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PARTIAL DIFFERENTIAL EQUATIONS
SATISFIED BY POLYNOMIALS WHICH

HAVE A PRODUCT FORMULA

WILLIAM C. CONNETT AND ALAN L. SCHWARTZ

ABSTRACT. The classical families of orthogonal polyno-
mials arise as eigenfunctions of Sturm-Liouville problems. In
1929, Bochner addressed the converse question: Which linear
second order differential operators can have an infinite family
of polynomials, P, as their eigenfunctions? The classification
that he gave showed that there were, up to a linear change of
variables, a unique differential operator associated with each
such family, and the argument did not even require that the
members of P were orthogonal, only that there were “enough”
polynomials in the family (indeed, in some cases, the polyno-
mials are not orthogonal). In this paper it will be shown that
certain families of bivariate polynomials satisfy not just one
but a pair L(1) and L(2) of partial differential operators with
bounds on the order of the operators determined by properties
of P. We also give a simple condition that the polynomials be
completely determined by the pair of operators (up to multi-
plicative constants). This article includes detailed discussions
of five examples of such polynomial families. We shall also
discuss ∆(P), the algebra of operators which have P as eigen-
functions, and we give sufficient conditions that every member
of ∆(P) is given uniquely as a polynomial in L(1) and L(2).
This will be the case in all five examples.

1. Introduction. The classical families of orthogonal polynomials
arise as eigenfunctions of Sturm-Liouville problems. In 1929, Bochner
addressed the converse question [2]: Which linear second order differ-
ential operators can have an infinite family of polynomials, P as their
eigenfunctions? The classification that he gave showed that there were,
up to a linear change of variables, a unique differential operator asso-
ciated with each such family, and the argument did not even require
that the members of P were orthogonal, only that there were “enough”
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polynomials in the family (indeed, in some cases, the polynomials are
not orthogonal).

The condition that there be “enough” polynomials is given here in
terms of bivariate polynomials.

Definitions. We order the pairs {(n, k) : 0 ≤ k ≤ n} by (m, j) < (n, k)
if either m < n or m = n and j < k. We say that the bivariate
polynomial p has bivariate degree (n, k) if

p(x, y) =
∑

(m,j)≤(n,k)

am,jx
m−jyj

with an,k �=0; in this case we also say that p has degree n. Let Π be the
set of bivariate polynomials, and let Πn be the set of polynomials in Π
with degree not exceeding n.

If P is a collection of bivariate polynomials, let Pn = P ∩ Πn. We
say P is algebraically complete if P is linearly independent and the
elements of Pn span Πn for each n. An algebraically complete family
P is a family of orthogonal polynomials if there is a positive Borel
measure σ on R2 such that

∫
pq̄ dσ = 0 whenever p, q ∈ P with p �= q.

Analogous definitions may be formulated for polynomials in any
number of variables. But in this article, we will limit attention to
bivariate polynomials.

Remark. Algebraic completeness is trivial for univariate polynomials
there must be one polynomial of each degree. For bivariate polynomi-
als algebraic completeness requires that P contain n+ 1 linearly inde-
pendent polynomials of degree n. For polynomials in three variables,
algebraic completeness requires (n + 1)(n + 2)/2 linearly independent
polynomials of degree n.

Bochner’s classification for algebraically complete families of univari-
ate polynomials was used to prove a converse to Gasper’s theorem
about the positivity of the product formula for Jacobi polynomials [3,
5]. Algebraic completeness for bivariate families was also useful in the
classification of canonical Hermitian and canonical non-Hermitian hy-
pergroups given in [4].

The problem we address is: given an algebraically complete family
of bivariate polynomials P, find a system of linear partial differential
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operators which have the polynomials in P as a complete set of eigen-
functions. Except in the following lemma, all linear partial differential
operators will have finite order. Actually we will show how to find a
pair of linear partial differential operators which have exactly P as its
set of joint polynomial eigenfunctions. A sufficient condition for the
existence of such linear partial differential operators is that P have a
product formula of the right sort.

The following lemma shows that the problem becomes interesting
only when we bound the order of the linear partial differential opera-
tors. Theorem 1 finds a bound for the order of the linear partial differ-
ential operators. Theorems 2 and 3 address the issue of showing that
P is a complete set of eigenfunctions for the linear partial differential
operators. We write Dx = ∂/∂x and f (j,k) = Dj

xD
k
yf .

Koornwinder proves a version of the following for a specific family of
polynomials [10, II, Lemma 6.1], but the argument given here is valid
in a more general context, see also [12, Lemma 0.1] and [13, Lemma
3.1 and Theorem 3.1].

Lemma 1.1. Let P be an algebraically complete family of bivariate
polynomials, and let complex numbers {λp}p∈P be given. Then there is
a unique differential operator possibly of infinite order

(1.1) M =
∑

0≤j≤m<∞
αm,j(x, y)Dm−j

x Dj
y

with αm,j ∈ Πm such that

(1.2) Mp = λpp, p ∈ P
for every (x, y) ∈ R2.

Moreover, suppose M is given by (1.1), and assume that (1.2) holds
for (x, y) belong to some open subset of R2. Then αm,j are completely
determined by P and {λp}p∈P and (1.2) is valid on all of R2.

Proof. Let P and {λp}p∈P be as in the hypotheses, and suppose
αm,j ∈ Πm for 0 ≤ j ≤ m < k. P contains exactly k + 1 polynomials
p0, p1, . . . , pk of degree k. Let λj = λpj

. We can write

pl =
k∑

j=0

cl,jx
k−jyj + l.o.t., l = 0, 1, . . . , k.
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Since P is algebraically complete,

Ck =



c0,0 · · · c0,k
c1,0 · · · c1,k
...

...
ck,0 · · · ck,k




is nonsingular. Now the relation

M



p0

p1
...
pk


 =



λ0p0

λ1p1
...

λkpk




yields

Ck




k!0!αk,0

(k − 1)!1!αk,1

...
0!k!αk,k


 = −

∑
0≤j≤m<k

αm,jD
m−j
x Dj

y



p0

p1
...
pk


 +



λ0p0

λ1p1
...

λkpk


 .

Thus, since Ck is nonsingular, αk,j are determined and belong to Πk

for j = 0, 1, . . . , k.

The converse is a corollary of the above argument.

Definitions. AssumeH is a subset ofR2, letM(H) denote the regular
complex-valued Borel measures on H, let M+(H) denote the positive
measures in M(H) and M1(H) the measures in M+(H) with unit total
variation; these are called probability measures. If µ ∈ M(H), let suppµ
be the support of µ. For z ∈ H, δz is the unit mass concentrated on
z. Let C(H) be the Banach space of functions which are continuous
on H with the norm ‖f‖H = sup(x,y)∈H |f(x, y)|, and let Cc(H) be the
functions in C(H) which have compact support in H.

We say an algebraically complete family of polynomials P has a
product formula on H if, for each z, w ∈ H, σz,w ∈ M(H) exists such
that

(1.3) p(z)p(w) =
∫
H

p dσz,w, p ∈ P.
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We say (1.3) is a strong product formula on H with identity element e
if

σz,w ∈ M+(H), z, w ∈ H

and there is an element e ∈ H which satisfies the following two
conditions

σz,e = δz, z ∈ H,(1.4)
lim
w→e

diam (supp (σz,w)) = 0, z, w ∈ H(1.5)

σz,w are called the product measures.

Some elementary observations are contained in the following

Lemma 1.2. Suppose P is an algebraically complete family of
polynomials which has a strong product formula on H with identity
element e and product measures σz,w.

(i) p(e) = 1 for every p ∈ P.
(ii) σz,w ∈ M1(H) for each z, w ∈ H.

(iii) If H is a bounded set, then ‖p‖H = 1 for every p ∈ P.
(iv) e is a boundary point of H.

Proof. (i) For w = e, (1.3) and (1.4) yield p(z)p(e) = p(z).

(ii) Apply the product formula to the constant polynomial in P which
because of (1) must be p0 ≡ 1.

(iii) From (1.3) and (ii) we have ‖p‖2
H ≤ ‖p‖H , so ‖p‖H ≤ 1. Equality

follows from (i).

(iv) This follows from (iii) applied to P1.

(v) H is bounded by (iii).

1.1 Strong product formulas and hypergroup product formulas. Sup-
pose P is an algebraically complete family of polynomials with strong
product formula on H with identity e. This gives rise to a convolution
∗ on M(H) as follows. Let µ, ν ∈ M(H) and define µ ∗ ν by its action
on C(H) by setting∫

f d(µ ∗ ν) =
∫∫ [∫

f dσz,w

]
dµ(z) dν(w), f ∈ Cc(H).
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The resulting convolution is easily shown to be commutative and as-
sociative, so (M(H), ∗) is a commutative Banach algebra of measures
with identity δe and in which a product of probability measures is also
a probability measure. If (M(H), ∗) satisfies a number of other condi-
tions, it becomes a hypergroup (or in current usage, DJS-hypergroup);
for more background on hypergroups, see [4, 16, 8] and the references
cited there. We say that P has a hypergroup product formula on H if
(M(H), ∗) is a hypergroup.

Now suppose (1.3) is a hypergroup product formula. Sometimes the
set of characters of (M(H), ∗) coincides with P, and P becomes an
orthogonal family. In this case we say that (M(H), ∗) is a 2-variable
continuous polynomial hypergroup. The work reported here was origi-
nally motivated by our goal of classifying the members of this category,
see [4, 5, 17] and the references cited there. Theorem 1 provides a
necessary condition that P be the characters of a hypergroup.

1.2 Differential equations. In order to find the differential operators,
it is necessary to understand how the identity element e is situated in
H.

Definition. A path from e to H is a continuously differentiable func-
tion f : [0, 1] → H with f(0) = e and a unit speed parameterization,
|f ′(s)| = 1. H has a cusp of order r at e if r is the smallest positive
integer such that two r-times differentiable paths f and g exist such
that f (k)(0) = g(k)(0), 0 ≤ k ≤ r−1 and f (r)(0) and g(r)(0) are linearly
independent vectors. For instance, if H = {(x, y) : 0 ≤ y ≤ xr ≤ 1},
then H has a cusp of order r at e = (0, 0) as can be seen by choosing f
and g to be paths following the boundaries of H. The situation of e in
H used in [4] is that e is a two-dimensional accumulation point of H;
this is slightly weaker than H having a cusp of order 1 at e.

We can now state the result which guarantees the existence of linear
partial differential operators with P as eigenfunctions. This generalizes
our earlier result in [4]. By Lemma 1.1 any algebraically complete
family of polynomials can be made to be eigenfunction with specified
eigenvalues of a possibly infinite order differential equation. One
important feature of this theorem is that it puts bounds on the orders
of the linear partial differential operators.
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Theorem 1. Suppose that P is an algebraically complete family of
polynomials which has a strong product formula on H with identity
element e and that H has a cusp of order r at e. Then the members
of P are eigenfunctions for a pair L(1) and L(2) of commuting linear
partial differential operators:

(1.6) L(1)p = λ(1)
p p and L(2)p = λ(2)

p p, p ∈ P.

L(1) has order not exceeding 2, and L(2) has order not exceeding 2r.
Moreover, if f = (f1, f2) and g = (g1, g2) are paths from e to H as in
the definition of cusp, we can take

(1.7) λ(1)
p = f ′

1(0)p
(1,0)(e) + f ′

2(0)p
(0,1)(e)

(1.8) λ(2)
p = [f (r)

1 (0)− g
(r)
1 (0)]p(1,0)(e) + [f (r)

2 (0)− g
(r)
2 (0)]p(0,1)(e).

If r = 1 we can take

(1.9) λ(1)
p = p(1,0)(e) and λ(2)

p = p(0,1)(e).

The proof will be given in Section 2.

Definitions. Let P be an algebraically complete family of polynomi-
als, and let D(P) be the algebra of linear partial differential operators
with polynomial coefficients which have all members of P as eigenfunc-
tions. Suppose that L(1), L(2) ∈ D(P). We say that the pair (L(1), L(2))
determines P if every polynomial joint eigenfunction of L(1) and L(2)

is a constant multiple of some polynomial in P. In this case we also
say that the pair (L(1), L(2)) is deterministic.

Remark. The definition could be extended to any set of linear partial
differential operators; indeed, if L(1) and L(2) are real, P consists of real
polynomials and the pair (L(1), L(2)) determines P, then L(1) + iL(2)

determines P.

Theorem 2. Suppose P is an algebraically complete family and
suppose L(1) and L(2) belong to D(P) with eigenvalues {λ(1)

p }p∈P and
{λ(2)

p }p∈P . Then (L(1), L(2)) determines P if and only if

(1.10) p �−→ (λ(1)
p , λ(2)

p ) is injective on P.
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The proof will be given in Section 2. The theorem is analogous to
[9, Lemma 2.4]; a discussion of the related idea of admissibility will be
given in Sections 1.3 and 5.

The question arises whether Theorem 2 can be strengthened to say
that P is the totality of joint eigenfunctions of L(1) and L(2). The
answer depends on the definition or “eigenfunction”; we will use the
following and find that the question can often be answered in the
affirmative if P is a family of orthogonal polynomials.

Definition. Let H be a Hilbert space with inner product 〈·, ·〉; let Φ
be a complete orthonormal system for H; for f ∈ H and φ ∈ Φ, let
f̂(φ) = 〈f, φ〉. Suppose L is a (possibly unbounded) linear operator
on H defined at least on the space of finite linear combinations of
elements of Φ. Assume that for each φ ∈ Φ there is a complex
number λφ satisfying Lφ = λφφ. Let M be any extension of L and
suppose f belongs to the domain of M . Then, for each φ ∈ Φ,
〈Mf, φ〉 = 〈f,M∗φ〉 = 〈f, λφφ〉 = λφf̂(φ). It follows that

(1.11)
∑
φ∈Φ

|λφf̂(φ)|2 < ∞,

and

(1.12) Mf =
∑
φ∈Φ

λφf̂(φ)φ.

Thus the maximal extensionM of L has domain D = {f : (1.11) holds}
and M is given by (1.12). We say that f ∈ D is an eigenfunction of L
if there is a complex number λ such that Mf = λf .

Theorem 3. Suppose P is a family of polynomials orthogonal with
respect to σ ∈ M1(R2); let H = supp σ be compact. Suppose L(1) and
L(2) are linear partial differential operators which determine P. Let f
be a joint eigenfunction of L(1) and L(2). Then f is a constant multiple
of some polynomial in P.

The proof is contained in the next section.
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1.3 Admissibility in the sense of Krall and Sheffer. Krall and Sheffer
introduce the notions of admissibility for ordinary [12] and partial
linear differential operators [13] in order to study the relation between
such operators and polynomial eigenfunctions. We review those two
notions here.

Let L =
∑∞

k=1 Mk(x)Dk
x where each Mk ∈ Πk with leading coefficient

mk. Let λn = nm1 + n(n − 1)m2 + · · · + n!mn. L is admissible if
n → λn is injective. (We use admissible-1 to distinguish this from the
term as used for linear partial differential operators below.) L has a
unique monic polynomial eigenfunction of every degree with λn being
the eigenvalue corresponding to the polynomial eigenfunction of degree
n if and only if L is admissible-1 [12, Lemma 0.1] and [9, Lemma 2.4].

In [13, Section 3], a linear partial differential operator is designated
admissible (we use admissible-2) if there is a sequence of parameters
{λn}∞n=0 such that Lp = λnp has no nonzero solutions in Πn−1, and
it has exactly n + 1 linearly independent solutions of degree n. They
show that if L is admissible-2, then λ0 = 0 and n → λn is injective.

Our notion of a deterministic pair of linear partial differential oper-
ators is a natural extension of admissible-1 to the bivariate case and
Theorem 2 is analogue to [12, Lemma 0.1] and [9, Lemma 2.4]. The-
orem 2 shows that when (1.10) holds the individual polynomials are
determined (up to multiplicative constants).

The admissible-2 condition only leads to the determination of the
space Vn spanned by the nth degree polynomial eigenfunctions. An
added disadvantage of admissible-2 is that there are orthogonal poly-
nomial families (which are designated “classical” by Koornwinder [11])
which do not satisfy this criterion. We will return to this issue and
related ones in Section 5.

The rest of the paper is organized as follows. Section 3 is devoted
to five examples. In Section 4 we will give sufficient conditions on
(L(1), L(2)) that every linear partial differential operator in D(P) can
be represented uniquely as a bivariate polynomial in L(1) and L(2).
These sufficient conditions hold in four of the five examples; a separate
argument will be presented for the fifth example. Section 5 is devoted
to Krall and Sheffer’s notion of admissibility, and Section 6 lists a few
open questions.
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2. Proof of Theorems 1, 2 and 3.

2.1 Proof of Theorem 1. Assume that P and H are as in the
hypothesis of Theorem 1, and that P has a strong product formula
with identity e and product measures σz,w. Before we turn to a proof,
we introduce moments. We use the following notations: z = (x, y),
w = (u, v) and ζ = (s, t). The moments are defined by

Mj,k(z, w) =
1

j!k!

∫
H

(s− x)j(t− y)k dσz,w(ζ), j, k ∈ N0, z, w ∈ H.

Lemma 2.1. If n ∈ N0 and j + k > 2n, then for each fixed z,

Mj,k(z, w) = O(|w − e|n+1), w → e, w ∈ H.

Proof. Note that there are polynomials cp(z) such that

1
j!k!

(s− x)j(t− y)k =
∑

p∈Pj+k

cp(z)p(ζ),

so
Mj,k(z, w) =

∑
p∈Pj+k

cp(z)p(z)p(w)

is a polynomial. Let z be fixed. If j + k > 0, Mj,k(z, e) = 0, so if
mj,k(w) = Mj,k(z, w),

mj,k(w) = O(|w − e|), j, k ∈ N,

since mj,k(e) = 0 and mj,k(w) is a polynomial. This establishes the
lemma for n = 0.

Now proceed by induction on n. Assume that whenever j + k > 2n

mj,k(w) = O(|w − e|n+1).

Assume j, k ∈ N0 and j + k > 2(n+ 1); we will show

mj,k(w) = O(|w − e|n+2).
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Let µ be the greatest even integer such that µ ≤ j, and let ν = 2n+2−µ.
Then either j > µ or k > ν, and since µ and ν are both even
(s− x)µ(t− y)ν ≥ 0, so

|mj,k(w)| ≤ sup
ζ∈suppσz,w

|s− x|j−µ|t− y|k−νmµν(w),

and µ+ ν = 2n+ 2 > 2n so mµ,ν(w) = O(|w − e|n+1). Now j − µ > 0
or k − ν > 0 so

mj,k(w) = o(|w − e|n+1) = O(|w − e|n+2)

since mj,k is polynomial.

We now turn to the proof of the theorem. Assume the hypotheses of
the theorem hold, and let f = (f1, f2) and g = (g1, g2) be paths from e
to H as in the cusp definition. We compute p(z)[p(f(s))− p(g(s))] two
different ways. First we expand the second factor in a Taylor series to
obtain, see (1.8),

(2.1) p(z)[p(f(s))− p(g(s))] =
sr

r!
λ(2)
p p(z) + o(sr).

We also have by expanding p(ζ) in a Taylor series around (s, t) = (x, y)

p(z)p(w) =
∫
H

p(ζ) dσz,w(ζ)

=
∫
H

∑
j+k≤deg (p)

1
j!k!

(s− x)j(t− y)kp(j,k)(z) dσz,w(ζ)

=
∑

j+k≤deg (p)

Mj,k(z, w)p(j,k)(z),

so

(2.2) p(z)[p(f(s))− p(g(s))]

=
∑

j+k≤deg (p)

[Mj,k(z, f(s))−Mj,k(z, g(s))]p(j,k)(z)

=
∑

j+k≤2r

[Mj,k(z, f(s))−Mj,k(z, g(s))]p(j,k)(z) + o(sr)
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because, according to the lemma, if j + k > 2r,

Mj,k(z, f(s))−Mj,k(z, g(s)) = O(|f(s)−e|r+1)+O(|g(s)−e|r+1)
(2.3)

= o(sr).

Now equate the coefficients of sr/r! in (2.1) and (2.2) to obtain

∑
j+k≤2r

Aj,k(z)p(j,k)(z) = λ(2)
p p(z)

where

Aj,k(z) = Dr
s [Mj,k(z, f(s))−Mj,k(z, g(s))|s=0

= [f (r)
1 (0)− g

(r)
1 (0)]M (1,0)

j,k (z, e) + [f (r)
2 (0)− g

(r)
2 (0)]M (0,1)

j,k (z, e)

and λ
(2)
p is given by (1.8).

We also obtain a second linear partial differential operator of order 2
or less by performing a similar computation on p(z)p(f(s)) and equat-
ing the coefficients of s in both expressions. The result is

∑
j+k≤2

[f ′
1(0)M

(1,0)
j,k (z, e) + f ′

2(0)M
(0,1)
j,k (z, e)]p(j,k)(z) = λ(1)

p p(z)

where λ
(1)
p is given by (1.7).

L(1)L(2) and L(2)L(1) have polynomial coefficients and they have P
as eigenfunctions with the same eigenvalues, so they are equal. This
establishes the theorem.

Remark. Similar results can be obtained for more general classes
of functions than polynomials, but this would involve more technical
assumptions. See [3] for a treatment of the univariate case.

2.2 Proof of Theorem 2. Suppose that P is an algebraically complete
family with L(1), L(2) ∈ D(P) such that

L(j)p = λ(j)
p p, j = 1, 2 and p ∈ P.
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Assume (1.10) holds. Suppose that f is a polynomial and that for j =
1, 2, L(j)f = λ(j)f for some λ(j) ∈ C. Since P is algebraically complete,
there are constants cp such that f =

∑
p∈P cpp with E = {p : cp �= 0}

being a finite set. We have for j = 1, 2,

λ(j)
∑
p∈E

cpp = λ(j)f = L(j)f = L(j)

[ ∑
p∈E

cpp

]
=

∑
p∈E

cpλ
(j)
p p.

Thus, for all p ∈ E, λ(j) = λ
(j)
p ; hence, by (1.10), E consists of a single

element q and f = cqq.

For the converse, assume there are p, q ∈ P with p �= q, but λ(j)
p = λ

(j)
q

for j = 1, 2. Thus p+ q is a joint polynomial eigenfunction of L(1) and
L(2) which is not a constant multiple of any member of P.

2.3 Proof of Theorem 3. Suppose that P, H, σ, L(1), L(2) are as in the
statement of the theorem and that λ(1)

p and λ
(2)
p are as in (1.6). There

is no loss of generality in assuming that P consists of orthonormal
polynomials. P is a complete orthonormal system by the Stone-
Weierstrass theorem. Define f̂(p) =

∫
H
fp̄ dσ.

Suppose f is a joint eigenfunction of L(1) and L(2) with eigenvalues
λ(1) and λ(2). This means that

∑
p∈P(|λ(1)

p |2 + |λ(2)
p |2)|f̂(p)|2 < ∞ and

∑
p∈P

λ(j)
p f̂(p)p = L(j)f = λ(j)f = λ(j)

∑
p∈P

f̂(p)p, j = 1, 2.

Thus (λ(j) − λ
(j)
p )f̂(p) = 0, whence f̂(p) = 0 unless λ(j) = λ

(j)
p for

j = 1, 2. Hence by (1.10) there is a unique q ∈ P such that f̂(q) �= 0,
whence f = f̂(q)q as required.

3. Examples. In this section we discuss five examples of alge-
braically complete families of bivariate polynomials related to the nor-
malized Jacobi polynomials (a more extensive discussion of these can
be found in [11]:

R(α,β)
n (x) =

P
(α,b)
n (x)

P
(α,β)
n (1)

= F

(
− n, n+ α+ β + 1;α+ 1;

1− x

2

)
.
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We make a few observations that are common to all five examples.

1. Each example is actually a category of examples with parameters
named α, β, γ or δ. For certain values of the parameters each family is
a set of orthogonal polynomials.

2. Each example satisfies a strong product formula (indeed a hy-
pergroup product formula) for certain values of the parameters. This
guarantees the existence of a pair of linear partial differential operators
by Theorem 1. The differential operators and eigenvalues are given
explicitly.

3. In all five examples, the polynomials, the eigenvalues, and the
coefficients in the linear partial differential operators are all rational
functions of the parameters α, β, γ and δ. Thus the validity of the
partial differential equations will extend to a larger range of parameters
(including complex values; see [18, Section 4.22] for a discussion of this
in the case of the Jabobi polynomials) where there may not be a strong
product measure. Thus the condition that an algebraically complete
family of polynomials have a strong product formula is a sufficient, but
not necessary, condition for the existence of linear partial differential
operators with the polynomials as eigenfunctions.

4. In each case it is easy to check that (1.10) holds so Theorem 2 can
be invoked to assert that the pair of linear partial differential operators
determine the family of polynomials.

5. For many values of the parameters, the families of polynomials are
orthogonal, so Theorem 3 guarantees that the family of polynomials is
the complete set of joint eigenfunctions of the linear partial differential
operators.

3.1 Products of Jacobi polynomials. Let α, β, γ, δ ∈ (−1,∞) and
define

pn,k(x, y) = p
(α,β,γ,δ)
n,k (x, y) = R

(α,β)
n−k (x)R(γ,δ)

k (y).

These are orthogonal polynomials and are the eigenfunctions of a pair
of linear partial differential operators which are obtained from the
standard differential equations for Jacobi polynomials [18]:

(3.1) J (j)[pn,k] = j
(j)
n,kpn,k, j = 1, 2 and 0 ≤ k ≤ n,



PDES SATISFIED BY POLYNOMIALS 621

with eigenvalues

j
(1)
n,k = (n− k)(n− k + α+ β + 1)

j
(2)
n,k = k(k + γ + δ + 1)

and linear differential operators

J (1) = (x2 − 1)D2
x + [(α+ β + 2)x+ α− β]Dx

J (2) = (y2 − 1)D2
y + [(γ + δ + 2) + γ − δ]Dy.

Remarks. 1. It follows from Gasper’s product formula [6] that this
algebraically complete family of polynomials has a hypergroup product
formula on the square Q = [−1, 1] × [−1, 1] if and only if (α, β) and
(γ, δ) belong to

EJ = {(α, β) : α ≥ β > −1 and either β ≥ −1/2 or α+ β ≥ 0}.
There are values of the parameters outside this region where the
polynomials have a product formula, but the product measures are
not always positive (and the polynomials may not even be orthogonal),
yet (3.1) still holds.

2. Q has a cusp of order 1 at (1,1) and the eigenvalues above are
2 + 2α times the eigenvalues in (1.9), so J (1) and J (2) are essentially
the linear partial differential operators guaranteed by Theorem 1.

3. (J (1), J (2)) is a deterministic pair by Theorem 2.

4. These polynomials play a special role with respect to the square Q.
If P is an algebraically complete family of polynomials with a strong
product formula on a set H which has infinitely many points in each
of the set {1} × [−1, 1] and [−1, 1] × {1}, and if P1 = {1, a(x − 1) +
1, b(y − 1) + 1} then, up to an affine change of variables

P = {p(α,β,γ,δ)
n,k : 0 ≤ k ≤ n}

for some (α, β) and (γ, δ) belonging to EJ [4, Theorem 4.4].

3.2 Disk polynomials. These are defined and dealt with extensively
in [4, 7, 17] and the references cited there. Let γ > −1 and identify
(x, y) with x+ iy = reiθ. Define the disk polynomials by

Rγ
n,m(x, y) = r|n−m|ei(n−m)θR

(γ,|n−m|)
n∧m (2r2 − 1),
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where n ∧ m is the minimum of n and m. These functions are
polynomials on the unit disk which are orthogonal with respect to
the measure (1 − x2 − y2)γ dx dy. If γ ≥ 0, they have a hypergroup
product formula so they are the eigenfunctions for a pair of differential
operators:

(3.2) U (j)[Rγ
n,m] = u(j)

n,mRγ
n,m, j = 1, 2 and n,m ∈ N0

with eigenvalues

u(1)
n,m = Dx[Rγ

n,m] = m+ n+
2mn

γ + 1

u(2)
n,m = Dy[Rγ

n,m] = i(n−m)

and linear differential operators

U (1) =
1

2(γ + 1)
(x2 + y2 − 1)(D2

x +D2
y) + xDx + yDy

U (2) = xDy − yDx.

Remarks. 1. These operators were first given explicitly in [4] in which
a form of Theorem 1 with a weaker condition than cusps of order 1 was
proven.

2. Theorem 1 guarantees the existence of a pair of linear partial
differential operators of order not exceeding 2; in fact, the pair of linear
partial differential operators, which we believe were first obtained in [4]
have order 2 and 1.

3. (U (1), U (2)) is a deterministic pair by Theorem 2.

4. The product formula holds for γ ≥ 0, but the differential equations
hold as long as γ > −1.
5. These polynomials play a special role for the disk. Suppose P is an

orthogonal family of polynomials. Suppose x+ iy ∈ P and assume also
that, for each p ∈ P, p(1, 0) = 1, p(x − y) = p(x, y), p̄ ∈ P. Assume
further that the polynomials in P are joint eigenfunctions of a pair of
second order linear partial differential operators L(1) and L(2), and that

L(1)(p) = px(1, 0)p and L(2)(p) = py(1, 0)p, p ∈ P2.
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Then P = {Rγ
n,m : 0 ≤ n,m} and L(j) = U (j) for some γ > −1 [17,

Theorems 3.2 and 3.3].

3.3 Parabolic biangle polynomials. Let

Rα,β
n,k (x, y) = R

(α,β+k+1/2)
n−k (2x− 1) · xk/2R(β,β)

k (x−1/2y)

where α, β > −1 and n and k are integers such that 0 ≤ k ≤ n. These
functions are polynomials in x and y and they are orthogonal on the
parabolic biangular region

B = {(x, y) : 0 ≤ y2 ≤ x ≤ 1}
with respect to the measure (1− x)α(x− y2)β dx dy.

Theorem 4. If α, β > −1 the parabolic biangle polynomials is a
complete set of eigenfunctions for a deterministic pair of second order
linear partial differential operators. That is,

B(j)[Rα,β
n,k ] = β

(j)
n,kR

α,β
n,k , j = 1, 2 and 0 ≤ k ≤ n

with eigenvalues

β
(1)
n,k = [DxR

α,β
n,k ](1, 1) =

n2

(α+ 1)
+

(2α+ 2β + 3)n
2(α+ 1)

− k2

4(β + 1)

− (4αβ + 4β2 + 3α+ 10β + 5)k
4(α+ 1)(β + 1)

− nk

α+ 1

β
(2)
n,k = [DyR

α,β
n,k ](1, 1) =

k(k + 2β + 1)
2(β + 1)

and linear partial differential operators

B(1) =
x2 − x

α+ 1
D2

x +
xy − x

α+ 1
DxDy

+
(α+ β + 2)x− (α+ 1)y2 − β − 1

4(α+ 1)(β + 1)
D2

y

+
(2α+ 2β + 5)x− 2β − 3

2(α+ 1)
Dx

B(2) =
y2 − x

2(β + 1)
D2

y + yDy.
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Proof. When α ≥ β+1/2 ≥ 0, these polynomials satisfy a hypergroup
product formula with e = (1, 1) [14]. The region B has a cusp of order 1
at e so Theorem 1 and Lemma 1.1 predict that these polynomials
are the joint eigenfunctions for a pair of linear second order partial
differential operators. The eigenvalues given by (1.9) are computed
with Mathematica or using the expression for the derivative of Jacobi
polynomials given in [18]. The differential operators were computed
with the aid of Mathematica, though the recursion given in the proof
of Lemma 6.1 in [10] or in the proof of Lemma 1.1 would also do the
job. The resulting differential equations are still valid in the full range
of the parameters α, β > −1 and, since the polynomials are orthogonal
for these values, Theorem 3 applies. To check that (B(1), B(2)) is a
deterministic pair suppose β

(j)
(n1,k1)

= β
(j)
(n2,k2)

for j = 1, 2. When j = 2,
it follows that k1 = k2; to show n1 = n2 observe that for n > 0,
∂β

(1)
n,k/∂n > 0.

3.4 Triangle polynomials. Let

Rα,β,γ
n,k (x, y) = Rα,β+γ+2k+1

n−k (2x− 1) · xkRβ,γ
k (2x−1y − 1)

where α, β, γ > −1 and n and k are integers such that 0 ≤ k ≤ n.
These functions are polynomials in x and y and they are orthogonal on
the triangular region

S = {(x, y) : 0 ≤ y ≤ x ≤ 1}

with respect to the measure (1− x)α(x− y)βyγ dx dy.

Theorem 5. If α, β, γ > −1, the triangle polynomials is a complete
set of eigenfunctions of a deterministic pair of second order linear
partial differential operators. That is,

S(j)[Rα,β,γ
n,k ] = σ

(j)
n,kR

α,β,γ
n,k , j = 1, 2, and 0 ≤ k ≤ n
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with eigenvalues

σ
(1)
n,k = [DxR

α,β,γ
n,k ](1, 1) =

(n− k)(n+ k + α+ β + γ + 2)
α+ 1

− k(k + β + γ + 1)
β + 1

+ k

σ
(2)
n,k = [DyR

α,β,γ
n,k ](1, 1) =

k(k + β + γ + 1)
β + 1

and linear partial differential operators

S(1) =
x2 − x

α+ 1
D2

x +
2(xy − y)
α+ 1

DxDy

+
y((α+ β + 2)x− (α+ 1)y − β − 1)

(α+ 1)(β + 1)
D2

y

+
(α+ β + γ + 3)x− β − γ − 2

α+ 1
Dx

+
(γ + 1)((α+ β + 2)x− (α+ 1)y − β − 1)

(α+ 1)(β + 1)
Dy

S(2) =
(y − x)y
β + 1

D2
y +

(β + γ + 2)y − (γ + 1)x
β + 1

Dx.

Proof. When α ≥ β+γ+1 ≥ 0 and β ≥ γ ≥ −1/2, these polynomials
satisfy a hypergroup product formula with e = (1, 1) [14]. The rest of
the argument is very similar to the proof of Theorem 4.

3.5 Parabolic triangle polynomials. The polynomials

1
2
[R(α,β)

n (x)R(α,β)
k (y) +R

(α,β)
k (x)R(α,β)

n (y)]

where α, β > −1 and n and k belong to N0 are orthogonal on the
square region [−1, 1]× [−1, 1] with respect to the measure (1−x)α(1+
x)β(1− y)α(1 + y)β dx dy. These are symmetric polynomials in x and
y so they are also polynomials in the elementary symmetric functions
u = x+ y and v = xy, see [10, Section 3]. The resulting polynomials

Q
(α,β)
n,k (u, v) =

1
2
[R(α,β)

n (x)R(α,β)
k (y) +R

(α,β)
k (x)R(α,β)

n (y)], 0 ≤ k ≤ n
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are orthogonal on the parabolic triangular region

T = {(u, v) : |u| − 1 ≤ v ≤ u2/4 and |u| ≤ 2},

with respect to the measure (1−u+v)α(1+u+v)β(u2−4v)−1/2 du dv.
These differ only slightly from Koornwinder’s polynomials pα,β,γn,k with
γ = −1/2. When (α, β) ∈ EJ , see Example 3.1, these polynomials
satisfy a hypergroup product formula with e = (2, 1) [4, Example 4].

Koornwinder showed [10, II (4.4), (5.14)] that the polynomials pα,β,γn,k

are eigenfunctions of a pair of differential operators; indeed, when
γ = −1/2, his result becomes

D(j)[Q(α,β)
n,k ] = δ

(j)
n,kQ

(α,β)
n,k

where

D(1) = (−u2 + 2v + 2)D2
u + (2u− 2uv)DuDv + (u2 − 2v2 − 2v)D2

v

+ [−(α+ β + 2)u+ (2β − 2α)]Du

+ [(β − α)u− (2α+ 2β + 4)v]Dv

D(2) = D+D−

with

D− = D2
u + uDuDv + vD2

v +Dv

D+ = (1− u+ v)−α(1 + u+ v)−βD−(1− u+ v)α+1(1 + u+ v)β+1

and
δ
(1)
n,k = −n(n+ α+ β + 1)− k(k + α+ β + 1)

δ
(2)
n,k = k(k + α+ β + 1)n(n+ α+ β + 1).

T has a cusp of order 2 at e as can be seen by considering the two
boundary curves ending at e. Thus, by Theorem 1,

T (j)[Q(α,β)
n,k ] = τ

(j)
n,kQ

(α,β)
n,k , j = 1, 2, and 0 ≤ k ≤ n,



PDES SATISFIED BY POLYNOMIALS 627

where T (1) and T (2) are linear partial differential operators of orders
at most 2 and 4, respectively, and

τ
(1)
n,k =

−1√
2
([DuQ

(α,β)
n,k ](e) + [DvQ

(α,β)
n,k ](e))

=
−1

4
√
2(α+ 1)

[n(n+ α+ β + 1) + k(k + α+ β + 1)]

τ
(2)
n,k = −1

8
([DuQ

(α,β)
n,k ](e)− [DvQ

(α,β)
n,k ](e))

=
−1

32(α+ 1)(α+ 2)
[n(n+ α+ β + 1)(n(n+ α+ β + 1)− β)

+ k(k + α+ β + 1)(k(k + α+ β + 1)− β)]

+
1

16(α+ 1)2
n(n+ α+ β + 1)k(k + α+ β + 1).

Now the relation between the two sets of eigenvalues is

τ
(1)
n,k =

1
4
√
2(α+ 1)

δ
(1)
n,k

τ
(2)
n,k = φ(δ(1)

n,k, δ
(2)
n,k)

where the polynomial φ is given by

(3.3) φ(x, y) =
(2α+ 3)y

16(α+ 1)2(α+ 2)
− βx+ x2

32(α+ 1)(α+ 2)
.

Thus

T1 =
D(1)

4
√
2(α+ 1)

and T (2) = φ(D(1), D(2))

are the second and fourth order operators as expected.

It is elementary to check that (D(1), D(2)) is a deterministic pair;
hence, so is (T (1), T (2)) which holds for (1.10) because of the injectivity
of the mappings (n, k) �→ (δ(1)

n,k, δ
(2)
n,k) and (x, y) �→ (x/(4

√
2(α +

1)), φ(x, y)).
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4. The algebra of linear partial differential operators with
polynomial eigenfunctions P.

Definition. Let A be an algebra of linear partial differential operators
with polynomial coefficients. A pair of operators L(1) and L(2) in A
are generators of A if every differential operator in A has a unique
representation as a polynomial of L(1) and L(2).

Our main concern in this section is to show that if P is any of the
five examples given above, the two linear partial differential operators
obtained in the proof of Theorem 1 are generators of D(P). We begin
the discussion in general terms.

Lemma 4.1. If P is an algebraically complete family of polynomials,
then D(P) is a commutative algebra.

Theorem 6. Suppose the algebraically complete family of polyno-
mials P are all eigenfunctions of one of the following pairs of partial
differential operators

L(1) = a(x)D2
x + b(x, y)DxDy + c(x, y)D2

y + l.o.t.

L(2) = e(x, y)D2
y + l.o.t.

or
L(1) = a(x2 + y2)(D2

x +D2
y) + l.o.t.

L(2) = xDy − yDx

where none of a(x), e(x, y) and a(x)e(x, y) is the square of a polyno-
mial. Let {λ(1)

p , λ
(2)
p : p ∈ P} be the eigenvalues associated with L(1)

and L(2), and assume that Λ = {(λ(1)
p )n(λ(2)

p )k : n, k ∈ N0} is a linearly
independent set of functions on P. Then L(1) and L(2) generate D(P).

Proof. The method here is inspired by [10, II, Theorem 6.5]. Suppose
first that L(1) and L(2) are the first pair of operators. Assume by way
of contradiction that M ∈ D(P) cannot be expressed as a polynomial
of L(1) and L(2), suppose that m is the lowest order of any such linear
partial differential operator. Thus, M can be assumed to have order m
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and have the form

M =
m∑
j=k

dj(x, y)Dm−j
x Dj

y + l.o.t., dk �= 0,

where dj(x, y) are polynomials. Let M be chosen so that, when
represented as above, k is as large as possible.

Now ML(1)−L(1)M and ML(2)−L(2)M are linear partial differential
operators of order m+ 1, thus

ML(1) − L(1)M =
m+1∑
j=k

fj(x, y)Dm+1−j
x Dj

y + l.o.t.

ML(2) − L(2)M =
m+1∑
j=k

gj(x, y)Dm+1−j
x Dj

y + l.o.t.

Thus we obtain with the use of Lemma 4.1

fk = dk(m− k)a(1,0) + kdkb
(0,1)

−2ad(1,0)
k − bd

(0,1)
k = 0

gk+1 = k dke
(0,1) − 2ed(0,1)

k = 0.

The solution of the second equation is

dk(x, y) = e(x, y)k/2h(x)

for an arbitrary differentiable function h; substitution of this expression
in the first equation yields

(4.1) [2(m−k)ea(1,0)+2keb(0,1)−kbe(0,1)−2kae(1,0)]h−4aeh(1,0) = 0.

Now the coefficient of w(1,2) in L(1)(L(2)(w)) − L(2)(L(1)(w)) is
be(0,1) + 2ae(1,0) − 2eb(0,1) which vanishes by Lemma 4.1.

This can be used to simplify (4.1) to obtain

(m− k)a′h− 2ah′ = 0
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whence h = Ka(m−k)/2, so

dk(x, y) = Ke(x, y)k/2a(x)(m−k)/2.

Thus dk = 0 if k is odd or m is odd since a, e and ae are not perfect
squares, while if k and m are even

M −KL(1)(m−k)/2
L(2)k/2

belongs to D(P) but cannot be expressed as a polynomial of L(1) and
L(2); this violates our choice of M .

Now we turn to the second pair of linear partial differential operators
which we express in polar coordinates:

L(1) = a(r2)(D2
r + r−2D2

θ) + l.o.t.

L(2) = Dθ.

Assume by way of contradiction thatM ∈ D(P) cannot be expressed as
a polynomial of L(1) and L(2), suppose that m is the lowest order of any
such linear partial differential operator. M given in polar coordinates
by

M =
m∑
j=k

gj(r, θ)Dm−j
r Dj

θ + l.o.t.

We assume M to be chosen so that, when represented as above, k is as
large as possible. Now

ML(2) − L(2)M =
m∑
j=k

Dθ[gj(r, θ)]Dm−j
r Dj

θ + l.o.t.;

hence, by Lemma 4.1 each gj(r, θ) = gj(r) is a function of r only.
Now in the same way we examine the coefficient of Dm+1−k

r Dk
θ in

ML(1) − L(1)M to obtain

2(m− k)ra′(r2)gk(r)− 2a(r2)g′k(r) = 0, 0 ≤ k < m,

and
2a(r2)g′m(r) = 0.
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When 0 ≤ k < m, we obtain gk(r) = Ka(r2)(m−k)/2 where K is a
constant so that m−k must be even and M−KL(1)(m−k)/2

violates our
choice of M . When k = m, we get a similar violation from M−KL(2)m

for an appropriate constant K.

To establish uniqueness, it suffices to show that the only polynomial
φ(x, y) such that φ(L(1), L(2)) = 0 is φ(x, y) = 0. Now φ(L(1), L(2)) has
eigenvalues φ(λ(1)

p , λ
(2)
p ), and by the linear independence assumption,

this can only vanish if φ(x, y) = 0.

The following technical lemma gives us a simple way to establish the
linear independence of Λ in the examples. In each example except
the disk polynomials, P = {pn,k : 0 ≤ k ≤ n}. In the disk case, let
k = n−m so in that case P = {pn,k : n ∈ N0, k ∈ Z}. For ν = 1, 2, let
λ

(ν)
n,k = λ

(ν)
pn,k . In the examples λ

(ν)
n,k are polynomials in n and k.

Lemma 4.2. Suppose that {(λ(1)
n,0)

m : m ∈ N0} is a linearly

independent set of polynomials, assume λ(2)
n,0 = 0 but λ(2)

n,k �= 0 for k �= 0.

Then Λ = {(λ(1)
n,k)

m(λ(2)
n,k)

j : m, j ∈ N0} is a linearly independent set of
polynomials in (n, k).

Proof. Suppose A(n, k) =
∑N

m,j=0 αm,j(λ
(1)
n,k)

m(λ(2)
n,k)

j = 0. We can
write

A(n, k) =
N∑
j=0

[ N∑
m=0

αm,j(λ
(1)
n,k)

m

]
(λ(2)

n,k)
j ,

so 0 = A(n, 0) =
∑N

m=0 αm,0(λ
(1)
n,0)

m, hence αm,0 = 0 for 0 ≤ m ≤ N .

Now assume αm,j = 0 for 0 ≤ j ≤ l−1 and 0 ≤ m ≤ N , then if k �= 0

0 =
An,k

(λ(2)
n,k)l

=
N∑
j=l

[ N∑
m=0

αm,j(λ
(1)
n,k)

m

]
(λ(2)

n,k)
j−l.

Since the expression on the right is a polynomial in k for each fixed n,
it must also vanish when k = 0, whence αm,l = 0 for 0 ≤ m ≤ N .

The result alluded to at the beginning of the section can now be
stated as
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Theorem 7. Let P denote one of the five examples discussed
above. Then the pair of linear partial differential operators obtained
in Theorem 1 generate D(P).

Proof. Theorem 6 includes as special cases all of the examples except
the parabolic triangle polynomials.

We now present an argument for the parabolic triangle polynomials.
It is clear that D(1) and D(2) are polynomials ψ1 and ψ2 in T (1)

and T (2). Koornwinder shows [10, II, Theorem 6.5] that each linear
partial differential operator M which has the polynomials {Q(α,β)

n,k } as
eigenfunctions can be expressed uniquely is a polynomial in D(1) and
D(2). Uniqueness follows, since if ψ(T (1), T (2)) = 0 for some polynomial
ψ, then

η(D(1), D(2)) = ψ

(
D(1)

4
√
2(α+ 1)

, φ(D(1)D(2))
)
= ψ(T (1), T (2)) = 0,

where φ is given by (3.3) which contradicts Koornwinder’s result.

5. Admissibility. In this section we investigate which of the five
examples admit an admissible-2 linear partial differential operator; two
do and three do not. We begin with two lemmas, the first of which
requires no proof.

Lemma 5.1. Suppose P is an algebraically complete family and
suppose L(1) and L(2) generate D(P). Suppose further that

L(j)p = λ(j)
p p, p ∈ P, j = 1, 2,

then P has an admissible-2 linear partial differential operator if and
only if there is a polynomial φ(x, y) such that φ(λ(1)

p , λ
(2)
p ) is a function

which depends only on deg (p). In this case the linear partial differential
operator φ(L(1), L(2)) is admissible-2.

Lemma 5.2. Suppose φ(x, y) is a polynomial, and suppose either

A(n, k) = an2 + ck2 + l.o.t. and B(n, k) = dn2k2 + l.o.t.
(5.1)
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or

A(n, k) = an2 + bnk + ck2 + l.o.t and B(n, k) = dk2 + l.o.t.
(5.2)

where a, b, c and d are nonzero. Then φ(A(n, k), B(n, k)) is a function
of n alone if and only if φ(x, y) is a constant polynomial.

Proof. Suppose A and B are given by (5.1), that φ(x, y) is a
polynomial such that φ(A(n, k), B(n, k)) is a function of n only, and
assume by way of contradiction that φ has minimal bivariate degree,
say (m, j), thus

φ(x, y) =
∑

(r,s)≤(m,j)

αr,sx
r−sys

with m > 0 and αm,j �= 0. The coefficient of k2m in φ(A(n, k), B(n, k))
is

j∑
s=0

(cm−sds)αm,sn
2s.

Thus, since φ(A(n, k), B(n, k)) depends only on n, this must vanish, so
αm,j = 0 which contradicts φ having minimal bivariate degree.

Now suppose A and B are given by (5.2) and assume by way of
contradiction that φ is as above. φ(B(n, k), A(n, k)) is a polynomial in
n and k of degree 2m and the portion of it which is degree 2m is

(5.3)
j∑

i=0

αm,i(dk2)m−i(an2 + bnk + ck2)i.

Case 1. j = m. The coefficient of n2m−1k in (5.3) is (mam−1b)αm,m,
thus since φ(B(n, k), A(n, k)) depends only on n, αm,m = 0, which
contradicts the minimal degree of φ.

Case 2. j < m. Since we are assuming αm,i = 0 for i > j the only
term in (5.3) which involves n2jk2m−2j is (dm−jaj)αm,jn

2j/k2m−2j ,



634 W.C. CONNETT AND A.L. SCHWARTZ

thus since φ(B(n, k), A(n, k)) depends only on n, αm,j = 0, which
again contradicts the minimal degree of φ.

Combining the last two lemmas, we have

Theorem 8. Suppose P = {pn,k : 0 ≤ k ≤ n} is an algebraically
complete family with deg pn,k = m, and suppose L(1) and L(2) belong
to D(P) such that

L(1)pn,k = A(n, k)pn,k and L(2)pn,k = B(n, k)pn,k, 0 ≤ k ≤ n

where A(n, k) and B(n, k) are given by (5.1) or (5.2). Suppose that
every linear partial differential operator in D(P) can be expressed as
a polynomial in L(1) and L(2). Then P does not have an admissible-2
linear partial differential operator.

We now turn to discussions of the five examples.

5.1 Products of Jacobi polynomials. There is no admissible 2-linear
partial differential operator because the eigenvalues satisfy (5.2).

5.2 Disk polynomials. First observe that the disk polynomials of
degree n are Rγ

n−k,k for −n ≤ k ≤ n. Krall and Sheffer show [13,
(4.22), (4.23), (5.14)] that the disk polynomials have an admissible-2
linear partial differential operator

L = (x2 − 1)D2
x + 2xyDxy + (y2 − 1)D2

y + (2γ + 3)(xDx + yDy)

with eigenvalue λn = n(n+2γ+2) for all disk polynomials of degree n.
(There is a small misprint in equation (5.14) of Krall and Sheffer.) By
Theorem 7 we know L can be expressed as a polynomial of U (1) and
U (2); the easiest way to do this is first to express λn as a polynomial
in u

(1)
n−j,j and u

(2)
n−j,j . It is easy to discover that the desired relation is

λn = (2γ + 2)u(1)
n−j,j − [u(2)

n−j,j ]
2, thus L = (2γ + 2)U (1) − [U (2)]2.

5.3 Parabolic biangle polynomials. There is no admissible-2 linear
partial differential operator because the eigenvalues satisfy (5.2).
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5.4 Triangle polynomials. Let

λn = (α+ 1)σ(1)
n,k + (α+ β + 2)σ(2)

n,k = n(n+ α+ β + γ = 2),

then λn �= λm when m �= n, and so (α + 1)S(1) + (α + β + 2)S(2)

is an admissible linear partial differential operator for the triangle
polynomials with eigenvalues λn by Lemma 5.1.

Remark. −λn agrees with the eigenvalues corresponding to [13,
(5.51)] by Theorem 3.1 so the partial differential equation [13, (5.52)]
coincides with (α + 1)S(1) = (α + β + 2)S(2) following the change of
variables (x, y) �→ (1− x, 1− x− y).

5.5 Parabolic triangle polynomials. Since the eigenvalues δ(1)
n,k and δ

(2)
n,k

satisfy (5.1), Theorem 8 implies that the parabolic biangle polynomials
do not have an admissible linear partial differential operator.

6. Some open questions. We conclude the article with a
number of questions. We assume P is an algebraically complete
family of polynomials which satisfy a strong product formula with
identity element e. Let L(1) and L(2) be the differential operators with
eigenvalues λ

(1)
p and λ

(2)
p guaranteed by Theorem 1.

Question 1. Must the pair (L(1), L(2)) be deterministic and must
(1.10) hold? When H has a cusp of order 1 at e, this is equivalent to
asking whether the mapping p �→ (p(1,0)(e), p(0,1)(e)) must be injective.

Question 2. If M ∈ D(P), must M have a unique representation as
a polynomial in L(1) and L(2)?

Question 3. Is there M ∈ D(P) so that every polynomial in P has
a distinct eigenvalue? In particular, this asks in the case of a cusp
of order 1 where there is a polynomial φ(x, y) such that the mapping
p �→ φ(λ(1)

p , λ
(2)
p ) is injective. One solution would be L(1) + iL(2) if the

pair (L(1), L(2)) determines P provided both linear partial differential
operators and the members of P are real.

Question 4. In the disk example, L(2) has order less than 2. Is this
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because the disk has a smooth boundary at e?
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