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FROM NON-HERMITIAN
OSCILLATOR-LIKE OPERATORS

TO FREUD POLYNOMIALS
AND SOME CONSEQUENCES

J. BECKERS AND N. DEBERGH

ABSTRACT. Non-Hermitian quantum Hamiltonians deal-
ing with oscillator-like interactions are discussed when real-
ized in terms of creation and annihilation operators that are
no longer adjoint to each other. Specific differential realiza-
tions are exploited and lead to real spectra and typical eigen-
functions including (unexpected) Freud orthogonal polynomi-
als. Hermiticity is finally revisited with respect to new scalar
products of specific Hilbert spaces.

Subnormality [14] of linear operators is a relatively recent mathe-
matical property. An operator S in H is said to be subnormal if it has
a normal extension N (recall that N is normal on K including H if
‖Nf‖ = ‖N†f‖ for f ∈ D(N) = D(N†)). This subnormality has not
yet been exploited in physics up to several remarks on the (bosonic)
creation operator (denoted by a†) in the context of (one-dimensional)
quantum harmonic oscillators. Such an operator, considered as the
best representative of subnormal (unbounded) operators, generates with
its companion, a, i.e., the (bosonic) annihilation operator, the Lie-
Heisenberg commutation relations [4] associated to this study. Acting
on a Hilbert space, currently called the Fock-Bargmann space [3], char-
acterized by orthonormalized state-vectors |n >, n = 0, 1, 2, . . . , the
corresponding Hamiltonian

(1) HH.O. = a†a+
1
2
=

1
2
(a†a+ aa†) ≡ 1

2
{a†, a}

is directly expressed in terms of these operators and appears trivially as
a self-adjoint operator (with respect to the well-known scalar product of
the above-mentioned Hilbert space) admitting trivially a real spectrum
as expected.
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Very recent developments [6, 8] have exploited the subnormality of
a† by λ-deforming its expression, λ being a real parameter, without
deforming the corresponding Heisenberg algebra. Indeed, we have
considered the new Hamiltonian

(2) Hλ = a†λa+
1
2
,

where

(3) a†λ ≡ a† + λI, λ ∈ R,

leading once again to a real spectrum, (see hereafter), while Hλ is
no more self-adjoint as it appears immediately from its expression, a†λ
being no more the adjoint of a.

Such an oscillator-like context characterized by (a†λ)
† �= a simulta-

neously with H† �= H has been visited [6, 8] with the hope that it
could give new properties in the coherence [11] and (or) squeezing [18]
domains due to the nontrivial presence of the parameter λ. Let us only
recall that in coherence both squares of dispersions on the position and
the momentum do reach their minimal value 1/2 while in squeezing
only one of such squares is less than 1/2.

Two kinds of results have already been obtained depending on the
explicit realizations we are considering for the original operators a and
a†, both contexts leading to non-Hermitian Hamiltonians (a reasonable
property actually visited in different physical contexts [7]).

First we take care of the usual realization

(4) a =
1√
2

(
d

dx
+ x

)
and a† =

1√
2

(
− d

dx
+ x

)

leading to

(5) Hλ = −1
2
d2

dx2
+

λ√
2
d

dx
+

1
2
x2 +

λ√
2
x+

1
2
.

Taking a look at the equation

(6) Hλψn,λ(x) = En,λψn,λ(x),
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we obtain the (normalized) eigenfunctions

(7) ψn,λ(x) = 〈x | n〉λ =
2−(n/2)π−1/4

√
n!

√
L

(0)
n (−λ2)

e−x2/2Hn

(
x+

λ√
2

)
,

where Hn and L
(0)
n refer, respectively, to Hermite and generalized

Laguerre polynomials [12] as usual. Rather surprisingly, despite the
nonself-adjointness of the Hamiltonian

(8) H†
λ �= Hλ,

the spectrum is real

(9) En,λ = En,λ=0 = n+
1
2
, n = 0, 1, 2, . . . .

Moreover, the state vectors |n >λ are such that

a | n >λ =
√
n

(
L

(0)
n−1(−λ2)

L
(0)
n (−λ2)

)1/2

|n− 1 >λ,(10)

a†λ | n >λ =
√
n+ 1

(
L

(0)
n+1(−λ2)

L
(0)
n (−λ2)

)1/2

| n+ 1 >λ,(11)

implying

(12) [a, a†λ] = I, [Hλ, a] = −a, [Hλ, a
†
λ] = a†λ.

While it is well known that the λ = 0 context does not permit squeez-
ing, we are now able to show the interest of nonzero λ-values. These
results [6] have been obtained through evaluations of mean values, dis-
persions and constraints coming from the Heisenberg uncertainty rela-
tions. Let us only mention here the presence of this parameter λ �= 0
reduces the indetermination and leads to new squeezed states [6] com-
pared to the old ones [18].

Second, we now indicate another realization for a and a† ensuring
the Lie-Heisenberg relations but relaxing the demand of a and a† to be
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adjoint operators. Indeed, we take one of the Ushveridze proposal [15],
i.e.,

(13) a =
d

dx
+ cx3 and a† = x, c > 0,

leading here to the non-Hermitian Hamiltonian (1), but also to the real
spectrum En,λ = (9). In fact, such a study deals with new eigenvectors
written on the form

(14) ψn(x) =
√
2(c/2)2n+1/8√
Γ(2n+ 1/4)

e−(c/4)x4
, n = 0, 1, 2, . . . ,

which are still square-integrable on the real line even if they have been
obtained via nonadjoint operators a and a†. By noticing the lost of
the orthogonality of such eigenfunctions, we can restore it through
the Schmidt procedure and get eigenfunctions directly proportional
to (unexpected) Freud orthogonal polynomials [9], recently exploited
elsewhere [16]. Let us recall here only the first ones given by

(15)

p0(x) = 1, p1(x) = x

p2(x) =
√
2cx2 − 2

Γ(3/4)
Γ(1/4)

,

p3(x) =
√
2cx3 − 1

2
Γ(1/4)
Γ(3/4)

x.

Inside the new (complete) basis, given by orthonormal eigenfunctions
of the form

(16) Λn(x) =Mne
−(c/4)x4

pn(x),

we can show that once again squeezing is possible in this context
characterized by non-adjoint operators, (see (13)). Important open
questions arise here. In particular, we propose to study the implications
of the choice (13) on new “position and momentum operators” that
could be defined as

(17) x̄ =
1√
2
(a+ a†) =

1√
2

(
d

dx
+ x+ cx3

)
= Re x̄+ i Im x̄
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and

(18) p̄ =
i√
2
(−a+ a†) =

i√
2

(
− d

dx
+ x− cx3

)
= Re p̄+ i Im p̄,

where we associate the following identifications

(19) Re x̄ =
1√
2
(x+ cx3), Im x̄ =

−i√
2

(
d

dx

)

and

(20) Re p̄ =
−1√
2

(
d

dx

)
, Im p̄ =

1√
2
(x− cx3)

such that

(21) [x̄, p̄] = iI = [Re x̄,Re p̄]− [Im x̄, Im p̄].

These developments are generalizations of the usual Heisenberg context
and lead to the extended Heisenberg relation

(22) ∆(Re x̄)∆(Re p̄) + ∆(Im x̄)∆(Im p̄) ≥ 1
2
,

giving back the original one when Im x̄ = Im p̄ = 0. These non-
Hermitian “position and momentum operators” effectively lead to a
new approach of the harmonic oscillator by maintaining nice proper-
ties such as the real spectrum of the corresponding Hamiltonian, the
square-integrability of its eigenfunctions, the orthonormal and com-
plete characters of the basis and, moreover, they open the possibility
of squeezing and the consideration of generalized Heisenberg relations
[8].

Third, we want to add some remarks concerning the two steps pre-
viously discussed. For example, let us point out that, in strong con-
nection with the so-called intertwining relations already pointed out
in equations (5) as well as in equations (12), super-symmetry [17] and
the factorization method [1, 10] are included in our developments,
although we do not require that the meaningful creation and annihila-
tion operators included in our (non-Hermitian) Hamiltonian are adjoint
ones.
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Another remark has recently been formulated concerning more pre-
cisely, the loss of Hermiticity of the Hamiltonians that we are consider-
ing here. In [5], we have decided to restore the adjoint character of H
by modifying the scalar product of the Hilbert space generated by the
new basis implied by our operators. Let us illustrate such a new point
of view by requiring the existence of a fundamental groundstate let us
call it φ0 and of creation (A†) and annihilation (A) operators such
that

Aφ0 = 0(23)
Aφn =

√
nφn−1(24)

A†φn−1 =
√
nφn,(25)

satisfying once again the Lie-Heisenberg relation

(26) [A,A†] = I.

Let us then consider that these φ0, φ1, . . . , φn, . . . form a basis of our
Hilbert space characterized by an inner product by means of a bilinear
form such that

(27) 〈φn, φm〉 = δnm.

Inside the context of a λ-family of creation operators A†
λ, as proposed

in equation (3), we can construct for all n the functions

(28) φn,λ =
1√
n!
(A†

λ)
nφ0

and require that

(29) 〈A†
λφn,λ, φm,λ〉 = 〈φn,λ, (A

†
λ)

†φm,λ〉 = 〈φn,λ, aφm,λ〉,

identifying (A†
λ)

† with the old annihilation operator a:

(30) (A†
λ)

† = a.

The property (29) can be made explicit in connection with the old
standard scalar product of the harmonic oscillator. Indeed, we have

(31) 〈φn,λ, φm,λ〉 =
∫ +∞

−∞
φ−n (x)φm(x)ρ(λ, x) dx
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where ρ(λ, x) is the factor characterizing the new measure, which is
necessary for ensuring that a is the adjoint of A†

λ. Direct calculations
lead to the following factor [5]:

(32) ρ(λ, x) = e−λ2/2e−
√

2λx,

the first exponential being determined by requiring that

(33) 〈φ0,λ, φ0,λ〉 = 〈φ0, φ0〉 = 1.

Inside this well-defined Hilbert space, characterized by a, (complete),
orthonormal basis and the typical inner product (31) (32), the Hamil-
tonian

(34) Hλ =
1
2
{A†

λ, Aλ} = 1
2
{A†

λ, a} = A†
λa+

1
2

is now a Hermitian operator with the real spectrum (9), and the evalu-
ation of all mean-values and constraints coming from the usual Heisen-
berg relations can now be reconsidered. As a result in these λ-contexts
we have constructed new coherent states that satisfy the DOCS (co-
herent states being obtained through the action of a displacement op-
erator on the vacuum), AOCS (coherent states being eigenstates of the
annihilation operator a) and MUCS (coherent states minimizing the
uncertainty relation) points of view [13].
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