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SUFFICIENT CONDITIONS FOR OSCILLATION
OF LINEAR SECOND ORDER MATRIX

DIFFERENTIAL SYSTEMS

N. PARHI AND P. PRAHARAJ

ABSTRACT. Sufficient conditions in terms of trace are
obtained for the oscillation of all nontrivial prepared solutions
of second order self-adjoint differential matrix systems(

P (t)Y ′)′ + Q(t)Y = 0, t ≥ σ ≥ 0,

where P and Q are n × n real continuous symmetric matrix
functions on [σ,∞) with P (t) positive definite. Our results
generalize earlier results on oscillation of scalar second order
equation (

p(t)y′)′ + q(t)y = 0, t ≥ σ ≥ 0,

where p, q ∈ C([σ,∞), (−∞,∞)) with p(t) > 0, and are
applicable to Euler’s second order matrix equations.

1. Introduction. Many oscillation criteria for self-adjoint second
order linear differential equation

(1)
(
p(t)y′

)′ + q(t)y = 0

are known, where p ∈ C([σ,∞), (0,∞)), q ∈ C([σ,∞), (−∞,∞)) and
σ ≥ 0. If p(t) ≡ 1, then (1) takes the form

(2) y′′ + q(t)y = 0.

A solution of (1) is said to be oscillatory if it has arbitrarily large zeros;
otherwise, it is called nonoscillatory. Equation (1) is oscillatory if all
its solutions are oscillatory. We use the following condition often:

(C1) Let D = {(t, s) : t ≥ s ≥ σ} and D0 = {(t, s) : t > s ≥ σ}. Let
h ∈ C(D, [0,∞)) satisfy the following conditions:
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(i) h(t, t) = 0 for t ≥ σ, h(t, s) > 0 for t > s ≥ σ.
(ii) h has a continuous and nonpositive partial derivative on D0 with

respect to the second variable. Suppose that g ∈ C(D0, [0,∞)) is
defined by

− ∂h(t, s)
∂s

= g(t, s)
√
h(t, s), (t, s) ∈ D0.

In 1989, Philos [7] obtained oscillation criteria for (2) which extended
earlier criteria due to Kamenev [3] and Yan [8]. One of his results is
stated in the following:

Theorem 1.1 (Philos [7]). Suppose (C1) holds. If

lim sup
t→∞

1
h(t, σ)

∫ t

σ

[
h(t, s)q(s)− 1

4
g2(t, s)

]
ds = ∞,

then (2) is oscillatory.

However, Theorem 1.1 cannot be applied to the Euler differential
equation

(3) y′′ +
γ

t2
y = 0,

where γ > 0 is a constant. It is well known that equation (3) is
oscillatory if γ > 1/4 and nonoscillatory if γ ≤ 1/4. In [4], Li
gave oscillation criteria for (1) which generalize Theorem 1.1 and is
applicable to equation (3). In the following we state three of his results:

Theorem 1.2. Let (C1) hold. If there exists a function f ∈
C1([σ,∞), (−∞,∞)) such that

(4) lim sup
t→∞

1
h(t, σ)

∫ t

σ

[
h(t, s)ψ(s)− 1

4
f̃(s)p(s)g2(t, s)

]
ds = ∞,

where

f̃(t) = exp
(
− 2

∫ t

σ

f(s) ds
)
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and
ψ(t) = f̃(t)

(
q(t) + p(t)f2(t) − (p(t)f(t))′

)
,

then equation (1) is oscillatory.

Theorem 1.3. Let (C1) hold, and let

(5) 0 < inf
s≥σ

[
lim inf
t→∞

h(t, s)
h(t, σ)

]
.

Suppose there exist two functions f ∈ C1([σ,∞), (−∞,∞)) and
a ∈ C([σ,∞), (−∞,∞)) such that (4) holds and the conditions

lim sup
t→∞

1
h(t, σ)

∫ t

σ

f̃(s)p(s)g2(t, s) ds < ∞

and

(6)
∫ ∞

σ

a2
+(t)

f̃(t)p(t)
dt = ∞

hold and, for every t0 ≥ σ,

lim sup
t→∞

1
h(t, t0)

∫ t

t0

[
h(t, s)ψ(s)− 1

4
f̃(s)p(s)g2(t, s)

]
ds ≥ a(t0),

where f̃ and ψ are the same as in Theorem 1.2 and a+(t) = max(a(t), 0).
Then equation (1) is oscillatory.

Theorem 1.4. Suppose that (C1) holds. Let (5) and (6) be satisfied.
If

lim inf
t→∞

1
h(t, σ)

∫ t

σ

h(t, s)ψ(s) ds < ∞

and

lim inf
t→∞

1
h(t, t0)

∫ t

t0

[
h(t, s)ψ(s)− 1

4
f̃(s)p(s)g2(t, s)

]
ds ≥ a(t0),

for every t0 ≥ σ, then equation (1) is oscillatory.
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Erbe, Kong and Ruan [1] generalized Theorem 1.1 to linear second
order differential system

(E1) Y ′′ +Q(t)Y = 0, t ∈ [σ,∞),

where Y and Q are n × n real continuous matrix functions with Q(t)
symmetric. They obtained the following result.

Theorem 1.5. Suppose (C1) holds. If

(7) lim sup
t→∞

1
h(t, σ)

λ1

[ ∫ t

σ

(
h(t, s)Q(s)− 1

4
g2(t, s)I

)
ds

]
= ∞,

where λ1[B] ≥ λ2[B] ≥ · · · ≥ λn[B] denotes the usual ordering of the
eigenvalues of the symmetric matrix B and I is the n × n identity
matrix, then system (E1) is oscillatory (the definition is given below).
They have also considered (E), (see below).

However, if Q(t) = diag (γ/t2, α/t2) in (E1), where γ ≥ α > 0 are
constants, then (7) fails to hold (see [5]). Thus, Theorem 1.5 cannot
be applied to the Euler differential system

(E2) Y ′′ + diag
(
γ/t2, α/t2

)
Y = 0,

where Y is a 2 × 2 matrix, γ ≥ α > 0 are constants. It is shown that
(see [5]) the Euler differential system (E2) is oscillatory if γ > 1/4. In a
recent paper [5], Meng, Wang and Zheng have generalized Theorem 1.5
so as to be applicable to the Euler differential system (E2). They
established the following result

Theorem 1.6 (Theorem 1, [5]). Let (C1) hold. If there exists a
function f ∈ C([σ,∞), (−∞,∞)) such that

(8) lim sup
t→∞

1
h(t, σ)

λ1

[ ∫ t

σ

(
h(t, s)R(s)− 1

4
f̃(s)g2(t, s)I

)
ds

]
= ∞,

where

f̃(t) = exp
(
− 2

∫ t

σ

f(s) ds
)
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and R(t) = f̃(t)[Q(t)+f2(t)I−f ′(t)I], then equation (E1) is oscillatory.

In this paper we have generalized Theorems 1.2 1.4 to self-adjoint
linear second order differential system

(E)
(
P (t)Y ′)′ +Q(t)Y = 0, t ∈ [σ,∞),

where Y (t), P (t) and Q(t) are n× n real, continuous matrix functions
on [σ,∞) such that Q(t) is symmetric and P (t) is positive definite. A
solution Y (t) of (E) on [σ,∞) is said to be nontrivial if detY (t) �= 0
for at least one t ∈ [σ,∞). It is said to be prepared or self-conjugate if

Y ∗(t)
(
P (t)Y ′(t)

)
=

(
P (t)Y ′(t)

)∗
Y (t)

holds for t ∈ [σ,∞), where for any matrix B, the transpose of B
is denoted by B∗. By a solution of (E) we understand a nontrivial
prepared solution of (E). A solution Y (t) of (E) is said to be oscillatory
if, for every t0 ≥ σ, it is possible to find a t1 > t0 such that
detY (t1) = 0; otherwise, Y (t) is called nonoscillatory. Equation (E)
is said to be oscillatory if every nontrivial prepared solution of the
equation is oscillatory. Oscillation of equation (E) must be studied
separately from equation (E1) since, like the scalar case, there is no
oscillation-preserving transformation of the independent variable that
allows the passage between the two forms. The oscillation of equation
(E) is defined through its nontrivial prepared solutions because it
is possible that (E) admits a nontrivial nonprepared nonoscillatory
solution (see [6]). For a solution Y (t) of (E),

Y ∗(t)
(
P (t)Y ′(t)

) − (
P (t)Y ′(t)

)∗
Y (t) = C, t ≥ σ,

where C is an n× n constant matrix. Hence, for t0 ≥ σ,
Y ∗(t0)

(
P (t0)Y ′(t0)

) − (
P (t0)Y ′(t0)

)∗
Y (t0) = C.

It is possible to choose Y (t0) = Y0 and Y ′(t0) = Y ′
0 such that C = 0.

Thus the initial value problem(
P (t)Y ′)′ +Q(t)Y = 0, Y (t0) = Y0, Y ′(t0) = Y ′

0

always admits a nontrivial prepared solution. If S is the real linear
space of all real symmetric n × n matrices, then tr : S → (−∞,∞)
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is a linear functional with (trA)2 ≤ ntr (A2) for every A ∈ S. For
A,B,C ∈ S, we write A ≥ B to mean that A− B ≥ 0, that is, A− B
is a positive semi-definite matrix, and A ≥ B implies that trA ≥ trB
and CAC ≥ CBC. Further,

tr
∫ t

σ

Q(s) ds =
∫ t

σ

trQ(s) ds

for every n × n real symmetric matrix function Q whose entries are
integrable.

2. Sufficient conditions for oscillation. In this section we
obtain sufficient conditions for oscillation of equation (E). We list the
assumptions in the following that are needed for our work in the sequel.

(C2) There exists a function f ∈ C([σ,∞), (−∞,∞)) such that
(f̃(t)P (t))−1 ≥ n(f̃(t)trP (t))−1I, where I is the n× n identity matrix
and

f̃(t) = exp
(
− 2

∫ t

σ

f(s) ds
)
.

(C3) There exists a function f ∈ C([σ,∞), (−∞,∞)) such that
f(t)P (t) is continuously differentiable and

lim sup
t→∞

1
h(t, t0)

[ ∫ t

t0

(
h(t, s)trR(s) − 1

4
f̃(s)trP (s)g2(t, s)

)
ds

]
= ∞

for every t0 ≥ σ, where

R(t) = f̃(t)
[
Q(t) + f2(t)P (t)− (

f(t)P (t)
)′]

(C4) 0 < inf
s≥t0

[
lim inf
t→∞

h(t, s)
h(t, t0)

]
for every t0 ≥ σ,

(C5) lim sup
t→∞

1
h(t, t0)

∫ t

t0

g2(t, s)f̃(s)trP (s) ds < ∞

for every t0 ≥ σ,
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(C6) There exists a function a ∈ C([σ,∞), (−∞,∞)) such that∫ ∞

t0

a2
+(t)

(
f̃(t)trP (t)

)−1
dt = ∞ for every t0 ≥ σ,

where a+(t) = max(a(t), 0).

(C7) There exists a function a ∈ C([σ,∞), (−∞,∞)) such that, for
every t0 ≥ σ,

lim sup
t→∞

1
h(t, t0)

∫ t

t0

[
h(t, s)trR(s) − 1

4
g2(t, s)f̃(s)trP (s)

]
ds ≥ a(t0)

(C8) lim inf
t→∞

1
h(t, t0)

∫ t

t0

h(t, s)trR(s) ds < ∞ for every t0 ≥ σ.

(C9) There exists a function a ∈ C([σ,∞), (−∞,∞)) such that, for
every t0 ≥ σ,

lim inf
t→∞

1
h(t, t0)

∫ t

t0

[
h(t, s)trR(s) − 1

4
g2(t, s)f̃(s)trP (s)

]
ds ≥ a(t0).

Remark. We may note that (C3) implies (C7).

Theorem 2.1. If (C1), (C2) and (C3) hold, then equation (E) is
oscillatory.

Proof. Let Y (t) be a nonoscillatory solution of (E). Hence there exists
a t1 ≥ σ such that detY (t) �= 0 for t ≥ t1. For t ≥ t1, we set

(9) V (t) = f̃(t)P (t)
[
Y ′(t)Y −1(t) + f(t)I

]
.

Hence, V (t) is symmetric because Y (t) is prepared and

V ′ = f̃ ′(t)P (t)
(
Y ′(t)Y −1(t) + f(t)I

)
+ f̃(t)

[(
P (t)Y ′(t)

)′
Y −1(t) +

(
f(t)P (t)

)′]
− f̃(t)P (t)Y ′(t)Y −1(t)Y ′(t)Y −1(t).
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Since f̃ ′(t) = −2f(t)f̃(t) and (P (t)Y ′(t))′ = −Q(t)Y (t), then

V ′(t) = −2f(t)V (t) − f̃(t)(Q(t) − (f(t)P (t))′
)

− f̃(t)P (t)
(
Y ′(t)Y −1(t)Y ′(t)Y −1(t)

)
.

However,

Y ′(t)Y −1(t)Y ′(t)Y −1(t)

=
(
Y ′(t)Y −1(t) + f(t)I

)2 − 2f(t)Y ′(t)Y −1(t) − f2(t)I

=
(
Y ′(t)Y −1(t) + f(t)I

)2 − 2f(t)
(
Y ′(t)Y −1(t) + f(t)I

)
+ f2(t)I

=
(
Y ′(t)Y −1(t) + f(t)I

)(
f̃(t)P (t)

)−1
V (t)

− 2f(t)
(
f̃(t)P (t)

)−1
V (t) + f2(t)I

implies that

f̃(t)P (t)
(
Y ′(t)Y −1(t)Y ′(t)Y −1(t)

)
= V (t)

(
f̃(t)P (t)

)−1
V (t) − 2f(t)V (t) + f2(t)f̃(t)P (t).

Hence,

V ′(t) = −V (t)
(
f̃(t)P (t)

)−1
V (t)− f̃(t)(Q(t)+f2(t)P (t)−(

f(t)P (t)
)′)
,

that is,

(10) V ′(t) = −V (t)
(
f̃(t)P (t)

)−1
V (t) −R(t).

Multiplying (10), where t is replaced for s, through by h(t, s) and then
integrating from t1 to t, we obtain

∫ t

t1

h(t, s)R(s) ds

= h(t, t1)V (t1) +
∫ t

t1

[∂h(t, s)
∂s

V (s)−h(t, s)V (s)
(
f̃(s)P (s)

)−1
V (s)

]
ds.
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The use of (C1) and (C2) yields

1
h(t, t1)

∫ t

t1

h(t, s)R(s) ds

= V (t1) − 1
h(t, t1)

∫ t

t1

[
h(t, s)V (s)

(
f̃(s)P (s)

)−1
V (s)

+ g(t, s)
(
h(t, s)

)1/2
V (s)

]
ds

≤ V (t1) − 1
h(t, t1)

∫ t

t1

[
nh(t, s)

(
f̃(s)trP (s)

)−1
V 2(s)

+ g(t, s)
(
h(t, s)

)1/2
V (s)

]
ds

= V (t1) − 1
h(t, t1)

∫ t

t1

[(
nh(t, s)

(
f̃(s)trP (s)

)−1) 1
2V (s)

+
1
2
g(t, s)

(
f̃(s)trP (s)

)1/2

n1/2
I
]2

ds

+
1

4nh(t, t1)

∫ t

t1

g2(t, s)f̃(s)trP (s)I ds.

Since R(t) is symmetric, then

1
h(t, t1)

∫ t

t1

tr
[
h(t, s)R(s)− 1

4n
g2(t, s)f̃(s)trP (s)I

]
ds

≤ trV (t1) − 1
h(t, t1)

∫ t

t1

tr
[(
nh(t, s)

(
f̃(s)trP (s)

)−1)1/2
V (s)

+
1
2
g(t, s)

(
f̃(s)trP (s)

) 1
2

n
1
2

I
]2

ds,

that is,

(11)
1

h(t, t1)

∫ t

t1

[
h(t, s)trR(s) − 1

4
g2(t, s)f̃(s)trP (s)

]
ds

≤ trV (t1) − 1
h(t, t1)

∫ t

t1

tr
[(
nh(t, s)

(
f̃(s)trP (s)

)−1)1/2
V (s)

+
1
2
g(t, s)

(
f̃(s)trP (s)

)1/2

n1/2
I
]2

ds.
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From (11), it follows that

lim sup
t→∞

1
h(t, t1)

∫ t

t1

[
h(t, s)trR(s) − 1

4
g2(t, s)f̃(s)trP (s)

]
ds

≤ |trV (t1)| < ∞.
This contradicts (C3) and hence the theorem is proved.

Remark. (i) If P (t) ≡ I, then (C2) is satisfied and R(t) in (C3) has
the following form:

R(t) = f̃(t)
[
Q(t) + f2(t)I − f ′(t)I].

(ii) If n = 1, then (C2) is satisfied trivially and (C3) reduces to (4)
with t0 = σ, Q(t) = q(t) and P (t) = p(t). Hence, Theorem 2.1 is a
generalization of Theorem 1.2 to systems (E).

In the following we consider an example to which Theorem 1 in [5]
cannot be applied but where the above theorem holds.

Example. Consider equation (E) for t ≥ 0 with

P (t) = I and Q(t) =
[
e2t(1+t2 cos t) 0

0 e2t(1−t2 cos t)

]
.

Define h(t, s) = (t − s)2, t ≥ s ≥ 0. Hence, g(t, s) = 2. Let f(t) ≡ 1,
t ≥ 0. Then f̃(t) = e−2t. The conditions (C1) and (C2) are satisfied
trivially. Here

R(t) = e−2t
(
Q(t) + I

)
=

[
1+t2 cos t+ e−2t 0

0 1−t2 cos t+ e−2t

]
,

and hence

h(t, s)trR(s) − 1
4
f̃(s)trP (s)g2(t, s) = 2(t−s)2(1+e−2s) − 2e−2s.

Thus

lim sup
t→∞

1
h(t, t0)

∫ t

t0

[
h(t, s)trR(s) − 1

4
f̃(s)trP (s)g2(t, s)

]
ds

= lim sup
t→∞

1
(t− t0)2

∫ t

t0

[
2(t−s)2 + 2(t−s)2e−2s − 2e−2s

]
ds

≥ lim sup
t→∞

1
(t− t0)2

[2
3

(t−t0)3 + e−2t − e−2t0
]

= ∞,
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that is, condition (C3) holds. From Theorem 2.1 it follows that all
nontrivial prepared solutions of equation (E) with P (t) and Q(t) as
defined above are oscillatory. Clearly,

(12)
∫ t

0

[
h(t, s)R(s)− 1

4
g2(t, s)f̃(s)I

]
ds =

[
λ(t) 0
0 µ(t)

]

where

λ(t) =
∫ t

0

[
(t−s)2(1+s2 cos s) + e−2s

(
(t−s)2 − 1

)]
ds

=
t3

3
+
t2

2
− 25

2
t+

1
4
e−2t − 1

4
− 2t2 sin t− 12t cos t+ 24 sin t

and

µ(t) =
∫ t

0

[
(t−s)2(1−s2 cos s) + e−2s

(
(t−s)2 − 1

)]
ds

=
t3

3
+
t2

2
+

23
2
t+

1
4
e−2t − 1

4
+ 2t2 sin t+ 12t cos t− 24 sin t.

Hence λ(t) and µ(t) are eigenvalues of the matrix given by (12).

Setting λ1(t) = max{λ(t), µ(t)} and λ2(t) = min{λ(t), µ(t)}, we
notice that λ1(t) and λ2(t) are, respectively, the largest and smallest
eigenvalues of the matrix given by (12) and

λ1(t) =

{
µ(t), t ∈ [

2mπ, (2m+ 1)π
]

λ(t), t ∈ [
(2m+ 1)π, (2m+ 2)π

]
,

for large positive integer m. However, λ1(t) is discontinuous at 2mπ.
Indeed,

µ(2mπ) =
(2mπ)3

3
+

(2mπ)2

2
+

23
2

(2mπ) +
1
4
e−4mπ + 24mπ

and

λ(2mπ) =
(2mπ)3

3
+

(2mπ)2

2
− 25

2
(2mπ) +

1
4
e−4mπ − 24mπ

imply that µ(2mπ) > λ(2mπ).
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Remark. If the symmetric matrix B(t) ≥ 0, t ∈ [t0,∞), t0 ≥ σ, and
its eigenvalues are put in decreasing order where

B(t) =
∫ t

t0

[
h(t, s)R(s)− 1

4n
g2(t, s)f̃(s)trP (s)I

]
ds,

then the condition (C3) is equivalent to

lim sup
t→∞

1
h(t, t0)

λ1

[ ∫ t

t0

(
h(t, s)R(s)− 1

4n
g2(t, s)f̃(s)trP (s)I

)
ds

]
= ∞,

in view of the property λ1[B(t)] ≤ tr [B(t)] ≤ nλ1[B(t)]. This is the
same as equation (5) in [5] if P (t) = I.

Remark. Theorem 2.1 holds if the condition (C3) is replaced by

(C′
3). There exists a function f ∈ C([σ,∞), (−∞,∞)) such that

f(t)P (t) is continuously differentiable and

lim sup
t→∞

1
h(t, σ)

∫ t

σ

[
h(t, s)trR(s) − 1

4
f̃(s)trP (s)g2(t, s)

]
ds = ∞

where R(t) is the same as in (C3). Indeed, for t > t1 > σ,∫ t

σ

[
h(t, s)trR(s) − 1

4
f̃(s)trP (s)g2(t, s)

]
ds

=
∫ t1

σ

[
h(t, s)trR(s) − 1

4
f̃(s)trP (s)g2(t, s)

]
ds

+
∫ t

t1

[
h(t, s)trR(s) − 1

4
f̃(s)trP (s)g2(t, s)

]
ds

<

∫ t1

σ

h(t, s)|trR(s)| ds+ h(t, t1)|trV (t1)|

< h(t, σ)
∫ t1

σ

|trR(s)| ds+ h(t, σ)|trV (t1)|,

where we used (C1), (11) and P (t) > 0. We may note that t1 > σ is
such that Y −1(t) exists for t ≥ t1. Thus

lim sup
t→∞

1
h(t, σ)

∫ t

σ

[
h(t, s)trR(s) − 1

4
f̃(s) trP (s)g2(t, s)

]
ds <∞,
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which contradicts (C′
3).

Example. Consider the Euler differential system (E2), t ≥ 1, with
γ > 1/4. We take α = 1/4. Let f(t) = −(1/2t), t ≥ 1. Hence
f̃(t) = t. Let h(t, s) = (t − s)β, t ≥ s ≥ 1 and β > 1. Then
g(t, s) = β(t − s)(β/2)−1. Clearly, (C1) and (C2) are satisfied. Since
n = 2, then∫ t

1

[
h(t, s)trR(s) − 1

2
f̃(s)g2(t, s)

]
ds

=
∫ t

1

[
(t− s)β

(4γ − 1
4s

)
− 1

2
β2s(t− s)β−2

]
ds

=
(4γ − 1

4

) ∫ t

1

(t− s)β

s
ds− 1

2
β2

∫ t

1

s(t− s)β−2 ds

≥
(4γ − 1

4

) ∫ t

1

1
s

(tβ − β stβ−1) ds− 1
2
β2

∫ t

1

s(t− s)β−2 ds

=
(4γ − 1

4

)
tβ

(
log t− β +

β

t

)
− 1

2
β2(t− 1)β−1

( t

β(β − 1)
+

1
β

)
,

where the inequality (t − s)β ≥ tβ − βstβ−1 for t ≥ s ≥ 1 is used (see
[2, Theorem 41]). Hence,

lim sup
t→∞

1
h(t, 1)

∫ t

1

[
h(t, s)trR(s) − 1

2
f̃(s)g2(t, s)

]
ds

≥ lim sup
t→∞

[(4γ − 1
4

)( tβ log t
(t− 1)β

− βtβ−1

(t− 1)β−1

)

− 1
2
β2 1

(t− 1)

( t

β(β − 1)
+

1
β

)]
= ∞.

From Theorem 2.1 and the above remark, it follows that the system
(E2) oscillates.

Theorem 2.2. If (C1), (C2) hold and

(C10) lim sup
t→∞

1
h(t, σ)

∫ t

σ

h(t, s)trR(s) ds = ∞
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and

(C11) lim sup
t→∞

1
h(t, σ)

∫ t

σ

f̃(s)trP (s)g2(t, s) ds <∞,

then the system (E) is oscillatory.

The theorem holds because (C10) and (C11) imply (C′
3).

Theorem 2.3. Suppose that (C1), (C2), (C4) (C7) hold. Then the
system (E) is oscillatory.

Proof. If possible, let Y (t) be a nonoscillatory solution of (E). Hence,
detY (t) �= 0 for t ≥ t1 ≥ σ. Setting V (t) as in (9) for t ≥ t1, we obtain
(10) and V (t) = V ∗(t). Proceeding as in the proof of Theorem 2.1, we
get from (11) that

(13)

a(t∗) ≤ lim sup
t→∞

1
h(t, t∗)

∫ t

t∗

[
h(t, s)trR(s) − 1

4
g2(t, s)f̃(s)trP (s)

]
ds

≤ trV (t∗)

− lim inf
t→∞

1
h(t, t∗)

∫ t

t∗
tr

[
(nh(t, s)(f̃(s)trP (s))−1)1/2V (s)

+
1
2
g(t, s)

(f̃(s)trP (s))1/2

n1/2
I
]2

ds,

for t > t∗ ≥ t1, by (C7). Thus trV (t∗) ≥ a(t∗). Consequently,

(14)
(
trV (t∗)

)2 ≥ a2
+(t∗) for every t∗ ≥ t1.

Further, (13) yields

lim inf
t→∞

1
h(t, t1)

∫ t

t1

tr
[(
nh(t, s)

(
f̃(s)trP (s)

)−1)1/2
V (s)

(15)

+
1
2
g(t, s)

(
f̃(s)trP (s)

)1/2

n1/2
I
]2

ds

≤ trV (t1) − a(t1) <∞.
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Setting

B(t) =
n

h(t, t1)

∫ t

t1

h(t, s)
(
f̃(s)trP (s)

)−1
V 2(s) ds, t ≥ t1

and

C(t) =
1

h(t, t1)

∫ t

t1

g(t, s)
√
h(t, s)V (s) ds, t ≥ t1,

we have

B(t) + C(t) <
1

h(t, t1)

∫ t

t1

[(
nh(t, s)

(
f̃(s)trP (s)

)−1)1/2
V (s)

+
1
2
g(t, s)

(
f̃(s)trP (s)

)1/2

n1/2
I
]2

ds.

Hence,

(16) lim inf
t→∞

[
trB(t) + trC(t)

]
< ∞

by (15). Since V (t) is symmetric, then V 2(t) ≥ 0, t ≥ t1. We claim
that ∫ ∞

t1

(
f̃(s)trP (s)

)−1 trV 2(s) ds <∞.

If not, then

(17)
∫ ∞

t1

(
f̃(s)trP (s)

)−1 trV 2(s) ds = ∞.

From (C4) it follows that

inf
s≥t1

[
lim inf
t→∞

h(t, s)
h(t, t1)

]
> η > 0.

Hence, for s ≥ t1,

(18) lim inf
t→∞

h(t, s)
h(t, t1)

> η.
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Let µ be an arbitrary positive number. Then there exists a t2 > t1
such that, for t > t2,

(19)
∫ t

t1

(
f̃(s)trP (s)

)−1 trV 2(s) ds >
(µ
η

)

due to (17). Hence, integration by parts yields, for t > t2,

trB(t) =
n

h(t, t1)

∫ t

t1

h(t, s)
(
f̃(s)trP (s)

)−1 trV 2(s) ds

=
n

h(t, t1)

∫ t

t1

h(t, s)
d

ds

[ ∫ s

t1

(
f̃(θ)trP (θ)

)−1trV 2(θ) dθ
]
ds

= − n

h(t, t1)

∫ t

t1

∂

∂s
h(t, s)

[ ∫ s

t1

(
f̃(θ)trP (θ)

)−1 trV 2(θ) dθ
]
ds

> − n

h(t, t1)

∫ t

t2

∂h(t, s)
∂s

[ ∫ s

t1

(
f̃(θ)trP (θ)

)−1 trV 2(θ) dθ
]
ds

> − nµ

ηh(t, t1)

∫ t

t2

∂h(t, s)
∂s

ds

by (19). Thus, for t ≥ t2,

trB(t) >
nµ

η

h(t, t2)
h(t, t1)

.

It is possible to choose t3 > t2 such that

h(t, t2)
h(t, t1)

> η for t ≥ t3

by (18). Hence, for t ≥ t3, trB(t) > nµ. Since µ is arbitrary, then

(20) lim
t→∞ trB(t) = ∞.

From (16) it follows that there exists a sequence 〈σk〉 such that σk → ∞
as k → ∞ and

trB(σk) + trC(σk) < M

for large k, where M is a real number. Hence,

(21) lim
k→∞

trC(σk) = −∞
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by (20). Further, for large k,

1 +
trC(σk)
trB(σk)

<
M

trB(σk)
<

1
2
,

that is,

(22)
trC(σk)
trB(σk)

< − 1
2
.

Clearly, (21) and (22) imply that

(23) lim
k→∞

[trC(σk)]2

trB(σk)
= ∞.

On the other hand, use of the Cauchy-Schwarz inequality yields

[trC(σk)]2 =
[ 1
h(σk, t1)

∫ σk

t1

g(σk, s)
√
h(σk, s) trV (s) ds

]2

≤
[ 1
h(σk, t1)

∫ σk

t1

g2(σk, s)
(
f̃(s)trP (s)

)
ds

]

·
[ 1
h(σk, t1)

∫ σk

t1

h(σk, s)
(
f̃(s)trP (s)

)−1(trV (s)
)2
ds

]

≤ (
trB(σk)

)[ 1
h(σk, t1)

∫ σk

t1

g2(σk, s)
(
f̃(s)trP (s)

)
ds

]
,

where we have used (trV (t))2 ≤ ntrV 2(t). Since B(t) > 0, then

lim
k→∞

1
h(σk, t1)

∫ σk

t1

g2(σk, s)
(
f̃(s)trP (s)

)
ds = ∞

by (23). This contradicts (C5). Hence our claim holds. Thus, by (14),
∫ ∞

t1

a2
+(s)

(
f̃(s)trP (s)

)−1
ds ≤

∫ ∞

t1

(
trV (s)

)2(
f̃(s)trP (s)

)−1
ds

≤ n
∫ ∞

t1

(
f̃(s)trP (s)

)−1trV 2(s) ds <∞.

This contradicts (C6). Hence the theorem is proved.
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Remark. Since h(t, s) is monotonically decreasing in s, then the
assumptions (C4), (C5) and (C6) are equivalent, respectively, to

0 < inf
s≥σ

[
lim inf
t→∞

h(t, s)
h(t, σ)

]
(C′

4)

lim sup
t→∞

1
h(t, σ)

∫ t

σ

g2(t, s)
(
f̃(s)trP (s)

)
ds < ∞(C′

5)

and

(C′
6) There exists a function a ∈ C([σ,∞), (−∞,∞)) such that∫ ∞

σ

a2
+(t)

(
f̃(t)trP (t)

)−1
dt = ∞,

where a+(t) = max(a(t), 0).

Remark. Theorem 2.3 generalizes Theorem 1.3 to the system (E).

Theorem 2.4. If (C1), (C2), (C4), (C6), (C8) and (C9) hold, then
the system (E) oscillates.

Proof. Suppose that Y (t) is a nonoscillatory solution of (E). Then
detY (t) �= 0 for t ≥ t1 ≥ σ. Setting V (t) as in (9) for t ≥ t1, one may
obtain (10). Clearly, V (t) is symmetric. From (11) we get, using (C9),
that

a(t∗) ≤ lim inf
t→∞

1
h(t, t∗)

∫ t

t∗

[
h(t, s)trR(s)− 1

4
g2(t, s)f̃(s)trP (s)

]
ds

≤ trV (t∗)−lim sup
t→∞

1
h(t, t∗)

∫ t

t∗
tr

[(
nh(t, s)

(
f̃(s)trP (s)

)−1)1/2
V (s)

+
1
2
g(t, s)

(
f̃(s)trP (s)

) 1
2

n
1
2

I
]2

ds

for t > t∗ ≥ t1. Hence, (14) holds and

lim sup
t→∞

1
h(t, t1)

∫ t

t1

tr
[
(nh(t, s)(f̃(s)trP (s))−1)1/2V (s)

+
1
2
g(t, s)

(f̃(s)trP (s))1/2

n1/2
I
]2

ds

≤ trV (t1) − a(t1) <∞,
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that is,
lim sup

t→∞
[trB(t) + trC(t)] < ∞,

where B(t) and C(t) are the same as in the proof of Theorem 2.3. From
(C8) and (C9) it follows that

a(t1) ≤ lim inf
t→∞

1
h(t, t1)

∫ t

t1

[
h(t, s)trR(s) − 1

4
g2(t, s)f̃(s)trP (s)

]
ds

≤ lim inf
t→∞

1
h(t, t1)

∫ t

t1

h(t, s)trR(s) ds

− 1
4

lim inf
t→∞

1
h(t, t1)

∫ t

t1

g2(t, s)f̃(s)trP (s) ds,

that is,

(24) lim inf
t→∞

1
h(t, t1)

∫ t

t1

g2(t, s)f̃(s)trP (s) ds < ∞.

Let ∫ ∞

t1

(
f̃(s)trP (s)

)−1 trV 2(s) ds = ∞.

Since (C4) holds, then proceeding as in the proof of Theorem 2.3, we
obtain

lim
t→∞ trB(t) = ∞,

and hence there exists a sequence 〈σk〉 such that σk → ∞ as k → ∞
and

lim
k→∞

1
h(σk, t1)

∫ σk

t1

g2(σk, s)f̃(s)trP (s) ds = ∞,

which contradicts (24). Thus,

(25)
∫ ∞

t1

(f̃(s)trP (s))−1trV 2(s) ds <∞.

However, (14) and (25) together contradict (C6). Thus the theorem is
proved.

Remark. Theorem 2.4 generalizes Theorem 1.4 to the system (E).
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