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A CLASS OF ABELIAN GROUPS DEFINED
BY CONTINUOUS CROSS SECTIONS

IN THE BOHR TOPOLOGY

DIKRAN DIKRANJAN

ABSTRACT. Comfort, Hernández and Trigos-Arrieta [2]
introduced the class ACCS(#) of abelian groups H such that
the natural map ϕ : G → G/H, where G is the divisible hull of
H, has a cross section Γ : G/H → G that is continuous in the
Bohr topology of G and G/H. They showed that ACCS(#) is
closed under finite products and contains all finitely generated
groups (and, of course, all divisible groups). They also gave
an example of a group that does not belong to ACCS(#).
We give further examples of groups from ACCS(#) (e.g., the
groups of p-adic integers) and we find some new restraints for
the groups from ACCS(#). This entails that large powers of
nondivisible abelian groups never belong to ACCS(#) and
gives an upper bound for the size of the reduced groups in
ACCS(#) (roughly speaking, most of the abelian groups do
not belong to ACCS(#)).

1. Introduction. The Bohr topology of an abelian group G is the
initial topology on G with respect to the family of all homomorphisms
of G into the circle group. Following van Douwen [6], we write G# for
an abelian group G equipped with its Bohr topology.

E.K. van Douwen [6] (cf. [1, p. 515]) raised the following question:
Are G# and H# homeomorphic as topological spaces whenever G and
H are abelian groups of the same size? A negative answer to this
question was given independently and around the same time in [11],
[5]. On the other hand, it was proved recently by Comfort, Hernández
and Trigos-Arrieta [2] that Q# and Z# × (Q/Z)# = (Z × (Q/Z))#

are homeomorphic. The proof of this quite surprising fact is related to
another question of van Douwen.
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Question 1.1. [6, Question 4.12]. Is every (countable) subgroup H
of a group G# a retract of G#?

Let us recall that H is a retract of G# if there exists a continuous
map r : G# → H# such that r(h) = h for every h ∈ H. Here are
two instances when this occurs: i) if H has finite index in G, then
H# is clopen in G#, hence is a retract of G#; ii) in a group G of
prime exponent p every subgroup splits off algebraically, hence it is a
topological direct summand in G#.

He asked also:

Question 1.2. [6, Question 4.13]. Is every countable closed subset
of G# a retract of G#?

This question was answered in negative by Gladdines (see Section 6.1
for a short solution), whereas Question 1.1 still remains open. This
makes it interesting to consider the following notion proposed by [2]
that leads to a modified version of Question 1.1:

Definition 1.3. A subgroup H of an abelian group G is a ccs-
subgroup of G if the natural map ϕ : G → G/H has a continuous
cross section, i.e., a continuous map Γ : (G/H)# → G# such that
ϕ ◦ Γ = id|G/H .

It is proved in [2, Theorem 8] that if H is a ccs-subgroup of G, then
H is a retract of G# and G# is homeomorphic to (G/H)# × H#. It
can be easily seen that a ccs-subgroup H of a group G is not only a
retract, actually there exists a retraction r : G → H that is “linear”
on each coset of H [2, Theorem 38] (see also Fact 2.1 below for more
detail).

Following [2] we denote by ACCS(#) the class of the groups H that
are ccs-subgroup of any enveloping groupG, and we refer to such groups
H as ccs-groups. It turns out [2, Theorem 19] that H ∈ ACCS(#)
if and only if H is a ccs-subgroup of its divisible hull (or any divisible
group containing H, cf. Corollary 2.3 (a)). Hence the study of the class
ACCS(#) can be considered as a version of van Douwen’s Question 1.1
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modified in two points: a) the retracts are understood in a stronger,
linear, sense; b) the emphasis is given to the subgroup H instead of the
group G itself.

The question of existence of non-ccs-subgroups is one of the main
topics in [2] (quoted as Theorem 3(c) in [2, Abstract]). In the sequel
we discuss this matter and we give contributions in the following two
(opposite) directions.

a) We give necessary conditions for ccs-groups. This provides an
upper bound for the size of the reduced groups in ACCS(#) (so that
the reduced groups in ACCS(#) form a set) and shows that large
powers may belong to ACCS(#) only if they are divisible (Theorem
4.12). This gives a large class of new examples of non ccs-subgroups
(actually the known examples from [2, Remark 36] are particular cases
of a single example: the subgroup ⊕κZ(p) of the group ⊕κZ(p2) for
arbitrary infinite cardinal κ).

b) We establish new properties of the class ACCS(#), e.g., closure
with the expectation of taking extensions and direct summands. This
provides some new examples of ccs-groups. This includes i) c many
pairwise nonisomorphic rank-one torsion-free (reduced) groups; ii) c
many pairwise nonisomorphic reduced groups of size c each (cf. Exam-
ple 3.9). The known examples of reduced ccs groups from [2] are only
the finitely generated abelian groups and rank-one torsion-free groups
G such that for some infinite cyclic subgroup C ofG the quotientG/C is
quasi-cyclic (i.e., only countably many pairwise nonisomorphic reduced
ccs-groups).

In order to make the paper sufficiently self-contained and accessi-
ble both to algebra-minded and to topology-minded readers, we give
detailed proofs of all our results as well as some of the results from [2].

Notation and terminology. The symbols, P,N,Z and Q are
used for the set of primes, the set of positive integers, the group of
integers and the group of rationals, respectively. The circle group T
is identified with the quotient group R/Z of the reals R and carries
its usual compact topology. The cyclic group of order n is denoted by
Z(n). The p-adic integers are denoted by Zp.

We consider only abelian groups, we write H ≤ G if H is a subgroup
of G. Let G be a group. The torsion subgroup of G is denoted by t(G).
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The cyclic subgroup of G generated by b is denoted by 〈b〉. For n ∈ N
and p ∈ P we put G[n] = {g ∈ G : ng = 0}, we denote by tp(G) the
maximal p-torsion subgroup of G, and we denote by rp(G) the p-rank
of G.

The symbol c stands for the cardinality of the continuum, so c = 2ℵ0 .

1.1. Background on Bohr topologies. It follows directly from
the definition of the Bohr topology that a net xd → 0 in G# if and only
if the net χ(xd) → 0 in T for every character χ : G → T. Moreover,
a map f : G# → H# is continuous if and only if the composition
χ ◦ f : G# → T is continuous for every character χ : G → T. Let G
be a group of exponent m. Since the image of every homomorphism
G → T is contained in the subgroup Z(m) of T, a typical subbasic
open set Uζ around 0 in G# is given by ker f where f : G → Z(m)
is an arbitrary homomorphism. In other words, in this case the Bohr
topology coincides with the profinite topology of G.

If H ≤ G, then H# is a topological subgroup of G# and the quotient
topology of G#/H coincides with the Bohr topology of G/H. In
particular, the product topology of G# ×G#

1 coincides with the Bohr
topology of the product G×G1.

For an ordinal α, define �α, as usual, by �0 = ω, �α+1 = 2�α and
for limit α let �α = supβ<α �β.

Let m, k ∈ N and let κ be an infinite cardinal. Let G = ⊕κZ(m), and
let {eλ : λ < κ} be the “canonical base” of G, i.e., eλ is the generator
1 +mZ ∈ Z(m) of the λth copy of Z(m) = Z/mZ in G. For a subset
Z ⊆ κ we shall denote by [Z]k the subset of the elements of G of the
form

∑k
i=1 eλ where λ1, . . . , λk are distinct elements of Z.

The following theorem, proved in [4 Straightening Theorem] (for the
case p = 2, see also [3]) will be our main tool in providing necessary
conditions for ccs-group.

Theorem 1.4. If κ > �2p−1, then every continuous finite-to-one
map π : (⊕kZ(p))# → H# with π(0) = 0, necessarily sends [S]p to
H[p] for some infinite S ⊆ κ.

This theorem implies that if p is a prime and rp(H) < ∞ for an
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abelian group H, then there exists no continuous finite-to-one map
π : (⊕κZ(p))# → H# for κ > �2p−1. In particular, there exists no
continuous finite-to-one map π : (⊕κZ(2))# → H# for κ > 22

c

if
r2(H) < ∞.

Question 1.5. Does there exist a continuous one-to-one map from
(⊕ωZ(2))# to any torsion-free group H#?

2. Continuous cross sections in the Bohr topology. Let
H be a subgroup of the abelian group G. We say that a retraction
r : G# → H# is linear, if r(x + h) = r(x) + h for every x ∈ G and
h ∈ H.

Fact 2.1. [2, Theorem 38]. There exists a linear retraction r : G# →
H# if and only if H is a ccs-subgroup.

Indeed, for a ccs-subgroup H with continuous cross section Γ :
G/H → G the map r : G# → H# defined by r(x) = x− Γ(x+H) is a
linear retraction. Vice versa, if r : G → H is a linear retraction, then
Φ(ϕ(x)) = x − r(x) defines a continuous cross section (G/H)# → G#

since for every character χ : G → T the composition χ◦Φ : (G/H)# →
T is continuous. Indeed, as (G/H)# ∼= G#/H# carries the quotient
topology, it suffices to prove that the composition χ◦Φ◦ϕ : G# → T is
continuous. Since Φ◦ϕ = x− r(x), we have (χ◦Φ◦ϕ) = χ(x− r(x)) =
χ(x) − χ(r(x)). Hence, as a difference of two continuous functions
(χ ◦ r : G → T is continuous by the continuity of r : G# → H#), we
conclude that χ ◦ Φ ◦ ϕ is continuous.
It is easy to see that if a subgroup H of an abelian group G is either

finite or has a finite index, then H is a ccs-subgroup [2].

Some items of (a) in the following lemma can be found in [2, Corollary
13].

Lemma 2.2. (a) Let H ≤ K ≤ G.

(a1) If K is a ccs-subgroup of G, then K/H is a ccs-subgroup of G/H.

(a2) If H is a ccs-subgroup of G, then H is a ccs-subgroup of K too.
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(a3) (the relations “ccs-subgroup” is transitive) If H is a ccs-subgroup
of K and K is a ccs-subgroup of G, then H is a ccs-subgroup of G.

(a4) If H is a ccs-subgroup of G, then K/H is a ccs-subgroup of G/H
if and only if K is a ccs-subgroup of G.

(a5) If K is a ccs-subgroup of G, then H is a ccs-subgroup of G if and
only if H is a ccs-subgroup of K.

(a6) The following are equivalent: (i) H is a ccs-subgroup of G and
K/H is a ccs-subgroup of G/H (ii) H is a ccs-subgroup of K and K is
a ccs-subgroup of G.

(a7) If (K : H) < ∞, then H is a ccs-subgroup of G if and only if K
is a ccs-subgroup of G.

(b) If H ≤ G, then H is a ccs-subgroup of G if and only if H is a
ccs-subgroup of every product G×G1.

(c) If H ≤ G and H ′ ≤ G′, then the following are equivalent

(c1) H is a ccs-subgroup of G and H ′ is a ccs-subgroup of G′.

(c2) H ×H ′ is a ccs-subgroup of G×G′.

(d) If α is a cardinal and Hα is a ccs-subgroup of Gα, (respectively
H(α) is a ccs-subgroup of G(α)), then H is a ccs-subgroup of G.

Proof. (a1) is obvious.

(a2) If Φ : G/H → G is a continuous cross section, then note that for
k ∈ K one has Φ(k+H) ∈ K since g = Φ(k+H) satisfies ϕ(g) = k+H,
i.e., g − k ∈ H so g ∈ K. Therefore, Ψ = Φ|K/H is the desired
continuous cross section Ψ : K/H → K.

(a3) (a6) are essentially contained in [2] and (a7) follows from (a3)
and (a4) since finite subgroups are always ccs-subgroups [2, Corollary
22].

(b) If H is a ccs-subgroup of some product G × G1 then, by (a2),
H is a ccs-subgroup of G. Now assume that the quotient map f :
G → G/H has a continuous cross section Φ : G/H → G. Then
f ′ = f × idG1 : G × G1 → G/H × G1 has a continuous cross section
Φ′ = Φ× idG1 : G/H ×G1 → G×G1.

(c) Suppose H × H ′ is a ccs-subgroup of G × G′ and let Φ :
G/H×G′/H ′ → G×G′ be a cross section. Let i : G/H → G/H×G′/H ′
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be the natural embedding, and let p : G × G′ → G be the natural
projection. Then p ◦ Φ ◦ i : (G/H)# → G# is a continuous cross
section. Hence H is a ccs-subgroup of G. Analogously, we prove that
H ′ is a ccs-subgroup of G′.

Vice versa, suppose that H is a ccs-subgroup of G and H ′ is a ccs-
subgroup of G′, and let Φ : G/H → G and Φ : G′/H ′ → G′ be
continuous cross sections. Then Φ× Φ′ : G/H ×G′/H ′ → G×G′ is a
continuous cross section, so H ×H ′ is a ccs-subgroup of G×G′.

(d) follows from (c).

ACCS(#) is closed under finite direct products, see [2, Corollary
20]. Now we prove that ACCS(#) is closed under extensions and
direct summands.

Corollary 2.3. (a) H ∈ ACCS(#) if and only if there exists a
divisible abelian group D containing H as a ccs-subgroup.

(b) If D is a divisible group containing a subgroup H ∈ ACCS(#),
then a subgroup K of D containing H belongs to ACCS(#) if and only
if K/H ∈ ACCS(#).

(c) ACCS(#) is closed under extension.

(d) Hk ∈ ACCS(#) for a cardinal κ and a group H if and only if
Hκ is a ccs-subgroup of D(H)κ.

(e) H × H ′ ∈ ACCS(#) if and only if H ∈ ACCS(#) and
H ′ ∈ ACCS(#).

Proof. (a) Assume that a subgroup H of an abelian group G is a
ccs-subgroup of its divisible hull D, and let us note that, according to
(a2) of Lemma 2.2, it suffices to prove that H is a ccs-subgroup of the
divisible hull D1 of G. It is not restrictive to assume that D ≤ D1.
Since D splits, now (b) of Lemma 2.2 can be applied. Now assume
that H is a ccs-subgroup of some arbitrary divisible group D. It is
not restrictive to assume that D contains the divisible hull D1 of H.
Then H is a ccs-subgroup of D1 by (a2) of Lemma 2.2. Hence, H is a
ccs-group by the above argument.

(b) follows from (a) and (a4) of Lemma 2.2.



1338 D. DIKRANJAN

(c) follows from (b).

In particular, the proof of (a) contains the following fact proved in
[2, Theorem 19]: H is a ccs-subgroup of any enveloping group G if and
only if H is a ccs-subgroup of its divisible hull.

Corollary 2.3 reduces the study of ccs-groups to those that are
reduced. Indeed, every group G is a product d(G) × R where d(G)
is the maximal divisible subgroup of G and R ∼= G/d(G) is reduced.
By (e) of the above corollary G is a ccs-group if and only if the reduced
group R is a ccs-group.

The Z-topology of an abelian group G has as a local base at 0 the
family of subgroups nG, n ∈ N.

Corollary 2.4. Suppose K has a subgroup H ∈ ACCS(#).

(a) If the quotient K/H is divisible, then K ∈ ACCS(#).

(b) If H is dense in the Z-topology of K, then again K ∈ ACCS(#).

Proof. (a) follows from item (b) of Corollary 2.3, (b) follows from (a).

The following easy result will be needed in the sequel.

Lemma 2.5. Let H,K ≤ G be such that H ∩K is a ccs-subgroup of
K. Then H is a ccs-subgroup of H +K.

Proof. Let Φ : K/K ∩ H → K be a continuous cross section of the
canonical map g0 : K → K/H ∩ K. Then, with f : (H + K)/H →
K/H ∩ K the canonical isomorphism, let Ψ = i ◦ Φ ◦ f , where
i : K ↪→ H +K is the inclusion. Let us check that this is a continuous
cross section of the canonical map g : H+K → (H+K)/H. Indeed, if
x ∈ (H +K)/H, then g(Ψ(x)) = g(i ◦Φ(f(x)) = f−1(g0(Φ(f(x))) = x.
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3. CCS-groups.

3.1. Subgroups of Q. The following result is the main source for
ccs-groups:

Theorem 3.1. [2, Theorem 24, Corollary 26]. Z is a ccs-subgroup
of Q. Consequently, Q# is homeomorphic to (Q/Z)# ×Z# and Z# is
a retract of Q#.

Since every finite abelian group belongs to ACCS(#) and since
ACCS(#) is closed under finite direct products, this theorem implies
thatACCS(#) contains all finitely generated abelian groups [2, Corol-
lary 27]. As the authors note in [2, Theorem 29], it easily follows from
item (a4) Lemma 2.2 and from Theorem 3.1 that, for every prime p, the
subgroup Dp = {m/pk ∈ Q : m, k ∈ Z} of Q belongs to ACCS(#).
Clearly, also, finite products of such groups belong to ACCS(#). This
suggest the following interesting general problem:

Problem 3.2. Determine which subgroups ofQ belong toACCS(#).

In the sequel we discuss the properties of these groups. Note that
H ≤ Q is a ccs-subgroup if and only if H ∈ ACCS(#). It is not
restrictive to assume Z ≤ H. Then by Lemma 2.2, H ∈ ACCS(#)
if and only if H/Z ∈ ACCS(#). So Problem 3.2 is equivalent to the
description of the ccs-subgroups of Q/Z.

Following the current terminology [7] we call type an isomorphism
class τ of subgroups of Q. We say that τ is idempotent if it is the type
of a rank 1 ring. Every type can be described by an equivalent class
of infinite sequences of naturals or symbols ∞ where two sequences
are declared to be equivalent when they coincide almost everywhere.
For a subgroup H ≤ Q containing Z, the sequence in question is
{hH

p (1) : p ∈ P} where hH
p (1) denotes the p-height of 1 in H, i.e.,

the supremum of all n such that 1 = pnhn for some hn ∈ H.

Obviously, Problem 3.2 can be given also the following form: deter-
mine the types of the subgroups of Q that belong to ACCS(#). By [2,
Theorem 29], every idempotent type having only one∞ (i.e., Dp in the
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notation of [2]) belongs to this class. A similar argument shows

Proposition 3.3. All idempotent types belong to the class ACCS(#).

This gives immediately continuum many pairwise nonisomorphic
reduced groups in ACCS(#) (all of them subgroups of Q).

Since reduced subgroups of Q/Z correspond to types (subgroups of
Q) without infinities, we shall consider in the sequel only types without
infinities. It is not clear whether a type with infinitely many nonzero
finite entries belongs to this class. In particular,

Question 3.4. Does the subgroup of Q generated by all fractions
1/p, with p prime, belong to ACCS(#)?

A more precise form is the following. Let π be a set of prime numbers.
Set Hπ = 〈1/p : p ∈ π〉. Note that Hπ

∼= Hπ′ if and only if the
symmetric difference of π and π′ is finite.

Problem 3.5. Determine the family J of all sets π of prime numbers
for which the subgroup Hπ of Q belongs to ACCS(#).

If H is a subgroup of Q containing Z, let us denote by suppH the set
of primes p such that rp(H/Z) > 0 (note that suppH is defined modulo
a finite set of primes). Call H bounded whenever all heights hH

p (1) are
bounded. For L ≤ Q/Z, let suppL = suppH where Z ≤ H ≤ Q with
H/Z = L.

Lemma 3.6. (a) The subgroup Hπ of Q belongs to ACCS(#) if and
only if the subgroup Lπ = Hπ/Z of Q/Z belongs to ACCS(#).

(b) If H and L are ccs-subgroups of Q/Z, then also H + L is a ccs-
subgroup; if K ≤ Q/Z is reduced and ccs, then every subgroup of K is
ccs as well.

(c) J is an ideal of the Boolean algebra 2P containing the ideal of all
finite subsets of P.

(d) For a subset π of P TFAE:



ABELIAN GROUPS DEFINED BY BOHR TOPOLOGY 1341

(d1) π ∈ J;

(d2) Hπ ∈ ACCS(#);

(d3) some ccs-subgroup H of Q/Z has support containing π;

(d4) every bounded subgroup H of Q with suppH ⊆ π is ccs.

Proof. (a) was explained above.

(b) Since Q/Z is divisible a subgroup of Q/Z is a ccs-subgroup if
and only if it belongs to the class ACCS(#) (cf. Corollary 2.3 (b)).
Let us first prove the assertion of (b) for groups with H ∩ L = 0.
This follows directly from Corollary 2.3(d). Otherwise, note that each
of the groups H,L splits in a direct sum of two groups with disjoint
supports: H = H ′ + H ′′ and L = L′ + L′′ where suppH ′′ = suppL′′

andH ′, L′ have disjoint supports. As direct summands of ccs-subgroup,
both H ′ and L′ are ccs-subgroups of Q/Z, hence by the first part of the
argument H ′ + L′ is a ccs-subgroup of Q/Z. Now note that H ′′ + L′′

and H ′+L′ have disjoint supports; hence, it suffices only to prove that
H ′′ + L′′ ∈ ACCS(#). Here again we can split each one of these two
subgroups into a direct sum of two submodules: H ′′ = H1 + H2 and
L′′ = L1 + L2 with pairwise disjoint supports in each decomposition.
Moreover, we shall assume that every summand in H1 contains the
corresponding summand in L1 so that L1 ≤ H1.

Analogously, choose H2, L2 such that every summand in L2 contains
the corresponding summand in H2 so that L2 ≥ H2. Consequently,
H1 + L1 = H1 and H2 + L2 = L2. Therefore,

H ′′ + L′′ = H1 + L2 ∈ ACCS(#).

Now assume that K = ⊕p∈πZ(pnp) ∈ ACCS(#) and H ≤ K. Then
there exists a sequence mp ≤ np such that H = ⊕p∈πZ(pmp). Now let
L = ⊕p∈πZ(pnp−mp) so that K/L ∼= H. Since (Q/Z)/L ∼= Q/Z, we
conclude that H is isomorphic to the subgroup K/L of Q/Z that is ccs
by Lemma 2.2 (a1).

(c) If π ∈ J and π′ is a subset of π, then Lπ′ is a direct summand
of Lπ so a ccs-subgroup of Lπ. By assumption Lπ is a ccs-subgroup
of Q/Z so, by transitivity, also Lπ′ is a ccs-subgroup of Q/Z. Now
suppose that π, π′ ∈ J. Then π∪π′ ∈ J since Lπ∪π′ = Lπ+Lπ′ so that
(b) applies to give Lπ∪π′ ∈ ACCS(#).
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(d) (d1) and (d2) are equivalent by definition. For every positive
natural m, let Hπ,m = 〈1, pm : p ∈ π〉. If Hπ ∈ ACCS(#), then also
Hπ,m ∈ ACCS(#) (argue by induction and note that Hπ,1 = Hπ and
Hπ,m/Hπ,m−1

∼= Hπ/Z ∈ ACCS(#)). Now to prove that (d2) implies
(d4), suppose that H is a bounded subgroup of Q with suppH ∈ J.
Then all hp(H) are bounded. Let πi = {p ∈ P : hH

p (1) = i}. Then
H/Z = ⊕s

i=1Hπi,i/Z ∈ ACCS(#) by (b).

Obviously (d4) implies (d3). Finally (d3) implies (d2) by Lemma 2.2
since every subgroupH with support π contains the subgroupHπ.

We conclude these subsections with the following

Remark 3.7. (a) If Z ≤ H ≤ Q is a reduced subgroup, then H/Z is a
ccs-subgroup ofQ/Z if and only if there is a continuous cross section Φ :
Q/H → Q/Z. Let Φp denote the restriction of Φ to tp(Q/H) ∼= Z(p∞).
The image of Φp need not be contained in tp(Q/Z) ∼= Z(p∞) but, if
we compose with the projection πp : Q/Z → Z(p∞) the so-obtained
composition Ψp sends tp(Q/H) to tp(Q/Z) and Ψp is a cross section
of the canonical projection ϕp : tp(Q/Z)→ tp(Q/H). Nevertheless, we
cannot claim that the complex mapQ/H → Q/Z obtained by “gluing”
continuous cross sections of the ϕps is always continuous with respect
to the Bohr topology of the codomain.

(b) Since every reduced subgroup of Q/Z has the form Hf =
⊕pZ(pf(p)) for some function f : P → N, one can consider also the
family I of all functions f : P → N such that the corresponding re-
duced subgroup Hf of Q/Z is a ccs-subgroup. It is easy to see that
(b) and (d) imply that I is an ideal of the lattice NP of all functions
f : P → N. Clearly, I contains the ideal of all functions f : P → N
with finite support (i.e., vanishing almost everywhere).

3.2. Nonrational groups. A solution to Problem 3.2 will lead
to the solution of the problem of determining all completely decom-
posable torsion-free abelian ccs-groups of finite rank as such groups
are isomorphic to finite products of subgroups of Q. More precisely,
if G = H1 ⊕ · · · ⊕ Hn where Hi ≤ Q, then G ∈ ACCS(#) if and
only if all Hi ∈ ACCS(#). By Lemma 2.2 this leads to a solution
also in the case of almost completely decomposable torsion-free abelian
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groups. Indeed, such a group G has a finite index subgroup H that
is completely decomposable of finite rank. By Lemma 2.2 (a7) G is a
ccs-subgroup of its divisible hull Q if and only if H is a ccs-subgroup
of Q.

Example 3.8. There are torsion-free groups in ACCS(#) that are
not finitely generated and have no nontrivial p-divisible subgroups for
any prime p. For example, take a subgroup G of Q2 containing Z2

without nontrivial p-divisible subgroups and such that G/Z2 ∼= Z(p∞)
(follow the construction of primitive torsion-free finite rank groups in
Kurosch [12]). Note that these groups are indecomposable. The groups
of p-adic integers present an example of an indecomposable reduced
ccs-group of size c (see below for the proof of the fact that they are
ccs-groups).

It is possible to prove a counterpart of Lemma 3.6 for finite rank
torsion-free groups, i.e., subgroups of Qn. Nevertheless, we prefer to
omit it given the fact that very few are known in the basic case of rank
one groups.

Now we give a family of c many pairwise nonisomorphic reduced
torsion-free ccs-groups of size c. We shall see later that maybe this
is the largest possible size of reduced ccs-groups (cf. Theorem 5.3).

Example 3.9. Let H =
∏

p∈P Zp. Then H is a reduced torsion-free
ccs-group. Indeed the divisible hull D of H has a subgroup C ∼= Q
(the divisible hull of the cyclic subgroup generated by (1p) ∈ H) such
that H + C = D and C ∩H ∼= Z is a ccs-subgroup of C (by Theorem
3.1). Therefore, by Lemma 2.5, also H is a ccs-subgroup of S. This
proves that H is a ccs-group. In this argument H can be replaced by a
subproduct Nπ =

∏
p∈π Zp where π is a set of prime numbers. Now the

divisible hull D of Hπ again has a subgroup C ∼= Q (the divisible hull of
the cyclic subgroup generated by (1p)p∈π ∈ H) such that H + C = D.
Now C ∩ Nπ = Qπ, the subring of Q generated by all 1/p for p /∈ π.
By Proposition 3.3 Qπ is a ccs-subgroup of Q so we are through again
with Lemma 2.5. Another proof will be given below.

It follows from this example that finite products Nπ1 × · · · ×Nπn
are

ccs, hence all products
∏

p Znp
p with bounded np are ccs, but we do not

know if this remains true for unbounded sequences np (cf. Question 6.8).
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We can collect these observations in the following more general result.

Proposition 3.10. Let n ∈ N. For every prime p, let Mp be an
n-generated Zp-module. Then G =

∏
p Mp ∈ ACCS(#).

Proof. In case n = 1 the group G has the form
∏

p Zp/Ip, where
each Ip is either 0 or Ip = pnZp for some n. Since there is a copy of
Z ∈ ACCS(#) in G that is dense in the Z-topology of the product G,
Corollary 2.3 applies to give G ∈ ACCS(#). For n > 1, write G as
a product of ≤ n groups for which the previous argument applies. A
direct proof is also possible by noting that in the general case G (being
isomorphic to a quotient of (

∏
p Zp)n) contains a finitely generated

subgroup F that is dense in the Z-topology ofG. Since F ∈ ACCS(#),
Corollary 2.3 applies again.

If G is a torsion abelian group and H is a ccs-subgroup of G, then
tp(H) is a ccs-subgroup of tp(G) for every prime p by Lemma 2.2(c).
We do not know whether the converse is also true. If such a criterion
holds true, then all subgroups of Q/Z are ccs, and consequently all
subgroups of Q are ccs (cf. Question 6.6).

4. Restraints for ccs-subgroups. It is proved in [2, Theorem
35] that Gp = ⊕ωZ(p) is not a ccs-subgroup of ⊕ωZ(p2) by proving
that whenever k is a multiple of p but not of p2 and π : {0} ∪ [ω]k →
(⊕ωZ(p2))# is a continuous map with π(0) = 0 and π(s1) − π(s2) /∈
Gp ≤ ⊕ωZ(p2) for s1 �= σ2 in [ω]k, then π(s) has not order p2 for
some s ∈ [ω]k ([2, Theorem 34]). In connection with this last fact we
mention that a direct application of Theorem 1.4 gives a similar result
to [2, Theorem 34] providing new examples of non-ccs subgroups:

Theorem 4.1. [3]. If G is an abelian group such that |G[p2]| > �2p−1

for some prime p, then H = G[p] is not a ccs-subgroup of G.

Proof. Assume that the canonical map f : G → G/H admits a
continuous cross section Φ : G/H → G. Since G/H contains the
subgroup G[p2]/H ∼= Z(p)(κ) with κ > �2p−1, by the straightening
Theorem 1.4 there exists an infinite set Z of κ such that Φ restricted
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to [Z]2 is injective with image contained in H. So Φ sends an infinite
set to H, a contradiction since f vanishes on H.

In particular, for κ > �2p−1 the group ⊕κZ(p) is not a ccs-subgroup
of (⊕kZ(p2))#. (Note that Φ(s) ∈ G[p] for every cross section Φ and
every s ∈ [Z]2, so Φ(s) cannot have order p2.) We prove a much more
general result below (cf. Lemma 4.3 and Corollary 4.4).

Corollary 4.2. Let κ > �2p−1 and let p be a prime number. Then
the subgroup G[p] of the group G = ⊕κZ(p∞) is not a ccs-subgroup.

The next lemma will be needed in Sections 4.1 4.2.

Lemma 4.3. Let p be a prime, and let H be a subgroup of an
abelian group G such that G[p] ∩ H has finite index in G[p] while
|(G/H)[p]| > �2p−1. Then H is not a ccs-subgroup of G.

Proof. Assume that H is a ccs-subgroup of G, and let Φ : (G/H)# →
G# be a continuous cross section such that Φ(0) = 0. By our
assumption there exists a subgroup L ≤ G/H such that L ∼= ⊕κZ(p)
with κ > �2p−1. Now let π = Φ|L. Then to the continuous injective
map π : L# → G# we can apply Theorem 1.4 to claim that there exists
an infinite Z ⊆ κ such that π sends [Z] injectively into G[p]. Since the
subgroup G[p]∩H of G[p] has finite index, there exists an infinite subset
Z ′ of Z such that π sends Z ′ into a coset of G[p] ∩ H. On the other
hand, being a cross section of the canonical map G → G/H, the image
of Φ meets every coset of H into a single element, a contradiction.
Therefore, H is not a ccs-subgroup of F .

Corollary 4.4. If H is a ccs-group with divisible hull D then, for
every p, one has rp(D/H) ≤ �2p−1.

4.1. An upper bound for the size of reduced ccs-groups. Now
we show that the reduced ccs-groups are relatively small.
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Lemma 4.5. Let p be a prime number, let H be a reduced subgroup
of a p-torsion divisible group D and let α = rp(D/H). Then H is finite
with rp(H) ≤ α when α is finite, otherwise |H| ≤ αω.

Proof. Let F ′ be an essential subgroup of D/H of exponent p so
that rp(F ′) = α. Then there exists a subgroup F ≤ D such that
(F + H)/H = F ′ and r(F ) = a. There exists a divisible subgroup
D1 of D such that F ≤ D1 and rp(D1) = α. Therefore, (D1 +H)/H
is essential in D/H and divisible. Hence it coincides with D/H so
that D1 + H = D. Now F ′′ = D1 ∩ H is reduced of p-rank ≤ α and
(D1 +H)/D1

∼= H/F ′′ is divisible.

Assume α is infinite. By a theorem of Szele [7, Proposition 26.2]
there exists a pure subgroup L of H containing F ′′ of size α. Let B be
a basic subgroup of L. Then B is also a basic subgroup of H since L is
pure in H (so B is pure in H) and H/B is divisible (note that H/B has
a divisible subgroup L/B such that (H/B)/(L/B) ∼= H/L is divisible).
By a theorem of Kulikov [7, Corollary 34.4] |H| ≤ |B|ω ≤ αω.

Now assume that α is finite. Then F ′′ is finite as a reduced group
of finite p-rank. From the divisibility of the quotient H/F ′′ we deduce
pH + F ′′ = H so pm+1H + pmF ′′ = pmH for every m ∈ N. Choose m
with pmF ′′ = 0. Then pmH is divisible, but as a subgroup ofH it is also
reduced. Hence, pmH = 0. Thus pm(H/F ′′) = 0 and, consequently,
H/F ′′ = 0 by divisibility of H/F ′′. This proves that H = F ′′ is finite
and rp(H) ≤ α.

One cannot hope to prove |H| ≤ rp(D/H) or rp(H) ≤ rp(D/H) in
the above lemma. Indeed, let H be the torsion subgroup of the product
P =

∏
n Z(pn) considered as a subgroup of the power P ′ = Z(p∞)ω.

Let D be the torsion subgroup of P ′ so that D is the divisible hull of H
in P ′ and D = ⊕ωZ(p∞) +H. Then H is reduced and rp(D/H) = ω
but rp(H) = |H| = 2ω.

Theorem 4.6. Let R be a reduced ccs-group. Then |R| ≤ �ω+1 and
|tp(R)| ≤ �2p−1 for every prime p (so |t(R)| ≤ �ω).
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Proof. Let D be the divisible hull of R. Then Corollary 4.4 gives

(1) rp(D/R) ≤ �2p−1 for every prime p.

IfR is torsion-free, thenD is torsion-free too and (1) gives rp(R/pR) ≤
�2p−1 for every prime p, since rp(D/R) = rp(R/pR) for every prime
p. Further, the inequality rp(R/pnR) ≤ �2p−1 for every n ∈ N can
be proved by induction. Since (p1 . . . pk)nR = ∩k

i=1p
n
i R for distinct

primes p1, . . . , pk, we conclude also that |R/(p1 . . . pk)nR| < �ω. Con-
sequently, |R/mR| < �ω for every m ∈ N. Now ∩∞

m=1mR = 0 as R is
reduced, therefore R embeds in the product of the groups R/mR, thus
R has size |R| ≤ �ω

ω ≤ �ω+1.

In the general case Lemma 4.5 and (1) yield |tp(R)| ≤ �ω
2p−1 = �2p−1.

Let D = t(D) ⊕ D1 be the splitting of D with a torsion-free divisible
group D1. Then R1 = R∩D1 is torsion-free and essential in D1, hence
R′ = t(R) ⊕ R1 is essential in R. Therefore, |R| = |t(R)||R1|. By the
above argument |R1| ≤ �ω+1 and |t(R)| ≤ �ω, hence |R| ≤ �ω+1.

4.2. ACCS(#) does not contain nondivisible large powers.
Here we prove a theorem about the relation between ccs-groups and
divisible groups. The following lemmas will be used in the characteri-
zation, given below, of the divisible groups as those groups G such that
all powers of G belong to ACCS(#).

Lemma 4.7. Let p be a prime, and let H be a subgroup of an
abelian group G such that G[p] ⊆ H. If Hκ is a ccs-subgroup of
Gκ for κ ≥ �2p−1, then H contains the subgroup {x ∈ G : pnx ∈
H for some n ∈ N}.

Proof. Assume that there exists x ∈ G such that px ∈ H but
x /∈ H. Then (G/H)[p] �= 0 so that (Gκ/Hκ)[p] = (G/H)[p]κ has
size ≤ 2κ > �2p−1. By Lemma 4.3 applied to Gκ and its subgroup Hκ

we conclude that Hκ is not a ccs-subgroup of G, a contradiction.

Corollary 4.8. Zk /∈ ACCS(#) for κ ≥ �3.

It follows from Corollary 4.8 that, for κ ≥ �3, the subgroup Zκ of Qκ
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is not a ccs-subgroup. In the sequel we give a large class of examples
of such subgroups.

Recall that H ≤ G is saturated if nx ∈ H with x ∈ G and n �= 0
implies x ∈ H.

Corollary 4.9. Let H be a subgroup of an abelian group G containing
the socle of G. If Hκ is a ccs-subgroup of Gκ for some cardinal κ ≥ �ω,
then H is saturated, hence it contains the torsion subgroup of G.

Corollary 4.10. Let κ ≥ �ω be a cardinal, and let H be a subgroup
of a torsion-free abelian group G such that Hκ is a ccs-subgroup of Gκ.
Then H is a pure subgroup of G.

Corollary 4.11. If H is an essential subgroup of an abelian group
G such that Hκ is a ccs-subgroup of Gκ for κ > �ω, then H = G.

Theorem 4.12. Let G be an abelian group, and let D be its divisible
hull. Then the following are equivalent for G:

(a) There exists a cardinal κ ≥ �ω such that Gκ is a ccs-subgroup of
Dκ.

(b) G is divisible;

(c) Gκ is a ccs-subgroup of Dκ for every cardinal κ.

(d) Gκ ∈ ACCS(#) for every cardinal κ.

(e) G(κ) ∈ ACCS(#) for every cardinal κ.

Proof. Applying Corollary 4.11 to G and its divisible hull D, we
conclude that a) implies b). Clearly, b) implies d) and d) implies c)
which in turn trivially implies a). This proves the theorem.

This theorem provides a wealth of non-ccs-groups. Indeed, for every
nondivisible abelian group G, the power G�ω of G and all its powers
cannot be ccs-groups. In particular, this shows that the class of ccs-
groups is not closed under taking infinite powers (see [2, Theorem 45]
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for an example of group G ∈ ACCS(#) such that the countable power
of G fails to belong to ACCS(#) ).

Actually one can prove under a stronger hypothesis (cf. Theorem 5.5)
that every abelian group H such that H(ω) ∈ ACCS(#) is divisible
(in fact, then rp(G) < ∞ for every torsion-free abelian group G ∈
ACCS(#) and for every prime p, cf. Corollary 5.2).

In order to measure the failure of ACCS(#) to be closed under
products one can define also H ≤ G to be ρ-ccs-subgroup for a cardinal
ρ if Hρ is a ccs-subgroup of Gρ. For ρ < ω, clearly every ccs-subgroup
of G is also a ρ-ccs-subgroup of G. More generally, by Lemma 2.2,
every ρ′-ccs-subgroup of G is also ρ-ccs-subgroup of G when ρ′ ≥ ρ. In
analogy, call G ρ-ccs-group when G is a ρ-ccs-subgroup of its divisible
hull D(G). Clearly this property is equivalent to Gρ ∈ ACCS(#), so it
can be considered as a weak version of “divisible” (equivalent to �ω-ccs-
group according to Theorem 4.12). Note also that the weakest version,
namely, ccs-, or equivalently n-ccs-groups) is satisfied by all finitely
generated abelian groups. Put λ(G), respectively λω(G), to be the least
cardinal λ such that Gλ /∈ ACCS(#), respectively G(λ) /∈ ACCS(#).
For divisible groups D one has to put λ(D) =∞. Hence a nondivisible
group G has always λ(G) ≤ λw(G) ≤ �ω. Under GCH one has also
λω(G) ≤ 2λ(G). As a corollary of Theorem 4.12 one can prove that if
H is a subgroup of a divisible group G, then H is a �ω-ccs-subgroup
of G if and only if H is a direct summand of G (if and only if H is
divisible).

5. ACCS(#) under the strong straightening theorem. Let
us consider now the following conjecture stronger than Theorem 1.4:

Conjecture SST (Strong straightening theorem). For every prime
number p and for every continuous map π : (⊕ωZ(p))# → H# with
π(0) = 0, there exists an infinite set S ⊆ ω such that π([S]p) ⊆ H[p].

This conjecture implies, in particular, that there is no 1 1 map
π : (Q/Z)(ω) → H continuous in the Bohr topology, if H is an abelian
group with rp(H) < ∞ for all p ∈ P.

Now we show that if Conjecture SST holds true, then a similar
proof can prove the following stronger version of Lemma 4.3 (roughly
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speaking, rp(G/H) < ∞ for every essential ccs-subgroup H of some
group G).

Lemma 5.1. Let p be a prime, and let H be a subgroup of an abelian
group G such that G[p] ∩H has finite index in G[p], while rp(G/H) is
infinite. Then H is not a ccs-subgroup of G.

Proof. Arguing for a contradiction, assume that H is a ccs-subgroup
of G, i.e., there exists a continuous cross section Φ : G/H → G to
the canonical map G → G/H. By the hypothesis the quotient G/H
contains a subgroup L ∼= ⊕ωZ(p). To the restriction π of Φ to the
subgroup L apply the strong straightening theorem to find an infinite
Z ⊆ ω such that π sends [Z]p into G[p]. This is impossible since Φ is a
cross section of G → G/H and G[p] ≤ H (as H is essential in G).

Corollary 5.2. Let H be a reduced ccs-group with divisible hull D.
Then, under SST-conjecture all rp(D/H) are finite, so that rp(H) < ∞
for every p.

Proof. H contains D[p] for every prime p. Hence the hypothesis
H ∈ ACCS(#) implies that rp(D/H) < ∞ in view of Lemma 5.1.
Now Lemma 4.5 applies to give rp(H) < ∞ for every p.

Now we see that, under the assumption of SST the reduced ccs-groups
are necessarily small, i.e., of size ≤ c.

Theorem 5.3. Let H be a reduced ccs-group. Under the assumption
of SST rp(H) is finite for every p, (so that t(H) is countable) and
|H| ≤ c.

Proof. Let D be the divisible hull of H. Then, under the assumption
of SST, one has rp(D/H) < ∞ for every prime p by Corollary 5.2. Let
us consider first the case of a torsion-free group H. Since rp(D/H) =
rp(H/pH), we conclude rp(H/pH) < ∞. Further, rp(H/pnH) < ∞
for every n ∈ N. Since (p1 . . . pk)nH = ∩k

i=1p
n
i H for distinct prime

numbers p1, . . . , pk and n ∈ N, we conclude also that H/(p1 . . . pk)nH
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is finite. Consequently, H/mH is finite for every m ∈ N. Now
∩∞

n=1mH = 0 as H is reduced, therefore H embeds in the product
of the finite groups H/mH, thus H has size |H| ≤ c.

In the general case, rp(H) < ∞ for every prime p according to the
above corollary. Here we split D = t(D)×D1, where D1 is torsion-free.
Then t(D) is countable and H1 = H ∩ D1 is a reduced subgroup of
D1 with rp(D1/H1) ≤ rp(D/H) < ∞. Thus |H1| ≤ c by the above
argument. Since H1 is essential in D1 we conclude that also |D1| ≤ c,
so that |D| ≤ c. Thus |H| ≤ c too.

Example 3.9 shows that |H| ≤ c cannot be improved.

Corollary 5.4. If Conjecture SST holds true and H ∈ ACCS(#)
is a bounded torsion abelian group, then H is finite.

Now we see the impact of the Strong Straightening Theorem on
Theorem 4.12.

Theorem 5.5. If Conjecture SST holds true then, for every abelian
group H, the following are equivalent:

(a) Hω ∈ ACCS(#)

(b) H(ω) ∈ ACCS(#)

(c) H is divisible.

Proof. Obviously (c) → (a) and (c) → (b). To prove (b) → (c)
assume that H(ω) ∈ ACCS(#) and H is not divisible. Let D be the
divisible hull of H. Then D/H is torsion, hence our assumption D �= H
yields that rp(D/H) > 0 for some prime p. Then D(ω) is the divisible
hull of H(ω) and the quotient D(ω)/H(ω) has infinite rp(D(ω)/H(ω)), a
contradiction (cf. Corollary 5.2). A slight modification of this argument
proves also the implication (a) → (c).

6. Concluding remarks.

6.1. A new proof of Gladdines’ theorem. Since every subgroup
of (⊕κZ(p))# splits topologically (being a subspace), every subgroup
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of these groups is a retract even in a stronger sense.

Let us recall that Dω is the (closed) subset of (⊕ωZ(2))# consisting
of 0 and all elements of ⊕ωZ(2) whose support is a doubleton in ω, i.e.,
Dω = {0} ∪ [ω]2.

Theorem 6.1. [8]. Dω is not a retract of (⊕ωZ(2))#.

Proof. Assume that r : (⊕ωZ(2))# → Dω is a retract and identify
the nonzero elements of Dω with the respective pair (m,n). Define
µ : Dω → (⊕ωZ(3))# by µ(0) = 0 and µ(m,n) = em − en, where
{en : n = 1, 2, . . . } is the canonical base of ⊕ωZ(3). Then µ is
continuous ([3]), so that taking the composition µ ◦ r we obtain a
continuous map π : G#

2 → G#
3 that sends 0 to 0 and nonzero elements

of G#
2 to elements of G#

3 whose support is a doubleton. By [5, Main
lemma], there exists an infinite subset Z ⊆ ω such that π vanishes
on [Z]2, i.e., π(m,n) = 0 on Z. On the other hand, r restricted to
[Z]2 is the identity of [Z]2, hence π restricted to [Z]2 coincides with µ
restricted to [Z]2, a contraction (since µ is injective).

The proof of Gladdines [8] goes in a different way. It was published
in 1995, when the nonhomeomorphisms problem of van Douwen was
still open.

6.2. Some open questions. We believe that for some groups G
one can lower the test powers in Theorem 4.12 down to κ = ω or at
least κ = c without any recourse to Conjecture SST (e.g., when G is a
torsion-free group with a 2-pure cyclic subgroup, then λ(G) ≤ 22c

):

Question 6.2. Let G be an abelian group. Does Gc ∈ ACCS(#)
imply that G is divisible? What about Gω ∈ ACCS(#)?

In particular, we conjecture a negative answer to the first of the
following questions:

Question 6.3. Does Zc ∈ ACCS(#)? What about Zω ∈
ACCS(#)?
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The question Z(ω) ∈ ACCS(#) about the “least” torsion-free group
of infinite rank is also open. A negative answer to Question 1.5 for
κ = ω will imply Z(ω) /∈ ACCS(#) (since otherwise Q(ω) is Bohr
homeomorphic to the product (Z× Q/Z)(ω)).

Question 6.4. Let G be an abelian group. When is the torsion
subgroup t(G) of G a ccs-subgroup of G? Does there exist a (necessarily
nonsplitting) abelian ccs-group G such that t(G) is not a ccs-subgroup
of G?

If Hπ /∈ ACCS(#) for some π ⊆ P, then G =
∏

p∈π Z(p) ∈
ACCS(#) (by Proposition 3.10) can be a counter-example.

Question 6.5. Does there exist a reduced ccs-group of size > c?

Note that the answer to this question is negative if Conjecture SST
holds true (Theorem 5.3).

Roughly speaking, all known examples of non-ccs-groups are either
too large (of size > c) or contain infinite direct sums (as ⊕ωZ(p), cf.
[2]). We do not know whether Q contains a non-ccs-subgroup:

Question 6.6. Are all subgroups of Q ccs-subgroups?

If this is the case, then ACCS(#) contains all almost completely
decomposable torsion-free abelian groups. At the opposite end, we
have

Question 6.7. DoesQ/Z contain any infinite reduced ccs-subgroups
(i.e., does J contain any infinite set π?)

Question 6.8. Is the product
∏

p Znp
p a ccs-group for every sequence

np ∈ N?

We believe that Corollary 5.4 holds true independently on Conjecture
SST (an appropriate modification of the proof of [2, Theorem 35]
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should work).

It seems that the following problem is the “true” algebraic counter-
part of van Douwen’s question 1.1.

Problem 6.9. Describe the abelian groups G such that every
subgroup of G is a ccs-subgroup.

Let us conclude with the following question that still remains open.

Question 6.10. [2, Question 37]. Is (⊕ωZ(p))# a retract of
(⊕ωZ(p2))#?

We do not know even if ⊕ωZ(2) is a retract of (⊕ωZ(4))#. Of
course, this question has two versions: one considers ⊕ωZ(2) as a
subgroup, so that the question is whether the subgroup (⊕ωZ(4))[2]
of ⊕ωZ(4) is a retract of (⊕ωZ(4))#. The weaker version is intended
as: is (⊕ωZ(2))# homeomorphic to a retract of (⊕ωZ(4))#? We do
not know the answer to this question. Finally, we do not know whether
(⊕ωZ(2))# is homeomorphic to (⊕ωZ(4))#.
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Note added in proof. Recently Givens and Kunen (Chromatic Num-
bers and Bohr Topologies, Topology Appl., to appear) proved that if K
is an infinite abelian group of a given prime exponent, then G# andK#

are homeomorphic if and only if G is the product of K and some finite
group. In particular (

⊕
ω Z(2))# is not homeomorphic to (

⊕
ω Z(2))#.
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