). Next suppose q = 1 and
that K has characteristic p, p ≥ 3. Then d < p; otherwise σp = σ0 in
view of Lemma 12.1(ii). The result now follows by Lemma 12.6(iii).
Next suppose q = −1 and that K has characteristic 0. Then the
result holds by Lemma 12.6(iv). Next suppose q = −1 and that K
has characteristic p, p ≥ 3. Then d < 2p; otherwise, σ2p = σ0 in view
of Lemma 12.1(iii). The result now follows by Lemma 12.6(v). Now
suppose q = 1 and that K has characteristic 2. Then d ≤ 3; otherwise
σ4 = σ0 by Lemma 12.1(iii) and the comment at the end of that lemma.
The result now follows by Lemma 12.6(vi).

Corollary 12.8. Let Φ denote the Leonard system in (9) and assume
d ≥ 3. Let q denote a nonzero scalar in K̃ such that q+ q−1 + 1 equals
the common value of (35). Then [i]q �= 0 for 1 ≤ i ≤ d.
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Proof. Apply Lemma 12.7 to the eigenvalue sequence of Φ.

We finish this section with a definition.

Definition 12.9. Let q denote a nonzero scalar in K̃. For each
nonnegative integer n we define

(66) [n]!q = [1]q[2]q · · · [n]q.

We interpret [0]!q = 1.

13. The scalars [r, s, t]q. A bit later in the paper we will compute,
for each ordered pair g, h of adjacent elements in S4, the entries in
the transition matrix from the basis [g] to the basis [h]. Among the
entries in these transition matrices, we will encounter an expression
that occurs so often we will give it a name. The details are in the
following definition.

Definition 13.1. Let q denote a nonzero scalar in K̃ and let r, s, t
denote nonnegative integers. We define the expressions (r, s, t)q and
[r, s, t]q as follows. We set

(67) (r, s, t)q =
{
q + q−1 + 2 if each of r, s, t is odd;
1 if at least one of r, s, t is even.

Next assume that [i]q �= 0 for 1 ≤ i ≤ r + s+ t. Then we set

(68) [r, s, t]q =
[r + s]!q[r + t]!q[s+ t]!q(r, s, t)q

[r]!q[s]!q[t]!q[r + s+ t]!q
.

We remark [r, s, t]q ∈ K provided q + q−1 ∈ K. Moreover, [r, s, t]q = 1
if at least one of r, s, t equals 0.

Referring to the above definition, to get a better appreciation for
[r, s, t]q we now evaluate the expression on the right in (68) using
Definition 12.2. To express our results, we use the following notation.
For all a, q ∈ K̃, we define

(a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1), n = 0, 1, 2, . . .
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and interpret (a; q)0 = 1.

Lemma 13.2. Let q denote a nonzero scalar in K̃, let r, s, t denote
nonnegative integers, and assume [i]q �= 0 for 1 ≤ i ≤ r + s+ t.

(i) Suppose q �= 1, q �= −1. Then

(69) [r, s, t]q =
(q; q)r+s(q; q)r+t(q; q)s+t

(q; q)r(q; q)s(q; q)t(q; q)r+s+t
.

(ii) Suppose q = 1 and that the characteristic of K is not 2. Then

(70) [r, s, t]q =
(r + s)!(r + t)!(s+ t)!
r!s!t!(r + s+ t)!

.

(iii) Suppose q = −1 and that the characteristic of K is not 2. If each
of r, s, t is odd, then [r, s, t]q = 0. If at least one of r, s, t is even, then

(71) [r, s, t]q =
�(r + s)/2�!�(r + t)/2�!�(s+ t)/2�!
�r/2�!�s/2�!�t/2�!�(r + s+ t)/2�! .

The expression �n� denotes the greatest integer less than or equal to n.

(iv) Suppose q = 1 and that K has characteristic 2. Recall in this
case r + s + t ≤ 3 by Lemma 12.6(vi). If each of r, s, t equals 1, then
[r, s, t]q = 0. If at least one of r, s, t equals 0 then [r, s, t]q = 1.

Concerning the expressions on the right in (69), (70), (71), the denom-
inator is nonzero by Lemma 12.6.

Proof. Evaluate (68) using Definition 12.2, (66) and (67).

We will need the following identity.

Lemma 13.3. Let q denote a nonzero scalar in K̃, and let r, s, t
denote positive integers. Assume [i]q �= 0 for 1 ≤ i < r + s + t. Then
with reference to Definition 13.1 we have

(72) [r − t]q[r + t]−1
q [r, s− 1, t]q = [r − 1, s, t]q − [r, s, t− 1]q.
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Proof. First assume q �= 1 and q �= −1. By Definition 12.2 and since
the integers r + t, r − t have the same parity, we find

(73)
[r − t]q
[r + t]q

=
q(r−t)/2 − q(t−r)/2

q(r+t)/2 − q−(r+t)/2
=
qt − qr

1 − qr+t
.

Using (69), we obtain

[r − 1, s, t]q = x(1 − qs+t)(1 − qr),(74)
[r, s− 1, t]q = x(1 − qr+t)(1 − qs),(75)
[r, s, t− 1]q = x(1 − qr+s)(1 − qt),(76)

where

x =
(q; q)r+s−1(q; q)r+t−1(q; q)s+t−1

(q; q)r(q; q)s(q; q)t(q; q)r+s+t−1
.

One readily verifies

(77) (qt − qr)(1 − qs) = (1 − qs+t)(1 − qr) − (1 − qr+s)(1 − qt).
Multiplying both sides of (77) by x and evaluating the result using
(73) (76), we routinely obtain (72). We have now proved the result for
the case q �= 1, q �= −1. The proof for the cases q = 1, q = −1 are
similar and omitted.

14. The scalars ε0, εd, ε∗0, ε
∗
d. In the next section we will compute,

for each ordered pair g, h of adjacent elements in S4, the entries in
the transition matrix from the basis [g] to the basis [h]. Recall our 24
bases are constructed using four vectors η0, ηd, η∗0 , η

∗
d, and each of these

vectors is determined only up to multiplication by a nonzero scalar. To
account for this we introduce four scalars ε0, εd, ε∗0, ε∗d.

For convenience, we make the following definition.

Definition 14.1. Let Φ denote the Leonard system in (9). We define

Ẽ0 = (A− θ1I)(A− θ2I) · · · (A− θdI),(78)

Ẽd = (A− θ0I)(A− θ1I) · · · (A− θd−1I),(79)

Ẽ∗
0 = (A∗ − θ∗1I)(A∗ − θ∗2I) · · · (A∗ − θ∗dI),(80)

Ẽ∗
d = (A∗ − θ∗0I)(A∗ − θ∗1I) · · · (A∗ − θ∗d−1I),(81)
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where the θi, θ∗i are from Definition 4.1.

Lemma 14.2. Let Φ denote the Leonard system in (9). Then with
reference to Definition 14.1,

(i) Ẽ0 = E0(θ0 − θ1)(θ0 − θ2) · · · (θ0 − θd),

(ii) Ẽd = Ed(θd − θ0)(θd − θ1) · · · (θd − θd−1),

(iii) Ẽ∗
0 = E∗

0(θ∗0 − θ∗1)(θ∗0 − θ∗2) · · · (θ∗0 − θ∗d),

(iv) Ẽ∗
d = E∗

d(θ∗d − θ∗0)(θ∗d − θ∗1) · · · (θ∗d − θ∗d−1).

Proof. To get (i) set i = 0 in (4) and compare the result with (78).
Assertions (ii) (iv) are similarly proved.

Lemma 14.3. Let Φ denote the Leonard system in (9). Let g denote
the element d∗00∗d of S4 and recall by Lemma 9.3 that [g] is a Φ-split
basis. For 0 ≤ i, j ≤ d, the ijth entry of the matrices Ẽg

0 , Ẽ
g
d , Ẽ

∗g
0 , Ẽ

∗g
d

are given as follows.

(i) The ijth entry of Ẽg
0 is

(θ0 − θi+1)(θ0 − θi+2) · · · (θ0 − θd)

if j = 0 and 0 if j �= 0.

(ii) The ijth entry of Ẽg
d is

(θd − θ0)(θd − θ1) · · · (θd − θj−1)

if i = d and 0 if i �= d.
(iii) The ijth entry of Ẽ∗g

0 is

(θ∗0 − θ∗j+1)(θ∗0 − θ∗j+2) · · · (θ∗0 − θ∗d)ϕ1ϕ2 · · ·ϕj

if i = 0 and 0 if i �= 0.

(iv) The ijth entry of Ẽ∗g
d is

(θ∗d − θ∗0)(θ∗d − θ∗1) · · · (θ∗d − θ∗i−1)ϕi+1ϕi+2 · · ·ϕd
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if j = d and 0 if j �= d.

Proof. The entries of Eg
0 , E

g
d , E

∗g
0 , E

∗g
d are given in [44, Theorem 4.8].

Using these entries and Lemma 14.2, we routinely obtain the assertions
of the present lemma.

For notational convenience, we introduce the following notation.

Definition 14.4. Let Φ denote the Leonard system in (9). We set

(82) ϕ := ϕ1ϕ2 · · ·ϕd, φ := φ1φ2 · · ·φd,

where ϕ1, ϕ2, . . . , ϕd denotes the first split sequence of Φ and where
φ1, φ2, . . . , φd denotes the second split sequence of Φ. We observe by
Theorem 6.1(i) that ϕ �= 0, φ �= 0.

Lemma 14.5. Let Φ denote the Leonard system in (9). Then with
reference to Definition 14.1, the trace of each of ẼdẼ

∗
0 , Ẽ0Ẽ

∗
d equals ϕ.

Moreover, the trace of each Ẽ0Ẽ
∗
0 , ẼdẼ

∗
d equals φ.

Proof. Using the data in Lemma 14.3, we routinely find the trace of
ẼdẼ

∗
0 equals ϕ. To obtain the remaining assertions, apply this result

to the relatives of Φ and use Theorem 6.2.

Lemma 14.6. Let Φ denote the Leonard system in (9). Then with
reference to Definition 14.1,

Ẽ∗
0 ẼdẼ

∗
0 = ϕẼ∗

0 , ẼdẼ
∗
0 Ẽd = ϕẼd,(83)

Ẽ0Ẽ
∗
dẼ0 = ϕẼ0, Ẽ∗

dẼ0Ẽ
∗
d = ϕẼ∗

d ,(84)

Ẽ0Ẽ
∗
0 Ẽ0 = φẼ0, Ẽ∗

0 Ẽ0Ẽ
∗
0 = φẼ∗

0 ,(85)

ẼdẼ
∗
dẼd = φẼd, Ẽ∗

dẼdẼ
∗
d = φẼ∗

d .(86)

Proof. We first prove the equation on the left in (83). Since E∗
0 is a

rank one idempotent, and since Ẽ∗
0 is a nonzero scalar multiple of E∗

0 ,
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a scalar α ∈ K exists such that Ẽ∗
0 ẼdẼ

∗
0 = αẼ∗

0 . We show α = ϕ. We
mentioned Ẽ∗

0 is a nonzero scalar multiple of E∗
0 so

(87) E∗
0 ẼdẼ

∗
0 = αE∗

0 .

We take the trace of each side of (87). Observe the trace of E∗
0 equals 1,

so the trace of the right side of (87) equals α. Since XY and Y X have
the same trace and, using Ẽ∗

0E
∗
0 = Ẽ∗

0 , we find in view of Lemma 14.5
that the trace of the left side of (87) equals ϕ. Apparently α = ϕ and
this implies the equation on the left in (83). Applying this result to the
relatives of Φ, we obtain the remaining assertions.

Lemma 14.7. Let Φ denote the Leonard system in (9). Then with
reference to Definition 14.1, we have the following:

Ẽ∗
dẼ0Ẽ

∗
0 = Ẽ∗

dẼdẼ
∗
0 , ẼdẼ

∗
0 Ẽ0 = ẼdẼ

∗
dẼ0,(88)

Ẽ0Ẽ
∗
0 Ẽd = Ẽ0Ẽ

∗
dẼd, Ẽ∗

0 Ẽ0Ẽ
∗
d = Ẽ∗

0 ẼdẼ
∗
d .(89)

Proof. The equation on the left in (88) is readily obtained using the
matrix representations given in Lemma 14.3. Applying this equation
to the relatives of Φ, we obtain the remaining equations in (88), (89).

Lemma 14.8. Let Φ denote the Leonard system in (9), and let V de-
note the irreducible left A-module. Let η0, ηd, η∗0 , η∗d denote nonzero vec-
tors in V that satisfy (40). Then there exist nonzero scalars ε0, εd, ε∗0, ε∗d
in K such that

Ẽdη
∗
0/ε

∗
0 = ηd/εd, Ẽdη

∗
d/ε

∗
d = ηd/εd,(90)

Ẽ∗
0η0/ε0 = η∗0/ε

∗
0, Ẽ∗

0ηd/εd = ϕη∗0/ε
∗
0,(91)

Ẽ∗
dη0/ε0 = η∗d/ε

∗
d, Ẽ∗

dηd/εd = φη∗d/ε
∗
d,(92)

Ẽ0η
∗
0/ε

∗
0 = φη0/ε0, Ẽ0η

∗
d/ε

∗
d = ϕη0/ε0.(93)
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Proof. Let ε∗0 denote an arbitrary nonzero scalar in K. To obtain ε0,
consider the basis [d∗d00∗] from the table of Theorem 9.1, row 10. Using
(78), we recognize the vector Ẽ0η

∗
0 is the 0th vector in this basis. By

Theorem 9.1, we find Ẽ0η
∗
0 is a basis for E0V . By the construction η0 is

a basis for E0V so Ẽ0η
∗
0 is a nonzero scalar multiple of η0. Apparently,

a nonzero scalar ε0 ∈ K exists that satisfies the equation on the left
in (93). Similarly, nonzero scalars εd, ε∗d in K exist that satisfy the
equations on the left in (90), (92), respectively. To obtain the equation
on the right in (92), apply the equation on the left in (88) to η∗0/ε∗0
and evaluate the result using E∗

0η
∗
0 = η∗0 , Lemma 14.2(iii), and the

equations on the left in (90), (92) and (93). To obtain the equation on
the left in (91), apply the equation on the right in (85) to η∗0/ε∗0, and
evaluate the result using E∗

0η
∗
0 = η∗0 , Lemma 14.2(iii) and the equation

on the left in (93). The equations on the right in (90), (91) and (93)
are similarly obtained.

Note 14.9. The scalars ε0, εd, ε∗0, ε
∗
d from Lemma 14.8 are “free” in

the following sense. Let Φ denote the Leonard system in (9), and let V
denote the irreducible left A-module. Let ε0, εd, ε∗0, ε∗d denote arbitrary
nonzero scalars in K. Then nonzero vectors η0, ηd, η∗0 , η

∗
d exist in V

that satisfy (40) and (90) (93).

Note 14.10. The reader may notice a certain lack of symmetry in
the definition of ε0, εd, ε∗0, ε∗d. We accept this asymmetry to avoid
introducing the square roots of ϕ and φ. We remark that these
square roots may not be in K. To display the underlying symmetry in
(90) (93) make the following change of variables:

ε0 = ε′0, εd = ε′dϕ
−1/2φ−1/2 ε∗0 = ε∗′0 φ

−1/2, ε∗d = ε∗′d ϕ
−1/2.

The following equations will be useful.

Lemma 14.11. Let Φ denote the Leonard system in (9), and let V
denote the irreducible left A-module. Let η0, ηd, η∗0 , η∗d denote nonzero
vectors in V that satisfy (40). Let the scalars ε0, εd, ε∗0, ε∗d be as in
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Lemma 14.8. Then

Edη
∗
d/ε

∗
d = Edη

∗
0/ε

∗
0, E∗

0ηd/εd = ϕE∗
0η0/ε0,(94)

E∗
dηd/εd = φE∗

dη0/ε0, E0η
∗
d/ε

∗
d = ϕ/φE0η

∗
0/ε

∗
0.(95)

Proof. First consider the equation on the left in (94). Comparing the
two equations in (90), we find Ẽdη

∗
d/ε

∗
d = Ẽdη

∗
0/ε

∗
0. Recall Ed is a scalar

multiple of Ẽd so Edη
∗
d/ε

∗
d = Edη

∗
0/ε

∗
0. We now have the equation on

the left in (94). The remaining equations in (94) and (95) are similarly
proved.

15. The 24 bases; transition matrices. Let Φ denote the Leonard
system in (9), and let V denote the irreducible left A-module. For each
element g ∈ S4, we displayed in Theorem 9.1 a basis for V , denoted
[g]. In this section we compute, for each ordered pair g, h of adjacent
elements of S4, the entries in the transition matrix from the basis [g]
to the basis [h].

We mention a few points from linear algebra. In line (41) we recalled
the notion of a transition matrix. We now recall the closely related
concept of an intertwining matrix. Let g, h denote elements of S4,
and consider the corresponding bases [g], [h] of V . By an intertwining
matrix from [g] to [h], we mean a nonzero matrix S ∈ Matd+1(K)
satisfying

XgS = SXh, ∀X ∈ A.
We observe a matrix in Matd+1(K) is an intertwining matrix from [g]
to [h] if and only if it is a nonzero scalar multiple of the transition
matrix from [g] to [h].

The following matrix will play a role in our discussion. We let Z
denote the matrix in Matd+1(K) with entries

(96) Zij =
{

1 if i+ j = d;
0 if i+ j �= d, 0 ≤ i, j ≤ d.

We observe Z2 = I.
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Lemma 15.1. Let Φ denote the Leonard system in (9), and let g, h
denote elements in S4. Then for all S ∈ Matd+1(K), the following are
equivalent.

(i) S is an intertwining matrix from [g] to [h].

(ii) S is nonzero and both

(97) AgS = SAh, A∗gS = SA∗h.

Proof. The implication (i) → (ii) is clear, so consider the implication
(ii) → (i). Let T denote the transition matrix from [g] to [h]. We show
S is a nonzero scalar multiple of T . Since T is the transition matrix
from [g] to [h], it is an intertwining matrix from [g] to [h]. Therefore

(98) AgT = TAh, A∗gT = TA∗h.

Combining (97) and (98), we find ST−1 commutes with both Ag and
A∗g. We mentioned the map X → Xg from A to Matd+1(K) is
an isomorphism of K-algebras. Combining this with our previous
comment and using Corollary 3.3, we see ST−1 is a scalar multiple
of the identity. Denoting this scalar by α we have S = αT . We observe
α �= 0 since S �= 0. Apparently S is a nonzero scalar multiple of T , so
S is an intertwining matrix from [g] to [h].

Theorem 15.2. Let Φ denote the Leonard system in (9). With
reference to Definition 7.1, let wxyz denote an element of S4, and
consider the transition matrices from the basis [wxyz] to the bases

(99) [xwyz], [wyxz], [wxzy].

The first and second transition matrices are diagonal and lower tri-
angular, respectively, and their entries are given in the following ta-
bles. The third transition matrix is the matrix Z from (96). In the ta-
bles below, θ0, θ1, . . . , θd (respectively θ∗0 , θ∗1 , . . . , θ∗d) denotes the eigen-
value sequence (respectively dual eigenvalue sequence) for Φ. More-
over, ϕ1, ϕ2, . . . , ϕd (respectively φ1, φ2, . . . , φd) denotes the first split
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sequence (respectively second split sequence) for Φ. The scalars ϕ, φ
are from (82), and the scalars ε0, εd, ε∗0, ε

∗
d are from Lemma 14.8.

wxyz [wxyz] → [xwyz] [wxyz] → [wyxz]

ii entry ij entry (i ≥ j)

d∗00∗d 1
ϕ1···ϕi

εdϕ
ε∗0

1
(θj−θ0)···(θj−θj−1)

1
(θj−θj+1)···(θj−θi)

0d∗0∗d ϕ1 · · ·ϕi
ε∗0

εdϕ
(θ∗d − θ∗0) · · · (θ∗d − θ∗i−j−1)[j, i − j, d − i]q

d∗0d0∗ ϕd · · ·ϕd−i+1
εd
ε∗0

(θ0 − θd) · · · (θ0 − θd−i+j+1)[j, i − j, d − i]q

0d∗d0∗ 1
ϕd···ϕd−i+1

ε∗0
εd

1
(θ∗

d−j
−θ∗

d
)···(θ∗

d−j
−θ∗

d−j+1)
1

(θ∗
d−j

−θ∗
d−j−1)···(θ∗

d−j
−θ∗

d−i
)

d0∗0d∗ 1
ϕ1···ϕi

ε∗
d

ϕ

ε0
1

(θ∗
j
−θ∗

0 )···(θ∗
j
−θ∗

j−1)
1

(θ∗
j
−θ∗

j+1)···(θ∗
j
−θ∗

i
)

0∗d0d∗ ϕ1 · · ·ϕi
ε0

ε∗
d

ϕ
(θd − θ0) · · · (θd − θi−j−1)[j, i − j, d − i]q

d0∗d∗0 ϕd · · ·ϕd−i+1
ε∗

d
ε0

(θ∗0 − θ∗d) · · · (θ∗0 − θ∗d−i+j+1)[j, i − j, d − i]q

0∗dd∗0 1
ϕd···ϕd−i+1

ε0
ε∗

d

1
(θd−j−θd)···(θd−j−θd−j+1)

1
(θd−j−θd−j−1)···(θd−j−θd−i)

dd∗00∗ 1
φd···φd−i+1

ε∗0φ

ε0
1

(θ∗
d−j

−θ∗
d
)···(θ∗

d−j
−θ∗

d−j+1)
1

(θ∗
d−j

−θ∗
d−j−1)···(θ∗

d−j
−θ∗

d−i
)

d∗d00∗ φd · · ·φd−i+1
ε0

ε∗0φ
(θd − θ0) · · · (θd − θi−j−1)[j, i − j, d − i]q

dd∗0∗0 φ1 · · ·φi
ε∗0
ε0

(θ∗d − θ∗0) · · · (θ∗d − θ∗i−j−1)[j, i − j, d − i]q

d∗d0∗0 1
φ1···φi

ε0
ε∗0

1
(θd−j−θd)···(θd−j−θd−j+1)

1
(θd−j−θd−j−1)···(θd−j−θd−i)

00∗dd∗ 1
φ1···φi

ε∗
d

εd

1
(θ∗

j
−θ∗

0 )···(θ∗
j
−θ∗

j−1)
1

(θ∗
j
−θ∗

j+1)···(θ∗
j
−θ∗

i
)

0∗0dd∗ φ1 · · ·φi
εd
ε∗

d
(θ0 − θd) · · · (θ0 − θd−i+j+1)[j, i − j, d − i]q

00∗d∗d φd · · ·φd−i+1
ε∗

d
εdφ

(θ∗0 − θ∗d) · · · (θ∗0 − θ∗d−i+j+1)[j, i − j, d − i]q

0∗0d∗d 1
φd···φd−i+1

εdφ
ε∗

d

1
(θj−θ0)···(θj−θj−1)

1
(θj−θj+1)···(θj−θi)

In the above table, q denotes a scalar in the algebraic closure of K
such that q + q−1 + 1 is the common value of (35).
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wxyz [wxyz] → [xwyz] [wxyz] → [wyxz]
ii entry ij entry (i ≥ j)

d∗0∗0d φd···φd−i+1
ϕ1···ϕi

ε∗
dϕ

ε∗
0φ (θi − θ0) · · · (θi − θj−1)

0∗d∗0d ϕ1···ϕi

φd···φd−i+1

ε∗
0φ

ε∗
d
ϕ (θi − θ0) · · · (θi − θj−1)

d∗0∗d0 ϕd···ϕd−i+1
φ1···φi

ε∗
d

ε∗
0

(θd−i − θd) · · · (θd−i − θd−j+1)

0∗d∗d0 φ1···φi

ϕd···ϕd−i+1

ε∗
0

ε∗
d

(θd−i − θd) · · · (θd−i − θd−j+1)

d00∗d∗ φ1···φi

ϕ1···ϕi

εdϕ
ε0

(θ∗i − θ∗0) · · · (θ∗i − θ∗j−1)

0d0∗d∗ ϕ1···ϕi

φ1···φi

ε0
εdϕ (θ∗i − θ∗0) · · · (θ∗i − θ∗j−1)

d0d∗0∗ ϕd···ϕd−i+1
φd···φd−i+1

εdφ
ε0

(θ∗d−i − θ∗d) · · · (θ∗d−i − θ∗d−j+1)

0dd∗0∗ φd···φd−i+1
ϕd···ϕd−i+1

ε0
εdφ (θ∗d−i − θ∗d) · · · (θ∗d−i − θ∗d−j+1)

Proof. The basis [wxzy], which is on the right in (99), is the inversion
of [wxyz] by Lemma 9.4(iii). Apparently Z is the transition matrix
from [wxyz] to [wxzy]. We now consider the other two bases in (99).
For these we prove our assertions case by case. We begin with the
first row of the first table, where wxyz equals d∗00∗d. We consider the
transition matrix from [d∗00∗d] to [0d∗0∗d]. We denote this matrix by
T and let D denote the diagonal matrix in Matd+1(K) with iith entry

(100) Dii =
1

ϕ1ϕ2 · · ·ϕi

εdϕ

ε∗0
, 0 ≤ i ≤ d.

We show D = T . Recall εd �= 0 by Lemma 14.8 and ϕ �= 0 by
Definition 14.4, so D �= 0. Using the data in the first table in
Theorem 11.2, rows 1 and 2, we routinely find AgD = DAh and
A∗gD = DA∗h, where we abbreviate g for d∗00∗d and h for 0d∗0∗d.
Applying Lemma 15.1, we find D is an intertwining matrix from
[d∗00∗d] to [0d∗0∗d]. Therefore D is a scalar multiple of T . We show
this scalar is 1. To do this, we compare the ddth entry of D and T .
Setting i = d in (100) and recalling ϕ = ϕ1ϕ2 · · ·ϕd, we find the ddth
entry of D equals εd/ε∗0. We now find the ddth entry of T . From
the table in Theorem 9.1, row 1, we find the dth vector in the basis
[d∗00∗d] is Ẽdη

∗
0 . From the same table, row 2, we find the dth vector in

the basis [0d∗0∗d] is ηd. From the equation on the left in (90), we find
ηd = εd/ε

∗
0Ẽdη

∗
0 , and it follows that the ddth entry of T is εd/ε∗0. We

now see D and T have the same ddth entry, so D = T . In particular,
D is the transition matrix from [d∗00∗d] to [0d∗0∗d].
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We now consider the transition matrix from [d∗00∗d] to [d∗0∗0d]. We
found the transition matrix from [d∗0∗0d] to [d∗00∗d] in the proof of
Theorem 11.2. To summarize, let L denote the matrix in Matd+1(K)
with ijth entry

(101) Lij = (θi − θ0)(θi − θ1) · · · (θi − θj−1), 0 ≤ i, j ≤ d.
Then L is the transition matrix from [d∗0∗0d] to [d∗00∗d]. To get the
transition matrix from [d∗00∗d] to [d∗0∗0d], we find the inverse of L.
Observe L is lower triangular. LetK denote the lower triangular matrix
in Matd+1(K) with ijth entry

(102) Kij =
1

(θj − θ0) · · · (θj − θj−1)
1

(θj − θj+1) · · · (θj − θi)
for 0 ≤ j ≤ i ≤ d. We recall θ0, θ1, . . . , θd are mutually distinct, so the
denominator in (102) is nonzero. We claim K is the inverse of L. To
prove this, we show LK = I. The matrices L and K are both lower
triangular, so LK is lower triangular. By (101) and (102), we find that
for 0 ≤ i ≤ d,

Kii =
1

(θi − θ0) · · · (θi − θi−1)
= L−1

ii

so (LK)ii = 1. We now show (LK)ij = 0 for 0 ≤ j < i ≤ d. Let i, j be
given. It suffices to show (θi − θj)(LK)ij = 0, since θ0, θ1, . . . , θd are
mutually distinct. Observe

(θi − θj)(LK)ij = (θi − θj)
d∑

h=0

LihKhj

= (θi − θj)
i∑

h=j

LihKhj

=
i∑

h=j

LihKhj(θi − θh + θh − θj)

=
i−1∑
h=j

Lih(θi − θh)Khj −
i∑

h=j+1

LihKhj(θj − θh)

=
i−1∑
h=j

Li,h+1Khj −
i∑

h=j+1

LihKh−1,j(103)

= 0
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since the two sums in (103) are one and the same. We have now shown
(LK)ij = 0 for 0 ≤ j < i ≤ d. Combining our above arguments, we find
LK = I so K is the inverse of L. Now apparently K is the transition
matrix from [d∗00∗d] to [d∗0∗0d].

We have now proved our assertions concerning the first row of the
first table. Applying these assertions to the relatives of Φ, and using
both Theorem 6.2 and Note 14.10, we obtain our assertions concerning
the first and fourth rows of each block of the first table.

We now consider the second row of the first table, where wxyz
equals 0d∗0∗d. We find the transition matrix from [0d∗0∗d] to [d∗00∗d].
Referring to the diagonal matrix D from (100) we showed D is the
transition matrix from [d∗00∗d] to [0d∗0∗d]. Therefore, D−1 is the
transition matrix from [0d∗0∗d] to [d∗00∗d].

We now consider the transition matrix from [0d∗0∗d] to [00∗d∗d]. Let
q denote a nonzero scalar in K̃ such that q + q−1 + 1 is the common
value of (35). Let H denote the lower triangular matrix in Matd+1(K)
with ijth entry

(104) Hij = (θ∗d − θ∗0)(θ∗d − θ∗1) · · · (θ∗d − θ∗i−j−1)[j, i− j, d− i]q
for 0 ≤ j ≤ i ≤ d. The expression [j, i− j, d− i]q is given in (68). We
remark each of [1]q, [2]q, . . . , [d]q is nonzero by Corollary 12.8 so the
denominator in [j, i− j, d− i]q is nonzero. We show H is the transition
matrix from [0d∗0∗d] to [00∗d∗d]. Observe Hii = 1 for 0 ≤ i ≤ d, so
H is invertible. We show A∗gH = HA∗h, where we abbreviate g for
0d∗0∗d and h for 00∗d∗d. The entries of A∗g and A∗h are given in the
first table of Theorem 11.2, rows 2 and 15. Using this information we
find that, for 0 ≤ i, j ≤ d, the ijth entry of A∗gH is given by

(105) θ∗iHij +Hi+1,j ,

where we interpret Hi+1,j = 0 if i = d. Similarly, the ijth entry of
HA∗h is given by

(106) Hi,j−1 + θ∗d−jHij ,

where we interpret Hi,j−1 = 0 if j = 0. We show (105) equals (106) or,
in other words,

(107) (θ∗i − θ∗d−j)Hij = Hi,j−1 −Hi+1,j .
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To prove (107), first suppose j−i > 1. Then each of Hij , Hi,j−1, Hi+1,j

is zero since H is lower triangular, so both sides of (107) are zero. Next
suppose j− i = 1. Then Hij = 0 since H is lower triangular. Moreover,
Hi,j−1 = Hii = 1 and Hi+1,j = Hjj = 1, so both sides of (107) are
zero. Next suppose i = d and j = 0. Then both sides of (107) are zero.
Next suppose i = d and 1 ≤ j ≤ d. Then using (104) we find both
sides of (107) equal (θ∗d − θ∗0)(θ∗d − θ∗1) · · · (θ∗d − θ∗d−j). Next suppose
0 ≤ i < d and j = 0. Then using (104) we find both sides of (107)
equal the opposite of (θ∗d − θ∗0)(θ∗d − θ∗1) · · · (θ∗d − θ∗i ). Finally suppose
1 ≤ j ≤ i ≤ d − 1. To verify (107) in this case, we use Lemma 13.3.
Set r = j, s = i− j+ 1, t = d− i, and observe each of r, s, t is positive.
Since r + s + t = d + 1, and since each of [1]q, [2]q, . . . [d]q is nonzero,
we find [h]q �= 0 for 1 ≤ h < r + s + t. Apparently our choice of r, s, t
satisfy the conditions of Lemma 13.3. Applying that lemma we find

(108)
[i− d+ j]q
[d− i+ j]q

[j, i− j, d− i]q
= [j − 1, i− j + 1, d− i]q − [j, i− j + 1, d− i− 1]q.

Applying Lemma 12.5 to the sequence θ∗0 , θ∗1 , . . . , θ∗d and recalling each
of [1]q, [2]q, . . . , [d]q is nonzero, we find

(109)
θ∗i − θ∗d−j

θ∗d − θ∗i−j

=
[i− d+ j]q
[d− i+ j]q

.

Combining (108) and (109), we obtain

(110)

θ∗i − θ∗d−j

θ∗d − θ∗i−j

[j, i− j, d− i]q
= [j − 1, i− j + 1, d− i]q − [j, i− j + 1, d− i− 1]q.

Multiplying both sides of (110) by (θ∗d −θ∗0)(θ∗d −θ∗1) · · · (θ∗d −θ∗i−j), and
evaluating the result using (104), we routinely obtain (107). We have
now shown (107) holds for 0 ≤ i, j ≤ d, and it follows A∗gH = HA∗h.
Recall we are trying to show H is the transition matrix from [0d∗0∗d]
to [00∗d∗d]. Let N denote this transition matrix. To show H = N , we
proceed in two steps. We first show H is a scalar multiple of N . We
then show this scalar equals 1. Proceeding with the first step, we define
S := NH−1 and show S is a scalar multiple of the identity. By Lemma
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9.4(ii), we find N is lower triangular. Recall H is lower triangular, so
S is lower triangular. Since N is the transition matrix from [0d∗0∗d] to
[00∗d∗d] we find N is an intertwining matrix from [0d∗0∗d] to [00∗d∗d].
Therefore, A∗gN = NA∗h. Combining this with A∗gH = HA∗h, we
find SA∗g = A∗gS. We claim S is diagonal. Suppose not. Then there
exists a pair of integers i, j, (0 ≤ j < i ≤ d), such that Sij �= 0. Of
all such pairs i, j, pick one with i − j maximal. We compute the ijth

entry in SA∗g = A∗gS. Observe the ijth entry of SA∗g is Sijθ
∗
j and

that of A∗gS is θ∗i Sij , so (θ∗i − θ∗j )Sij = 0. Observe θ∗i �= θ∗j , so Sij = 0,
a contradiction. We have now shown S is diagonal. Computing entries
just above the main diagonal in SA∗g = A∗gS, we find S is a scalar
multiple of the identity. Apparently H is a scalar multiple of N . We
now show this scalar equals 1. To do this, we compare the ddth entry
of H and N . We saw above that the ddth entry of H equals 1. We find
the ddth entry of N . From the table in Theorem 9.1, row 2, we find
the dth vector in the basis [0d∗0∗d] is ηd. From the same table, row 15,
we find the dth vector in the basis [00∗d∗d] is ηd. Apparently the ddth
entry of N equals 1. We now see H and N have the same ddth entry,
so H = N . In particular, H is the transition matrix from [0d∗0∗d] to
[00∗d∗d].

We have now proved our assertions concerning the second row of the
first table. Applying these assertions to the relatives of Φ, and using
both Theorem 6.2 and Note 14.10, we obtain our assertions concerning
the second and third rows of each block of the first table. We have now
verified all our assertions concerning the first table.

Consider the first row of the second table, where wxyz equals d∗0∗0d.
We find the transition matrix from [d∗0∗0d] to [0∗d∗0d]. Let P denote
this matrix and let F denote the diagonal matrix in Matd+1(K) with
diagonal entries

(111) Fii =
φdφd−1 · · ·φd−i+1

ϕ1ϕ2 · · ·ϕi

ε∗dϕ
ε∗0φ

, 0 ≤ i ≤ d.

We show F = P . To do this, we first show F is an intertwining matrix
from [d∗0∗0d] to [0∗d∗0d]. Clearly F �= 0. We show AgF = FAh,
A∗gF = FA∗h, where we abbreviate g for d∗0∗0d and h for 0∗d∗0d.
The matrices representing A and A∗ with respect to [d∗0∗0d] and
[0∗d∗0d] are given in the second table of Theorem 11.2, rows 1 and
2. Using the data in these rows, we routinely find AgF = FAh,
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A∗gF = FA∗h. Applying Lemma 15.1, we find F is an intertwining
matrix from [d∗0∗0d] to [0∗d∗0d]. Now apparently F is a scalar multiple
of P . We show this scalar equals 1. To do this, we compare the ddth
entry of F and P . Setting i = d in (111) and, recalling ϕ = ϕ1ϕ2 · · ·ϕd,
φ = φ1φ2 · · ·φd, we find the ddth entry of F equals ε∗d/ε

∗
0. We now find

the ddth entry of P . From the table in Theorem 9.1, row 17, we find
the dth vector in the basis [d∗0∗0d] is Edη

∗
0 . From the same table,

row 18, we find the dth vector in the basis [0∗d∗0d] is Edη
∗
d. From the

equation on the left in (94), we find Edη
∗
d = ε∗d/ε

∗
0Edη

∗
0 . Apparently,

the ddth entry of P equals ε∗d/ε
∗
0. We now see F and P have the same

ddth entry, so F = P . In particular, F is the transition matrix from
[d∗0∗0d] to [0∗d∗0d].

We already found the transition matrix from [d∗0∗0d] to [d∗00∗d].
This is the matrix L from (101).

We have now obtained our assertions concerning the first row of the
second table. Applying these assertions to the relatives of Φ, and
using both Theorem 6.2 and Note 14.10, we obtain all our assertions
concerning the second table. This completes the proof.

We finish this section with some comments on the transition matrices.
Let Φ denote the Leonard system in (9), and let g, h denote elements
in S4. Consider the transition matrix from the basis [g] to the basis
[h]. If g and h are adjacent in the sense of Definition 7.1, then this
transition matrix is given in Theorem 15.2. If the above restriction on
g, h is removed, then this transition matrix can be computed as follows.
To explain the idea, we use the following notation. By an edge in S4,
we mean an ordered pair consisting of adjacent elements of S4. Let r
denote a nonnegative integer. By a walk of length r in S4, we mean a
sequence g0, g1, . . . , gr of element of S4 such that gi−1, gi is an edge for
1 ≤ i ≤ r. The above walk is said to be from g0 to gr. Let gh denote an
edge in S4. By the weight of that edge, we mean the transition matrix
from [g] to [h]. Let g0, g1, . . . , gr denote a walk in S4. By the weight of
this walk, we mean the product W1W2 · · ·Wr where Wi is the weight
of the edge gi−1, gi for 1 ≤ i ≤ r. Let g, h denote elements in S4. Then
the transition matrix from [g] to [h] is given by the weight of any walk
from g to h.



880 P. TERWILLIGER

16. Remarks. In the introduction to this paper, we mentioned that
Leonard pairs are related to certain orthogonal polynomials contained
in the Askey scheme. One significance of the polynomials is that they
give the entries in the transition matrices relating certain pairs of bases
among our set of 24. In this section we illustrate what is going on with
some examples. For related work, see [12], [13], [15], [45] and [27],
[28], [29], [30], [31], [35, Chapter 4].

Throughout this section we let Φ denote the Leonard system in
(9) with eigenvalue sequence θ0, θ1, . . . , θd, dual eigenvalue sequence
θ∗0 , θ

∗
1 , . . . , θ

∗
d, first split sequence ϕ1, ϕ2, . . . , ϕd and second split se-

quence φ1, φ2, . . . , φd. For 0 ≤ i, j ≤ d, we define

(112) Pij =
d∑

n=0

(θi−θ0)(θi−θ1)···(θi−θn−1)(θ
∗
j −θ∗

0 )(θ∗
j −θ∗

1 )···(θ∗
j −θ∗

n−1)

ϕ1ϕ2···ϕn
.

We observe Pij is a polynomial of degree j in θi and a polynomial of
degree i in θ∗j . These are the polynomials of interest.

The Pij arise in the following context. Let V denote the irreducible
left A-module. In Theorem 9.1 we presented 24 bases for V . Of these,
we focus on the following two:

[d∗0∗0d] : E0η
∗
0 , E1η

∗
0 , . . . , Edη

∗
0 ,(113)

[d00∗d∗] : E∗
0η0, E

∗
1η0, . . . , E

∗
dη0.(114)

We recall the basis (113) is a Φ-standard basis. With respect to
this basis, the matrix representing A is diagonal, and the matrix
representing A∗ is irreducible tridiagonal. We denote these matrices
by H and B∗, respectively. Their entries are given in the second
table of Theorem 11.2, row 1. The basis (114) is a Φ∗-standard basis.
With respect to this basis, the matrix representing A∗ is diagonal and
the matrix representing A is irreducible tridiagonal. We denote these
matrices by H∗ and B, respectively. Their entries are given in the third
table of Theorem 11.2, row 1. Let P denote the transition matrix from
(113) to (114), with the vectors η0, η∗0 chosen so that

(115) η∗0 = E∗
0η0.

The effect of (115) is that Pi0 = 1 for 0 ≤ i ≤ d. We let P ∗ denote the
transition matrix from (114) to (113), this time with the η0, η∗0 chosen
so that

(116) η0 = E0η
∗
0 .
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As expected P ∗
i0 = 1 for 0 ≤ i ≤ d. From the construction of P and P ∗

we find there exists a nonzero scalar ν ∈ K such that

(117) PP ∗ = νI.

Moreover, by Lemma 15.1, we have

(118) B∗P = PH∗, BP ∗ = P ∗H.

We compute the entries of P . For this we use the method outlined in
the last paragraph of the previous section. The following is a walk in
S4 from d∗0∗0d to d00∗d∗.

(119) d∗0∗0d, d∗00∗d, 0d∗0∗d, 0d∗d0∗, 0dd∗0∗, d0d∗0∗, d00∗d∗.

Apparently P equals the weight of the walk (119). Computing this
weight using the data in Theorem 15.2, we find

(120) Pij = kjPij , 0 ≤ i, j ≤ d,

where Pij is from (112), and where kj equals

(121)
ϕ1ϕ2 · · ·ϕj

φ1φ2 · · ·φj

times

(122)
(θ∗0 − θ∗1)(θ∗0 − θ∗2) · · · (θ∗0 − θ∗d)

(θ∗j − θ∗0) · · · (θ∗j − θ∗j−1)(θ∗j − θ∗j+1) · · · (θ∗j − θ∗d)

for 0 ≤ j ≤ d. We now compute P ∗. Replacing Φ by Φ∗ in the above
discussion, and using Theorem 6.2, we routinely find

(123) P ∗
ij = k∗jPji, 0 ≤ i, j ≤ d,

where Pji is from (112), and where k∗j equals

(124)
ϕ1ϕ2 · · ·ϕj

φdφd−1 · · ·φd−j+1
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times

(125)
(θ0 − θ1)(θ0 − θ2) · · · (θ0 − θd)

(θj − θ0) · · · (θj − θj−1)(θj − θj+1) · · · (θj − θd)

for 0 ≤ j ≤ d. We now compute the scalar ν from (117). From the
construction of P and P ∗ we routinely find νE0E

∗
0E0 = E0. Taking

the trace in this equation we find

(126) traceE0E
∗
0 = ν−1.

Evaluating the left side in (126) using Lemma 14.2 and Lemma 14.5,
we routinely find
(127)

ν =
(θ0 − θ1)(θ0 − θ2) · · · (θ0 − θd)(θ∗0 − θ∗1)(θ∗0 − θ∗2) · · · (θ∗0 − θ∗d)

φ1φ2 · · ·φd
.

From (117) we obtain the following orthogonality relations for the Pij .
Expanding the left side of PP ∗ = νI using matrix multiplication, and
evaluating the result using (120) and (123), we find

(128)
d∑

n=0

PinPjnkn = δijνk∗−1
j , 0 ≤ i, j ≤ d.

Doing something similar with the equation P ∗P = νI, we find

(129)
d∑

n=0

PniPnjk
∗
n = δijνk−1

j , 0 ≤ i, j ≤ d.

We remark the equations (118) express several three-term recurrences
satisfied by the Pij .

We now indicate how the Pij fit into the Askey scheme. Instead of
giving a complete treatment, we content ourselves with two examples.

Our first example is associated with the Leonard pair from (2). For
this example the Pij will turn out to be Krawtchouk polynomials. Let
d denote a nonnegative integer, and consider the following elements of
K.

θi = d− 2i, θ∗i = d− 2i, 0 ≤ i ≤ d,
(130)

ϕi = −2i(d− i+ 1), φi = 2i(d− i+ 1), 1 ≤ i ≤ d.
(131)
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To avoid degenerate situations we assume the characteristic of K is
zero or an odd prime greater than d. It is routine to show that (130)
and (131) satisfy the conditions (i) (v) of Theorem 6.1. Let us assume
that Φ is the corresponding Leonard system from that theorem. For
this Φ, we routinely find B and B∗ both equal the matrix on the left
in (2). Moreover, H and H∗ both equal the matrix on the right in (2).
Pick any integers i, j, (0 ≤ i, j ≤ d). Evaluating the right side of (112)
using (130) and (131), we find Pij equals

(132)
d∑

n=0

(−i)n(−j)n2n

(−d)nn!
,

where

(a)n := a(a+ 1)(a+ 2) · · · (a+ n− 1), n = 0, 1, 2, . . . .

Hypergeometric series are defined in [10, page 3]. From this definition
we find (132) is the hypergeometric series

(133) 2F1

(−i,−j
−d

∣∣∣∣2
)
.

A definition of the Krawtchouk polynomials can be found in [1] or
[26]. Comparing this definition with (133), we find Pij is a Krawtchouk
polynomial of degree j in θi and a Krawtchouk polynomial of degree
i in θ∗j . Pick an integer j, (0 ≤ j ≤ d). Evaluating (121), (122) and
(124), (125) using (130) and (131), we find kj and k∗j both equal the
binomial coefficient (

d
j

)
.

Evaluating (127) using (130) and (131), we find ν = 2d. We comment
that for this example P = P ∗, so P 2 = 2dI.

We now give our second example. For this example the Pij will turn
out to be q-Racah polynomials. To begin, let d denote a nonnegative
integer, and consider the following elements in K.

θi = θ0 + h(1 − qi)(1 − sqi+1)/qi,(134)
θ∗i = θ∗0 + h∗(1 − qi)(1 − s∗qi+1)/qi(135)
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for 0 ≤ i ≤ d, and

ϕi = hh∗q1−2i(1 − qi)(1 − qi−d−1)(1 − r1qi)(1 − r2qi),
(136)

φi = hh∗q1−2i(1 − qi)(1 − qi−d−1)(r1 − s∗qi)(r2 − s∗qi)/s∗
(137)

for 1 ≤ i ≤ d. We assume q, h, h∗, s, s∗, r1, r2 are nonzero scalars in the
algebraic closure K̃, and that r1r2 = ss∗qd+1. It is routine to show
(134) (137) give a parametric solution to Theorem 6.1 (iii) (v). Let us
assume conditions (i) and (ii) of Theorem 6.1 are satisfied as well, so
that (134) (137) correspond to a Leonard system. We assume Φ is the
corresponding Leonard system from Theorem 6.1. For this Φ we find
B,B∗,Pij , kj , k

∗
j , ν. Recall the entries of B are given in the third table

of Theorem 11.2, row 1. Evaluating these entries using (134) (137), we
find

B01 =
h(1 − q−d)(1 − r1q)(1 − r2q)

1 − s∗q2 ,

Bi−1,i =
h(1 − qi−d−1)(1 − s∗qi)(1 − r1qi)(1 − r2qi)

(1 − s∗q2i−1)(1 − s∗q2i)
, 2≤ i≤d,

Bi,i−1 =
h(1 − qi)(1 − s∗qi+d+1)(r1−s∗qi)(r2−s∗qi)

s∗qd(1 − s∗q2i)(1 − s∗q2i+1)
, 1≤ i≤d−1,

Bd,d−1 =
h(1 − qd)(r1 − s∗qd)(r2 − s∗qd)

s∗qd(1 − s∗q2d)
,

Bii = θ0 −Bi,i−1 −Bi,i+1, (0 ≤ i ≤ d),
where we define B0,−1 := 0, Bd,d+1 := 0. The entries of B∗ are
similarly obtained. To get the entries of B∗, in the above formulae
exchange (θ0, h, s) and (θ∗0 , h∗, s∗) and preserve (r1, r2, q). Pick integers
i, j, (0 ≤ i, j ≤ d). Evaluating the right side of (112) using (134) (137),
we find Pij equals

(138)
d∑

n=0

(q−i; q)n(sqi+1; q)n(q−j ; q)n(s∗qj+1; q)nq
n

(r1q; q)n(r2q; q)n(q−d; q)n(q; q)n
,

where

(a; q)n := (1 − a)(1 − aq)(1 − aq2) · · · (1 − aqn−1), n = 0, 1, 2, . . . .
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Basic hypergeometric series are defined in [10, page 4]. From that
definition we find (138) is the basic hypergeometric series

(139) 4φ3

(
q−i, sqi+1, q−j , s∗qj+1

r1q, r2q, q
−d

∣∣∣∣q, q
)
.

A definition of the q-Racah polynomials can be found in [2], [3] or [26].
Comparing this definition with (139), and recalling r1r2 = ss∗qd+1,
we find Pij is a q-Racah polynomial of degree j in θi and a q-Racah
polynomial of degree i in θ∗j . Pick an integer j, (0 ≤ j ≤ d). Evaluating
(121) and (122) using (134) (137), we find

(140) kj =
(r1q; q)j(r2q; q)j(q−d; q)j(s∗q; q)j(1 − s∗q2j+1)

sjqj(q; q)j(s∗q/r1; q)j(s∗q/r2; q)j(s∗qd+2; q)j(1 − s∗q) .

The scalar k∗j is similarly found. To get k∗j , in (140), exchange s and
s∗ and preserve (r1, r2, q). Evaluating (127) using (134) (137), we find

ν =
(sq2; q)d(s∗q2; q)d

rd1q
d(sq/r1; q)d(s∗q/r1; q)d

.
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