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ON SAMPLING ASSOCIATED WITH
SINGULAR STURM-LIOUVILLE

EIGENVALUE PROBLEMS:
THE LIMIT-CIRCLE CASE

M.H. ANNABY AND P.L. BUTZER

ABSTRACT. Sampling expansions are derived for solutions
of second order singular Sturm-Liouville eigenvalue problems
in the limit-circle case. In this setting special functions with
continuous parameter satisfying such problems will be sam-
pled in terms of these functions with a discrete parameter,
sometimes orthogonal polynomials. As examples, the Legen-
dre and Bessel functions are sampled. Sampling expansions
of the associated integral transforms are also given. The anal-
ysis makes use of the approach derived by Fulton [13] and
extends the range of examples studied by Butzer-Schöttler,
Everitt and Zayed. A fully new example is the appearance
of the Legendre function of the second kind in the analysis of
sampling theory.

1. Introduction. Let Pw(z), w, z ∈ C, with |z| < 1 denote the
Legendre function of the first kind, i.e. (see [20, 23])

(1.1) Pw(z) = 2F1

(
− w,w + 1; 1;

1− z
2

)
,

where 2F1(a, b; c; ·) is the Gauss hypergeometric series. The following
sampling expansion for Pw(z) was derived in [7], (see also [4 6]):
(1.2)
Pw−1/2(x)
w2 − 1/4

=
∞∑

k=1

Pk(x)
k(k + 1)

(2k + 1) sinπ(w − (k + (1/2)))
π(w2 − (k + (1/2))2)

+
sin π(w + (1/2))
π(w2 − (1/4))

{
1

w2 − (1/4)
− log

(
2

1 + x

)
+ 1

}
,

where w ∈ R − {1/2}, x ∈ (−1, 1] and Pk(·) are the Legendre
polynomials. The convergence of (1.2) is in the L2-norm with respect to
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x for each w ∈ R−{1/2} and pointwise with respect to w ∈ R−{1/2}
for each x ∈ (−1, 1). Moreover, it is proved in [6, page 316] that the
convergence is absolute and uniform with respect to w in any compact
subset of R+ as well as with respect to x on the whole interval [−1, 1].
Expansion (1.2) can be simplified using the expansion of log(2/1 + x)
in terms of the Legendre polynomials [15],

(1.3) log
2

1 + x
= 1 +

∞∑
k=1

(−1)kPk(x)
2k + 1
k(k + 1)

, x ∈ (−1, 1].

Substituting from (1.3) in (1.2), we obtain

(1.4) Pw−1/2(x) =
∞∑

k=0

Pk(x)
(2k + 1) sinπ(w − (k + (1/2)))

π(w2 − (k + (1/2))2)
.

Noting that

2k + 1
w2 − (k + 1/2)2

=
1

w − (k + 1/2)
− 1
w + k + 1/2

,

expansion (1.4) may be written in the following two-sided sampling
expansion, (see [6, page 322]),

Pw−1/2(x) =
∞∑

k=−∞
P|k|(x)

sinπ(w − (k + (1/2)))
π(w − (k + (1/2)))

.

The Legendre function Pw−1/2(·) satisfies the second order differential
equation

(1.5) −((1− x2)y′)′ +
1
4
y = w2y, x ∈ (1, 1), w ∈ C.

We notice that equation (1.5) has two singularities at ±1. Both points
are in the limit-circle case, which means that the eigenvalue problem
associated with (1.5) should have two boundary conditions at ±1, cf.
[16]. There are several attempts to define these boundary conditions
at the singular endpoints, among them is the boundary condition
approach devised by Fulton [12, 13] and the Glazman-Krein-Naimark
(GKN) conditions [21]. For historical comments concerning deriving
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boundary conditions at the limit-circle endpoints, see [12, 13]. Before
we introduce the aim of this article, we mention some results concerning
Legendre functions. In [4], the following continuous Legendre transform
has been introduced

(1.6) f̂(λ) =
1
2

∫ 1

−1

f(x)Pλ(x) dx, f ∈ L2(−1, 1).

Under the conditions
√
λf̂(λ − 1/2) is a summable function, i.e., an

L1(R)-function in which f is continuous on (−1, 1), they derived the
inversion formula, (cf. [4, page 57]),

(1.7) f(x) = 4
∫ ∞

0

f̂(λ− 1/2)Pλ−1/2(−x) sinπλ dλ,

which has also been derived using a different technique in [26]. Other
results concerning the Legendre transform include the sampling series
derived in [25] and [9] by considering, respectively, the Legendre
transforms

(1.8) f∗(λ) = 2
√
2π

∫ π/2

−π/2

f(x)
√
cosxP√

λ−1/2(sinx) dx, λ ∈ C,

where f ∈ L2(−π/2, π/2) and

(1.9) f∗∗(λ) =
∫ 1

−1

f(x)P√
λ−1/2(x) dx, λ ∈ C,

f being an L2(−1, 1)-function. Then both transforms can be recon-
structed via the following sampling representations
(1.10)(
f∗(λ)
f∗∗(λ)

)
=

∞∑
n=0

(
f∗((n+ (1/2))2)
f∗∗((n+ (1/2))2)

)
(2n+ 1) sinπ(

√
λ− (n+ (1/2)))

π(λ− (n+ (1/2))2)
.

In both cases, the sampled integral transforms are the same up to
a change of variables. The sampling points are the same, namely,
the eigenvalues of certain Legendre-type eigenvalue problems, which
are again the same eigenvalue problems up to a change of variables,
(see [10]). Moreover, expansions (1.10) were derived as examples of
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sampling series associated with second order singular problems; while
Zayed [25] used the Titchmarsh form of the Legendre equation [24],
Everitt et al. [11] used equation (1.5) together with the Glazman-Krein-
Naimark boundary conditions.

Since the Legendre function satisfies a second order eigenvalue prob-
lem, it is an aim of the present work to derive a general sampling the-
orem for solutions of second-order singular eigenvalue problems with
limit-circle endpoint(s). We use the theory developed by Fulton to
define appropriate boundary conditions. This will not be just an ex-
tension of the Legendre case but so general as to cover all limit-circle
cases. The Legendre function of the second kind
(1.11)

Qw(z) =
√
πΓ(w + 1)

Γ(w + (3/2))(2z)w+1 2F1

(
1
2
w + 1,

1
2
w +

1
2
;w +

3
2
; z−2

)

will appear, to the best of our knowledge, for the first time in sampling
theory. We mention here that, although the Legendre function of the
second kind is defined for |z| > 1, its domain of definition can be
extended to include the interval (−1, 1), cf. [20]. Due to the more
general setting, the sampling points in the Legendre case will not
necessarily be λn = (n + (1/2))2, and the sampling functions Pn(·)
in (1.4) are not necessarily polynomials but more general ones. The
Legendre transforms will be extended to have more general kernels and
sampling expansions will be derived accordingly. Expansions including
the Bessel functions and the Hankel transform will also be given.

2. The sampling series. In this section we introduce the Sturm-
Liouville problem using Fulton’s approach for deriving boundary con-
ditions at the limit-circle endpoint(s). Then we establish a sampling
representation of the solutions of the differential equation of the prob-
lem.

Consider the differential equation

(2.1) −y′′ + q(x)y = λy, x ∈ I,

where I ⊆ R is an interval such that, when I is finite, I = (a, b),
[a, b) or (a, b], then q(·) will have singularities at the open endpoint(s)
and is continuous otherwise. When I is infinite, I = [a,∞), (a,∞),
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(−∞, b], (−∞, b) or (−∞,∞), a, b ∈ R, then q(·) is assumed to be
continuous throughout I. We assume that the limit-circle case holds at
any singularity. Thus, the discreteness of the eigenvalues is guaranteed,
[24]. Sufficient conditions for the limit-circle situation can be found in
Titchmarsh’s [24]. We start our investigations with the case I = [a,∞),
a ∈ R. Hence we have the condition

(2.2) y(a) cosα+ y′(a) sinα = 0, α ∈ [0, π).

Since the limit-circle case holds at ∞, i.e., all solutions of (2.1) are
L2(a,∞)-solutions, there should be another boundary condition at ∞
to formulate the eigenvalue problem. With this aim, we outline the
theory developed by Fulton [12, 13] to define the other boundary
condition. Let u, v be two linearly independent solutions of (2.1) when
λ = 0, such that their Wronskian satisfies Wx(u, v) = u(x)v′(x) −
u′(x)v(x) ≡ 1 on [a,∞). Equation (2.1) can be written as a first order
system or in a vector-valued form as

(2.3)
d

dx

(
y
y′

)
=

(
0 1

−(λ− q) 0

) (
y
y′

)
.

If we use the transformation

(2.4) Z =
(
u v
u′ v′

)−1 (
y
y′

)
, Z = SY,

then Z satisfies

(2.5)
dZ

dx
= λBZ, B(x) =

(
u(x)v(x) v2(x)
−u2(x) −u(x)v(x)

)
.

Since the limit-circle case holds at ∞, then u, v ∈ L2(a,∞). Conse-
quently, B(x) ∈ L1(a,∞). Following [17, page 54], the solutions of
(2.5) have limits at ∞. Thus solutions of (2.5) can be determined
according to the initial conditions

(2.6) lim
z→∞Zλ(x) :=

(
sin γ

− cos γ

)
, γ ∈ [0, π), λ ∈ C.

Denoting the solution determined by (2.6) by Z∞,λ, we have

(2.7) (Z∞,λ)1(∞) cos γ + (Z∞,λ)2(∞) sin γ = 0,
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where the subscripts 1 and 2 denote the first and second components
of the vector Z∞,λ, respectively. Using the transformation (2.4), we
obtain the boundary condition which y satisfies at ∞, namely,

(2.8) (Sy)1(∞) cos γ + (Sy)2(∞) sin γ = 0,

where

(2.9) (Sy)1(∞) = lim
x→∞Wx(y, v), (Sy)2(∞) = − lim

x→∞Wx(y, u).

Thus [16] we have put the Sturm-Liouville problem (2.1) (2.2) and
(2.8) into an operator theoretic frame.

Let φλ(·) and ψλ(·) be the two solutions of (2.1) determined by the
initial conditions

(2.10)
(
φλ(a) (Sψλ)1(∞)
φ′λ(a) (Sψλ)2(∞)

)
=

(
sinα sin γ

− cosα − cos γ

)
.

Let also

(2.11) ωα,γ(λ) :=Wx(φλ, ψλ),

which is independent of x, [13]. The functions φλ(x) and ψλ(x) are
entire functions of λ for x ∈ [a,∞). Therefore, ωα,γ(λ) is also an entire
function of λ [13]. The eigenvalues of the problem (2.1) (2.2) and
(2.8) are the zeros of ωα,γ(λ), consisting of a sequence of real numbers,
{λn}∞n=0, with no finite limit points. All eigenvalues are simple from
the algebraic and geometric points of view. Moreover, according to
[1 3],

(2.12) λn ∼ n2 as n→ ∞.

The sequence of eigenfunctions corresponding to {λn}∞n=0 is either
{φλn

(·)}∞n=0 or {ψλn
(·)}∞n=0. Each of these is an orthogonal basis of

L2(a,∞). Moreover, there are nonzero real numbers, kn, such that

(2.13) ψλn
(x) = knφλn

(x).

The main result of this section is the following:
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Theorem 2.1. For all λ ∈ C the functions φλ(·) and ψλ(·) admit
the sampling expansions

φλ(x) =
∞∑

n=0

φλn
(x)

ωα,γ(λ)
(λ− λn)ω′

α,γ(λn)
,

(2.14)

ψλ(x) =
∞∑

n=0

ψλn
(x)

ωα,γ(λ)
(λ− λn)ω′

α,γ(λn)
, x ∈ [a,∞).

(2.15)

Both series converge in mean with respect to x for λ ∈ C and pointwise
with respect to λ ∈ C for x ∈ [a,∞).

Proof. Let λ, µ ∈ C, λ �= µ and M > a. By Green’s formula, [24,
page 1], since the functions φλ(·) and ψλ(·) satisfy (2.1), we have

(2.16)

(λ− µ)
∫ M

a

φλ(x)ψ̄µ(x) dx = [φλ(x)ψ̄′
µ(x)− φ′λ(x)ψ̄µ(x)]Ma

= [φλ(x)ψ̄′
µ(x)− φ′(x)λψ̄µ(x)](M)

− [φλ(x)ψ̄′
µ(x)− φ′λ(x)ψ̄µ(x)](a).

Letting µ→ λn in (2.16) for some n and noting from (2.10) that

[φλ(x)ψ̄′
λn
(x)− φ′λ(x)ψ̄λn

(x)](a) = φλ(a)ψ̄′
λn
(a)− φ′λ(a)ψ̄λn

(a),
= − sinαψ̄′

λn
(a)− cosαψ̄λn

(a) = 0,

since ψλn
(·) is an eigenfunction, i.e., satisfies (2.2), we obtain

(2.17) (λ− λn)
∫ M

0

φλ(x)ψ̄λn
(x) dx =WM (φλ, ψ̄λn

).

Since φλ(·), ψλn
(·) lie in the domain of definition of the operator

associated with (2.1) (2.2) and (2.8), (see [12]), then we have [13,
page 55]

(2.18)
WM (φλ, ψ̄λn

) = DM (Sφλ, Sψ̄λn
)

=
∣∣∣∣ (Sφλ)1(M) (Sψ̄λn

)1(M)
(Sφλ)2(M) (Sψ̄λn

)2(M)

∣∣∣∣ .
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Hence

(2.19)
(λ− λn)

∫ M

a

φλ(x)ψ̄λn
(x) dx = (Sφλ)1(M)(Sψ̄λn

)2(M)

− (Sφλ)2(M)(Sψ̄λn
)1(M).

Letting M → ∞, we obtain

(2.20)
(λ− λn)

∫ ∞

a

φλ(x)ψ̄λn
(x) dx = (Sφλ)1(∞)(Sψ̄λn

)2(∞)

− (Sφλ)2(∞)(Sψ̄λn
)1(∞).

Again, we make use of (2.10) to deduce

(2.21)
∫ ∞

a

φλ(x)ψ̄λn
(x) dx = −cos γ(Sφλ)1(∞) + sin γ(Sφλ)2(∞)

λ− λn
.

We now show that

(2.22)
∫ ∞

a

φλ(x)ψ̄λn
(x) dx = − ωα,γ(λ)

(λ− λn)
.

Indeed, using [13, page 55] and the fact that φλ(·), ψλ(·) belong to the
domain of definition of the operator associated with the Sturm-Liouville
problem, we have

(2.23)

W∞(φλ, ψ̄λ) = D∞(Sφλ, Sψ̄λ)
= (Sφλ)1(∞)(Sψ̄λ)2(∞)
− (Sφλ)2(∞)(Sψ̄λ)1(∞)

= − cos γ(Sφλ)1(∞)− sin γ(Sφλ)2(∞),

proving relation (2.22). Taking the limit in (2.22) when λ → λn and
since λn is a simple zero of ωα,γ(λ), then

(2.24)
∫ ∞

a

φλn
(x)ψ̄λn

(x) dx = −ω′
α,γ(λn).

Since φλ(·) ∈ L2(a,∞) for all λ ∈ C, and since {φλn
(·)}∞n=0 is an

orthogonal basis of L2(a,∞), then

(2.25) φλ(x) =
∞∑

n=0

φλn
(x)

〈φλ, φλn
〉

‖φλn
‖2
.
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Combining relations (2.13), (2.22), (2.24) and (2.25), one obtains (2.14)
where the convergence is pointwise with respect to λ for fixed x ∈ [a,∞)
and is in the L2-norm with respect to x for any λ ∈ C. Similarly, we
can prove (2.15).

Remark 2.2. (a) The results derived above can also be deduced in case
we have two singular endpoints, both being in the limit-circle case. All
we do is to define a boundary condition at the left (singular) endpoint
in a similar way, (cf. [13, page 60]).

(b) Extensions can also be carried out if the canonical Sturm-Liouville
equation (2.1) is replaced by

(2.26) (p(x)y′)′ + q(x)y = λr(x)y, x ∈ I,

with r, 1/p, q ∈ L1
loc (I) and r(x) > 0 for almost all x ∈ I.

3. The Legendre case. In this section we derive a sampling ex-
pansion associated with the Legendre equation. Using the terminology
of Section 2 above, we consider the eigenvalue problem

−((1− x2)y′)′ +
1
4
y′ = λy, −1 < x < 1,(3.1)

(Sy)−1 (−1) cosα+ (Sy)−2 (−1) sinα = 0,(3.2)
(Sy)+1 (1) cos γ + (Sy)+2 (1) sin γ = 0,(3.3)

where α, γ ∈ [0, π) and

(3.4)
(
(Sy)∓1 (∓1)
(Sy)∓2 (∓1)

)
:= lim

x→∓1

(
(1− x2)Wx(y, v)
(1− x2)Wx(y, u)

)
,

u(x) = tanh−1 x/2, v(x) = −1, −1 < x < 1, are the solutions of (3.1),
when λ = 0 for which (1− x2)Wx(u, v) ≡ 1 on (−1, 1). Let

(3.5) λ =
(
µ+

1
2

)2

, s :=
√
λ,

where the square root is defined with a branch on the negative real
λ-axis. We take the Frobenius (logarithmic) solutions at ±1. Those at
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+1 are, (see [14, 18 19]),

P (x, y) = Pµ(x) =
∞∑

k=0

c(s, k)
(
1− x
2

)k

,

(3.6)

R(x, λ) = P (x, λ) ln
(
1− x
2

)
+

∞∑
k=1

c(s, k)β(s, k)
(
1− x
2

)k

,

(3.7)

where

(3.8)

c(s, k) : =
1

(k!)2

k∏
i=1

(
− s+ i− 1

2

)(
s+ i− 1

2

)

=
1

(k!)2

k∏
i=1

((
i− 1

2

)2

− λ
)

and

(3.9)

β(s, k) =
k∑

i=1

1
(−s+ i− (1/2))

+
1

(s+ i− (1/2))
− 2

k∑
i=1

1
i

=
k∑

i=1

2i− 1
(i− (1/2))2 − λ − 2

k∑
i=1

1
i
.

Here, Pµ(·) is the Legendre function of the first kind introduced in
Section 1. The other two Frobenius solutions at −1 are obtained from
P (x, λ), R(x, λ) by replacing x by −x. Frobenius solutions at 1 and
−1 are related by [18, 19],

P (x, λ) = A(s)P (−x, λ) +B(s)R(−x, λ),
(3.10)

R(x, λ) =
(
1−A2(s)
B(s)

)
P (−x, λ)−A(s)R(−x, λ),

(3.11)



THE LIMIT-CIRCLE CASE 453

where

A(s) : = −cos sπ
π

{
ψ

(
− s+ 1

2

)
+ ψ

(
s+

1
2

)
+ 2C

}

= − sin sπ − 2
π

(
ψ

(
s+

1
2

)
+ C

)
cos sπ(3.12)

= − sin sπ − 2
π

(
π

(
− s+ 1

2

)
+ C

)
cos sπ,

B(s) = −cos sπ
π

, ψ(z) =
Γ′(z)
Γ(z)

(3.13)

and C is the Euler constant. The functions P (±x, λ), R(±x, λ), A(s)
and B(s) are all entire in λ for x ∈ [−1, 1), [14]. As the Legendre
function of the first kind is included above, the Legendre function of
the second kind, Qµ(·) is included since [14, page 218],

(3.14) R(x, λ) = −2(ψ(µ+ 1) + C)Pµ(x)− 2Qµ(x).

Let φλ(·) and ψλ(·) be the solutions of (3.1) for which

(Sφλ)−1 (−1) = − sinα, (Sφλ)−2 (−1) = cosα,(3.15)
(Sψλ)+1 (1) = sin γ, (Sψλ)+2 (1) = − cos γ,(3.16)

for all λ ∈ C. Then, with the aid of [14, pages 218 219],

(
(SP (−x, λ))−1 (−1) (SP (−x, λ))−2 (−1)
(SR(−x, λ))−1 (−1) (SR(−x, λ))−2 (−1)

)
=

(
0 1
−2 0

)
,(3.17)

(
(SP (x, λ))+1 (1) (SP (x, λ))+2 (1)
(SR(x, λ))+1 (1) (SR(x, λ))+2 (1)

)
=

(
0 1
2 0

)
,(3.18)

it is concluded that

φλ(x) = cosαP (−x, λ) + 1
2
sinαR(−x, λ),(3.19)

ψλ(x) = − cosλP (x, λ) +
1
2
sin γR(x, λ).(3.20)
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Hence [14, page 219],

(3.21)

ωα,γ(λ) = −2(cosα cos γ)B(s)− (cosα sin γ)A(s)
+ (sinα cos γ)A(s)

− 1
2
(sinα sin γ)

(
1−A2(s)
B(s)

)
.

Thus, the eigenvalues of problems (3.1) (3.3), {λn}∞n=0, are the zeros
of ωα,γ(λ) and the corresponding eigenfunctions are either {φλn

(·)}∞n=0

or {ψλn
(·)}∞n=0. As a consequence of Theorem 2.1 above, we now have

the following sampling expansion of φλ(·) and ψλ(·).

Theorem 3.1. Let φλ(·), ψλ(·) and ωα,γ(λ) be given by (3.19), (3.20)
and (3.21) respectively. Then the following expansions

φλ(x) =
∞∑

n=0

φλn
(x)

ωα,γ(λ)
(λ− λn)ω′

α,γ(λn)
(3.22)

ψλ(x) =
∞∑

n=0

ψλn
(x)

ωα,γ(λ)
(λ− λn)ω′

α,γ(λn)
(3.23)

hold for λ ∈ C and x ∈ (−1, 1). The convergence is pointwise with
respect to λ ∈ C for x ∈ (−1, 1) and is in the L2-norm with respect to
x for λ ∈ C.

Remark 3.2. The sampled functions φλ(·) and ψλ(·) can be written
as linear combinations of the Legendre functions of the first and second
kind. Indeed, from (3.14) and the fact that P (·, λ) is the Legendre
function of the first kind and using (3.19) (3.20), the functions φλ(·)
and ψλ(·) can be explicitly written in the form

(3.24)
φλ(x) =

[
cosα− sinα

(
ψ(

√
λ+

1
2

)
+ C

)]
P√

λ−(1/2)(−x)
− sinαQ√

λ−(1/2)(−x),
and

(3.25)
ψλ(x) = −

[
− cos γ − sin γ

(
ψ(

√
λ+

1
2

)
+ C

)]
P√

λ−(1/2)(x)

− sin γQ√
λ−(1/2)(x),
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where ψ(z) is given in (3.13) and C is the Euler constant. According
to Theorem 3.1 above, we sampled φλ(·) and ψλ(·) from their values at
the eigenvalues. The eigenfunctions φλn

(·) or ψλn
(·) are not necessarily

polynomials as in the previous situations mentioned in Section 1.
However, we have the possibility to derive sampling expansions for
Legendre functions of the first kind or that of the second kind. As for
the first kind, we have three choices. First, take α = γ = 0, Theorem 3.2
below, and in this case, φλ(·) and ψλ(·) are similar and the expansion
will be in terms of the Legendre polynomials. Second, take α = 0,
γ �= 0. In this case, φλ(x) = P√

λ−(1/2)(−x), but the eigenfunctions are
no more polynomials. Finally, we can take α �= 0 and γ = 0, leading
to a similar case as for the second one. As for the Legendre function
of the second kind, it is clearly seen that it is not possible to isolate
Qµ(±x) from a direct choice of α and γ, but we can sample Qµ(x) as
a combination of two different expansions, one for φλ(x) and another
for P√

λ−(1/2)(−x).
The following theorem illustrates the claims of the previous remark.

Theorem 3.3. For λ ∈ C, we have

(3.26) P√
λ−(1/2)(x) =

∞∑
n=0

Pn(x)
(2n+ 1) sinπ(

√
λ− (n+ (1/2)))

π(λ− (n+ (1/2))2)
.

The convergence is uniform with respect to x on compact subsets of
(−1, 1) for all λ ∈ C and is uniform with respect to λ on compact
subsets of C for all x ∈ (−1, 1). Moreover, the convergence is uniform
on R with respect to λ for all x ∈ (−1, 1).

Proof. We consider Theorem 3.1 with α = γ = 0. Hence

φλ(x) = P√
λ−(1/2)(−x), ψλ(x) = −P√

λ−(1/2)(x),(3.27)

ω(λ) = ω0,0(λ) =
2
π
cos

√
λπ.(3.28)

The eigenvalues, the zeros of ω(λ), are λn = (n+(1/2))2, n = 0, 1, . . . .
We also have

(3.29) ω′(λn) = ω′
((
n+

1
2

)2)
=

(−1)n+1

(n+ (1/2))
,
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and the corresponding eigenfunctions are

(3.30) φλn
(x) = Pn(−x) = (−1)nPn(x), ψλn

(x) = Pn(x),

where Pn(x) are the Legendre polynomials. Therefore, kn = (−1)n.
Applying Theorem 3.1, we obtain

P√
λ−(1/2)(−x) =

∞∑
n=0

(−1)nPn(x)
(2n+ 1) sinπ(

√
λ− (n+ (1/2)))

π(λ− (n+ (1/2))2)
,

(3.31)

P√
λ−(1/2)(x) =

∞∑
n=0

Pn(x)
(2n+ 1) sinπ(

√
λ− (n+ (1/2)))

π(λ− (n+ (1/2))2)
,

(3.32)

and the convergence properties are the same as in Theorem 3.1. As for
the uniform convergence, we start with the uniform convergence with
respect to x. We will use the first Stieltjes formula [22, page 197] for
Legendre polynomials, which states

(3.33) |Pn(x)| ≤
√
2
4√
π

1√
n 4
√
1− x2

, −1 < x < 1,

n = 0, 1, . . . . Let λ ∈ C be fixed. Let I ⊂ (−1, 1) be compact. From
(3.33) there is a positive constant CI which depends neither on x nor
on n such that

(3.34) |Pn(x)| ≤ CI√
n
, for all x ∈ I.

Hence,
(3.35)∣∣∣∣Pn(x)

(2n+ 1) sinπ(
√
λ− (n+ (1/2)))

π(λ− (n+ (1/2))2)

∣∣∣∣ ≤ CI,λ(2n+ 1)√
n|λ− (n+ (1/2))2| ,

x ∈ I, n ∈ N0, where CI,λ is a positive constant, depending only on
λ and I, which are fixed. Using the Weierstrass M -test for uniform
convergence, relation (3.35) and

(3.36)
∞∑

n=0

2n+ 1√
n|λ− (n+ (1/2))2| <∞,
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the uniform convergence of (3.31) and (3.32) follows on compact subsets
of (−1, 1) since I is arbitrary.
We now prove the uniform convergence with respect to λ for all x on

compact subsets of C. Let x be fixed and M ⊂ C be compact. Using
(3.33), there is an x-dependent positive constant Dx which does not
depend on λ or n such that

(3.37) |Pn(x)| ≤ Dx√
n
.

To prove uniform convergence of (3.31) and (3.32) onM , it is sufficient
to prove the uniform convergence of the series

(3.38)
∞∑

n=0

Dx
(2n+ 1) sinπ(

√
λ− (n+ (1/2)))√

nπ(λ− (n+ (1/2))2)
.

Since M is compact and the sequence {λn}∞n=0 contains no finite limit
points, thenM contains at most a finite number of the λn’s. Let n0 ∈ N
be such that λn /∈M for all n > n0. We rewrite (3.38) in the form

(3.39)
n0∑

n=0

Dx
(2n+ 1) sinπ(

√
λ− (n+ (1/2)))√

nπ(λ− (n+ (1/2))2)

+
∞∑

n=n0+1

Dx
(2n+ 1) sinπ(

√
λ− (n+ (1/2)))√

nπ(λ− (n+ (1/2))2)
.

The first part is bounded on M , since the zeros (n + (1/2))2, n =
0, . . . , n0 are simple zeros of the function sinπ(

√
λ−(n+(1/2))2). The

general term of the second part is bounded by

(3.40) DM,x
2n+ 1√

n|ρ− (n+ (1/2))2| ,

λ ∈ M , where DM,x is a positive constant which depends only on M
and x, which are fixed, and

(3.41) ρ := dist
((
n0 +

3
2

)2

,M

)
.
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The bound (3.40) and the Weierstrass test prove the uniform con-
vergence of (3.38) on M and, hence, the uniform convergence of
(3.31) (3.32) is established on compact subsets of C. The uniform
convergence on R can be derived similarly.

Remark 3.4. (a) Sampling Legendre functions can also be derived us-
ing Glazman-Krein-Naimark’s boundary conditions, (cf. [11, 21]). The
relationship between both GKN’s boundary conditions and Fulton’s
conditions is not considered in this paper. However, it is interesting to
see a separate publication on this topic.

(b) We can use the canonical form of the Legendre equation, (see
[24]),

(3.42) −y′′ − 1
4
sec2xy = λy, −π

2
< x <

π

2
.

In this case, if we take the boundary conditions to be

(3.43) lim
x→−(π/2)

y(x) = 0, lim
x→(π/2)

y(x) = 0,

then the solutions φλ(x) and ψλ(x) are

φλ(x) = 4
√
cosx

∫ x+(π/2)

0

cos
√
λz

(cos z + sinx)1/2
dz,(3.44)

ψλ(x) = 4
√
cosx

∫ π/2−x

0

cos
√
λz

(cos z − sinx)1/2
dz.(3.45)

Hence [24, page 77] ψλ(x) = φλ(−x) and the Wronskian is

(3.46) ω(λ) :=Wx(φλ, ψλ) = 8π cos
√
λπ.

Thus the eigenvalues are λn = (n+(1/2))2, n = 0, 1, . . . , and the corre-
sponding eigenfunctions are either φλn

(x) = (−1)n2√2π
√
cosxPn(sinx)

or ψλn
(x) = 2

√
2π

√
cosxPn(sinx), Pn(·) are the Legendre polynomials.

Finally, one can derive sampling expansions for φλ(·) and ψλ(·),

(3.47) φλ(−x) = ψλ(x) = 2
√
2
√
cosxP√

λ−(1/2)(x).



THE LIMIT-CIRCLE CASE 459

Relation (3.47) can be derived from (3.44) (3.45) using integral repre-
sentations of the Legendre functions [23, pages 202 208]. Everitt [9]
has established the analysis of Legendre problems with the canonical
equation (3.42).

(c) Expansion (3.26) has been extended to the Jacobi case by Butzer
and Schöttler [5].

4. Sampling the Legendre transform. In this section we give
extensions of the sampling results of [11, 25], equation (1.10) above.
The sampled transform in this case has either φλ(·) or ψλ(·) as its
kernel.

Theorem 4.1. Let φλ(·) and ψλ(·) be the functions introduced above
in (3.24) and (3.25), respectively. Let g(·) ∈ L2(−1, 1) and

(4.1)
(
f1(λ)
f2(λ)

)
=

∫ 1

−1

g(x)
(
φλ(x)
ψλ(x)

)
dx.

Then f1(λ), f2(λ) are entire functions of λ and admit the sampling
representations

(4.2)
(
f1(λ)
f2(λ)

)
=

∞∑
n=0

(
f1(λn)
f2(λn)

)
ωα,γ(λ)

(λ− λn)ω′
α,γ(λn)

,

where ωα,γ(λ) is the entire function introduced in (3.21) and {λn}∞n=0

are its simple zeros. The sampling series (4.2) converge absolutely and
uniformly on compact subsets of the complex plane.

Proof. We prove the theorem for f1(λ), the case of f2(λ) being
similar. Since {φλn

(·)}∞n=0 is a complete orthogonal set of L
2(−1, 1), by

applying Parseval’s equality to the integral transform f1(λ), we obtain

(4.3) f1(λ) =
∞∑

n=0

〈g(·), φλn
(·)〉〈φλ(·), φλn

(·)〉
‖φλn

(·)‖2
.

But 〈g(·), φλn
(·)〉 = f1(λn), n = 0, 1, . . . . Moreover, from the calcula-

tions of the proof of Theorem 3.1 above,

(4.4)
〈φλ(·), φλn

(·)〉
‖φλn

(·)‖2
=

ωα,γ(λ)
(λ− λn)ω′

α,γ(λn)
.
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Combining (4.3) and (4.4), one obtains (4.2), and the convergence is
pointwise for λ ∈ C. The proof of the absolute convergence on C is
established as follows: Let λ ∈ C. From the above calculations and by
using the Cauchy-Schwarz inequality, one deduces
(4.5)

∞∑
n=0

∣∣∣∣f1(λn)
ωα,γ(λ)

(λ− λn)ω′
α,g(λn)

∣∣∣∣ =
∞∑

n=0

∣∣∣∣ 〈g(·), φλn
(·)〉〈φλ(·), φλn

(·)〉
‖φλn

(·)‖2

∣∣∣∣

≤
( ∞∑

n=0

∣∣∣∣ 〈g(·), φλn
(·)〉

‖φλn
(·)‖

∣∣∣∣
2)1/2

×
( ∞∑

n=0

∣∣∣∣φλ(·), φλn
(·)〉

‖φλn
(·)‖

∣∣∣∣
2)1/2

.

As for the proof of the uniform convergence on compact subsets of C,
let M ⊂ C be compact, let N > 0. Define σN (λ) to be

(4.6) σN (λ) :=
∣∣∣∣f1(λ)−

N−1∑
n=0

f1(λn)
ωα,γ(λ)

(λ− λn)ω′
α,γ(λn)

∣∣∣∣, λ ∈M.

To prove that the expansion of f1(λ) converges uniformly on M , it is
sufficient to show that σN (λ) approaches zero uniformly onM ; in other
words, σN (λ) → 0 as N → ∞ without depending on λ ∈ M . Indeed,
again using the Cauchy-Schwarz inequality, we have

(4.7)

σN (λ) ≤
∞∑

n=N

∣∣∣∣ 〈g, φλn
〉〈φλ, φλn

(·)〉
‖φλn

(·)‖2

∣∣∣∣

≤
( ∞∑

n=N

∣∣∣∣ 〈g, φλn
(·)〉

‖φλn
(·)‖

∣∣∣∣
2)1/2( ∞∑

n=N

∣∣∣∣ 〈φλ, φλn
(·)〉

‖φλn
(·)‖

∣∣∣∣
2)1/2

≤
( ∞∑

n=N

〈g, φλn
(·)〉

‖φλn
(·)‖

∣∣∣∣
2)1/2( ∫ 1

−1

|φλ(x)|2 dx
)1/2

.

Following [8, 10, 11] there is a positive constant CM , λ ∈M , which is
independent of λ, for which ‖φλ(·)‖2 < CM . Hence,

(4.8) σN (λ) ≤ CM

( ∞∑
n=N

∣∣∣∣ 〈g, φλn
(·)〉

‖φλn
(·)‖

∣∣∣∣
2)1/2

, λ ∈M.
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The righthand side inequality (4.8) goes to zero as N goes to∞ without
depending on λ, proving the uniform convergence as claimed. By the
uniform convergence property, f1(λ) is analytic on compact subsets of
C, i.e., is entire.

Remark 4.2. The special case (1.10) arises if one takes α = γ = 0. In
case one chooses α = 0, γ �= 0 or α �= 0, γ = 0, one may sample the
Legendre transform (1.9) but in this case the sampling points will be
the zeros of the corresponding transcendental functions.

5. Sampling the Bessel functions. In this section we give less
detailed sampling expansions of the Bessel functions and the corre-
sponding Hankel transforms. Since the methods are almost similar, no
proofs will be given in this section. In the following investigations, the
positions of φλ and ψλ will be reversed, adapted to the standard liter-
ature. Thus, φλ(·) and ψλ(·) will be related to the initial conditions at
right (and left) endpoints, respectively.

Consider the eigenvalue problem

(5.1) −y′′ + ν2 − (1/4)
x2

y = λy, 0 < x ≤ c <∞,

where 0 < ν < 1, ν �= 1/2. The solutions [12]

(5.2) u(x) =
1√
2ν
x(1/2)−ν , v(x) =

1√
2ν
x(1/2)+ν

are both L2(0, c)-solutions satisfying W (u, v) ≡ 1 on (0, c], (see [12,
page 83]). Thus equation (5.1) is in the limit circle case. For simplicity,
we take the boundary conditions

(Sy)1(0) cosα+ (Sy)2(0) sinα = 0,(5.3)
y(c) = 0.(5.4)

Using Titchmarsh’s notations [24, pages 81 84], (see also [12]), the
solutions φλ(·) and θλ(·), which satisfy

φλ(c) = 0, φ′λ(c) = −1(5.5)
θλ(c) = 1, θ′λ(c) = 0, λ ∈ C(5.6)
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are

φλ(x) = − π
√
cx

2 sin νπ
[Jν(sx)J−ν(sc)− J−ν(sx)Jν(sc)],

(5.7)

θλ(x) =
s
√
cx

2 sin νπ
[Jν(sx)J ′

−ν(sc)− J−ν(sx)J ′
ν(sc)] +

φλ(x)
2c

,

(5.8)

where s =
√
λ with a branch taken along the negative real axis. Again,

using [12, page 85], it can be concluded that
(5.9)

ωα(λ) = 2c
{
s−νJν(sc)22ν(Γ(1 + ν)/Γ(1− ν)) cotα− sνJ−ν(sc) α �= 0,
s−ν2νΓ(1 + ν)Jν(sc) α = 0.

Relation (5.9) follows directly from [12, page 56].

The eigenvalues of problems (5.1), (5.3) (5.4) are the zeros of ωα(λ).
Let us denote them by {λn}∞n=0. The function φλ(·) satisfies the second
boundary condition. Now we need to find the function ψλ(·), which
satisfies the first boundary condition. The next lemma is devoted to
this aim.

Lemma 5.1. The function ψλ(·), which satisfies

(5.10) (Sψλ)1(0) = sinα, (Sψλ)2(0) = − cosα, λ ∈ C

is given by

(5.11)
ψλ(x) = [sinα(Sθλ)2(0) + cosα(Sθλ)1(0)]φλ(x)

− [cosα(Sφλ)1(0) + sinα(Sφλ)2(0)]θλ(x),

where (Sφλ)i(0), (Sθλ)i(0), i = 1, 2, are given below.
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Proof. From [12, page 85], we have
(5.12)

(Sφλ)1(0) =
π
√
cν√

2 sin νπ

(
s

2

)−ν 1
Γ(1− ν)Jν(cs),

(Sφλ)2(0) = − π
√
cν√

2 sin νπ

(
s

2

)ν 1
Γ(1 + ν)

J−ν(cs),

(Sθλ)1(0) =
π
√
νc√

2 sin νπ

(
s

2

)−ν 1
Γ(1− ν)

[
sJ ′

ν(cs) +
1
2c
Jν(cs)

]
,

(Sθλ)2(0) = − π
√
νc√

2 sin νπ

(
s

2

)ν 1
(1 + ν)

[
sJ ′

−ν(cs) +
1
2c
J−ν(cs)

]
.

Set

(5.13) ψλ(x) = Aφλ(x) +Bθλ(x),

where A,B are constants which depend on λ only and need to be de-
termined. From (5.10), we get the following system of linear equations
in the unknowns A,B:

(Sφλ)1(0)A+ (Sθλ)1(0)B = sinα,(5.14)
(Sφλ)2(0)A+ (Sθλ)2(0)B = − cosα.(5.15)

This system has a unique nontrivial solution at every λ ∈ C since, cf.
[13],

(5.16)
D =

∣∣∣∣ (Sφλ)1(0) (Sθλ)1(0)
(Sφλ)2(0) (Sθλ)2(0)

∣∣∣∣ = D0(φλ, θλ) =W0(φλ, θλ)

=Wc(φλ, θλ) =
∣∣∣∣ 0 1
−1 0

∣∣∣∣ = 1 �= 0 for all λ ∈ C.

Solving this system, one obtains (5.11).

Now we have the following two sampling theorems. The first concerns
sampling representations of φλ(·) and ψλ(·), while the second deals with
sampling series for the associated integral transforms of Hankel type.

Theorem 5.2. The function φλ(·) and ψλ(·) defined in (5.7) and
(5.11) have the sampling representations

(5.17)
(
φλ(x)
ψλ(x)

)
=

∞∑
n=0

(
φλn

(x)
ψλn

(x)

)
ωα(λ)

(λ− λn)ω′
α(λn)

.
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Series (5.17) converges pointwise with respect to λ for x ∈ (0, c] and in
the L2(0, c)-norm with respect to x for λ ∈ C.

Theorem 5.3. Let g(·) ∈ L2(0, c) and

(5.18)
(
f1(λ)
f2(λ)

)
=

∫ c

0

g(x)
(
φλ(x)
ψλ(x)

)
dx.

Then f1(λ) and f2(λ) are entire functions of λ and admit the sampling
formulae

(5.19)
(
f1(λ)
f2(λ)

)
=

∞∑
n=0

(
f1(λn)
f2(λn)

)
ωα(λ)

(λ− λn)ω′
α(λn)

.

Series (5.19) converges absolutely and uniformly on compact subsets of
the complex plane.

Remark 5.4. The sampling theorem associated with Bessel’s equation
in [25] is a special case of the above one, when α = π/4.

Acknowledgments. The authors would like to thank Professors
Johann Walter (Aachen) and Charles Fulton (Melbourne, FL) for their
expert advice as to the boundary condition approach devised by Fulton.
In the early stages of the work, carried out during the first author’s
second stay as an AvH research fellow in Aachen, both colleagues
were especially helpful in offering literature and suggestions regarding
the many open problems that arise when one makes use of Sturm-
Liouville eigenvalue theory in sampling analysis. The authors wish
to thank Ms. Denise Marks for typing the first version of this paper
during the MHA visit to the University of South Florida, Tampa, FL,
summer 2000. This author also thanks Professor Mourad Ismail for the
hospitality during his stay there. The final work was carried out via
normal and electronic mail during the visit of MHA to Arizona State
University, Tempe, AZ, Fall 2000.

REFERENCES

1. F.V. Atkinson and C.T. Fulton, Asymptotics of Sturm-Liouville eigenvalues
for problems on a finite interval with one limit circle singularity, Proc. Royal Soc.
Edinburgh 99 (1984), 51 70.



THE LIMIT-CIRCLE CASE 465

2. , Asymptotic formulas for eigenvalues of limit circle problems on a half
line, Ann. Math. Pura Appl. 135 (1984), 363 398.

3. , Some limit circle eigenvalue problems and asymptotic formulae for
eigenvalues, Lecture Notes Math. 964 (1982), 25 55.

4. P.L. Butzer and M. Hauss, Applications of sampling theory to combinatorial
analysis, Stirling numbers, special functions and the Riemann zeta function, in
Sampling theory in Fourier and signal analysis: Advanced topics, J.R. Higgins and
R.L. Stens, eds., Oxford University Press, Oxford, (1999), 1 37.

5. P.L. Butzer and G. Nasri-Roudsari, Kramer’s sampling theorem in signal
analysis and its role in mathematics, in Image processing, Mathematical methods
and applications, Clarendon Press, Oxford, (1997), 49 95.
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