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GENERALIZED TRIANGULAR MATRIX RINGS
AND THE FULLY INVARIANT

EXTENDING PROPERTY

GARY F. BIRKENMEIER, JAE KEOL PARK AND S. TARIQ RIZVI

ABSTRACT. A module M is called (strongly) FI-extending
if every fully invariant submodule of M is essential in a (fully
invariant) direct summand of M . A ring R with unity is called
quasi-Baer if the right annihilator of every ideal is generated,
as a right ideal, by an idempotent. For semi-prime rings
the FI-extending condition, strongly FI-extending condition
and quasi-Baer condition are equivalent. In this paper we
fully characterize the 2-by-2 generalized (or formal) triangular
matrix rings which are either (right) FI-extending, (right)
strongly FI-extending, or quasi-Baer. Examples are provided
to illustrate and delimit our results.

0. Introduction. All rings are associative with unity and all
modules are unital. Throughout this paper T will denote a 2-by-2
generalized (or formal) triangular matrix ring

(
S M
0 R

)
,

where R and S are rings and M is an (S,R)-bimodule.

Generalized triangular matrix rings have proven to be extremely
useful in ring theory. They provide a good source of examples and
counterexamples, e.g., see [11, pp. 46 48 and 79 80] and [10], as well as
providing a framework to explore the connections between End (MR),
M and R when S = End (MR).

Recently several aspects of injectivity and projectivity in the con-
text of generalized triangular matrix rings have been investigated by
Haghany-Varadarajan [8, 9] and Tercan [13]. Tercan was able to ob-
tain a characterization of the right nonsingular right extending (or CS)

1991 AMS Mathematics Subject Classification. Primary 16S50, 16D70, Sec-
ondary 16D20.

Received by the editors on July 13, 2001, and in revised form on September 17,
2001.

Copyright c©2002 Rocky Mountain Mathematics Consortium

1299



1300 G.F. BIRKENMEIER, J.K. PARK AND S.T. RIZVI

condition on T when SM is faithful (recall a module is extending, or
CS, if every submodule is essential in a direct summand).

In [1, 4] and [5], the FI-extending property was introduced and in-
vestigated. A module is said to be (strongly) FI-extending if every fully
invariant submodule is essential in a (fully invariant) direct summand.
Observe that many distinguished submodules of a module are fully in-
variant, e.g., the Jacobson radical, the singular submodule, the socle,
any torsion submodule, etc. Thus, in an FI-extending module, these
submodules can be “essentially split-off.” From [4, Theorem 4.7] and
[5, Proposition 1.5], for nonsingular modules and semi-prime rings, the
FI-extending and strongly FI-extending properties are equivalent. A
description of the strongly FI-extending Abelian groups was obtained
in [1]. The classes of (strongly) FI-extending rings and modules, in
general, exhibit better behavior with respect to various algebraic con-
structions than the class of extending modules. For example, the class
of FI-extending modules is closed under direct sums; and the class
of right strongly FI-extending rings is Morita invariant. Thus, these
results show, at a minimum, how much of the extending property is
preserved by these constructions. For further details and examples, see
[4] and [5].

In the first two sections of this paper we fully characterize the
generalized triangular matrix rings which are right FI-extending and
right strongly FI-extending. In [13, Theorem 2.4] Tercan determines
four conditions which are satisfied by a right extending generalized
triangular matrix ring. However, in [13, Theorem 3.5] he shows
that these conditions are not sufficient to ensure that a generalized
triangular matrix ring is right extending. Our Theorem 1.4 shows that
these conditions do ensure that the generalized triangular matrix ring
is right FI-extending.

Chatters and Khuri [6, Theorem 2.1] showed that a right nonsingular
right extending ring is a Baer ring. In [4, Proposition 4.4 and Theorem
4.7] it was shown that a right FI-extending ring which is either semi-
prime or right nonsingular is quasi-Baer. Recall that a ring R is
(quasi-) Baer if the right annihilator of every (ideal) nonempty subset
is generated, as a right ideal, by an idempotent. In Section 3 we
characterize the quasi-Baer generalized triangular matrix rings. Some
examples to illustrate and delimit our results are presented in the last
section.
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We use SM or MR to denote that M is a left S-module or a right R-
module, respectively. The symbols NR ≤MR, NR ≤ess MR, SN ≤ SM
and SNR ≤ SMR are used for N is a right R-submodule, N is an
essential right R-submodule, N is a left S-submodule, and N is a sub-
bimodule of M , respectively. Some subscripts may be omitted if the
context is clear. A submodule NR ≤ MR is called fully invariant in
MR, denoted N �R M (or simply, N � M) if f(N) ⊆ N for all
f ∈ End (MR). Observe that the fully invariant submodules of RR are
the ideals of R. An idempotent e ∈ R is called left (right) semicentral
if Re = eRe (eR = eRe). The set of all left (right) semicentral
idempotents is denoted by Sl(R) (Sr(R)). Equivalently, e = e2 ∈ R is
left (right) semicentral if eR � R (Re � R). An idempotent e is called
semicentral reduced if Sl(eRe) = {0, e}. If 1 ∈ R is semicentral reduced,
then R is said to be semicentral reduced. See [2] or [3] for further
details on semicentral idempotents. The Jacobson radical and the right
singular ideal of R are denoted by J(R) and Z(RR), respectively. If
NR ≤ MR, respectively SN ≤ SM , then AnnR(N) = {r ∈ R | Nr =
0}, respectively AnnS(N) = {s ∈ S | sN = 0}. If ∅ �= B ⊆ S
and M is a left S-module, then rM (B) = {m ∈ M | Bm = 0} and
rS(B) = {a ∈ S | Ba = 0}. The ring of n-by-n upper triangular
matrices over R is denoted by Tn(R).

1. The FI-extending property. In this section we completely
characterize the FI-extending property for a generalized triangular
matrix ring T . This characterization is refined under the assumptions
that SM is faithful or S = End (MR). We include the following two
lemmas for completeness since they are used repeatedly in the sequel.

Lemma 1.1 [4, Theorem 1.3]. Direct sums of modules with the FI-
extending property again have the FI-extending property.

Lemma 1.2 [1, Lemma 1.2]. If the module A = B ⊕ C has the FI-
extending property and B is a fully invariant summand, then both B
and C have the FI-extending property.

Corollary 1.3. For a ring R, let e be a left semicentral idempotent
of R. Then RR is FI-extending if and only if eRR and (1 − e)RR are
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FI-extending.

Proof. This result follows immediately from Lemmas 1.1 and 1.2.

Theorem 1.4. For rings S and R, assume that SMR is an (S,R)-
bimodule. Let T =

(
S M

0 R

)
be a generalized triangular matrix ring.

Then the following are equivalent:

(1) TT is FI-extending.

(2) (i) For any SNR ≤ SMR and any ideal I of S with IM ⊆
N , there is f = f2 ∈ S such that I ⊆ fS, NR ≤ess fMR, and
(I ∩AnnS(M))S ≤ess (fS ∩AnnS(M))S; and

(ii) RR is FI-extending.

Proof. Let E11 =
(

1 0

0 0

)
∈ T .

(1) ⇒ (2). Since
(

AnnS(M) 0

0 0

)
� T , an idempotent c ∈ T exists such

that(
AnnS(M) 0

0 0

)
T

≤ess cTT = cE11T =
(
e 0
0 0

)
T =

(
eS eM
0 0

)
,

for some e = e2 ∈ S. If eM �= 0, then choose 0 �= em ∈ eM

with m ∈ M . So we have 0 �=
(

0 em

0 0

)
T ∩

(
AnnS(M) 0

0 0

)
. But(

0 em

0 0

)
T ∩

(
AnnS(M) 0

0 0

)
= 0, a contradiction. Therefore, eM = 0 and

hence e ∈ AnnS(M). Thus eS ⊆ AnnS(M) and so AnnS(M) = eS.

For (i), let SNR ≤ SMR and I be an ideal of S with IM ⊆ N . Then(
I N

0 0

)
is a fully invariant T -submodule of E11T . As above, f = f2 ∈ S

exists such that(
I N
0 0

)
T

≤ess

(
f 0
0 0

)
E11TT =

(
fS fM
0 0

)
.

If fM = 0, then N = 0 and so NR ≤ess fMR. Suppose fM �= 0. For
0 �= fm ∈ fM , we have

(
0 fm

0 0

)
T ∩

(
I N

0 0

)
�= 0 and so fmR ∩N �= 0.

Thus NR ≤ess fMR.
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Next if fS ∩ eS = 0, then I ∩ eS = 0. Thus (I ∩ AnnS(M))S ≤ess

(fS ∩ AnnS(M))S. Assume fS ∩ eS �= 0. Then for 0 �= fs ∈ fS ∩ eS
with s ∈ S, we have that(

fs 0
0 0

)
T =

(
fsS fsM
0 0

)
=

(
fsS 0
0 0

)
.

So it follows that

0 �=
(
fs 0
0 0

)
T ∩

(
I N
0 0

)
=

(
fsS 0
0 0

)
∩

(
I N
0 0

)
.

Thus we have 0 �= fsS ∩ I = fsS ∩ (I ∩ eS). Therefore (I ∩ eS)S ≤ess

(fS ∩ eS)S. Since E11 is left semicentral, (ii) follows immediately from
Corollary 1.3.

(2) ⇒ (1). Suppose (i) and (ii) hold. By (ii), (1 − E11)TT is FI-
extending. Now to prove E11TT is FI-extending, let A be a fully
invariant T -submodule of E11T . Then A =

(
I N

0 0

)
with I an ideal

of S, SNR ≤ SMR and IM ⊆ N . By (ii), there is f = f2 ∈ S such
that (

I N
0 0

)
⊆

(
f 0
0 0

) (
S M
0 0

)
=

(
fS fM
0 0

)
.

In this case, note that
(

f 0

0 0

)
∈ End (E11TT ). So

(
f 0

0 0

)(
S M

0 0

)
is a

T -direct summand of E11T . Now we claim that(
I N
0 0

)
T

≤ess

(
f 0
0 0

) (
S M
0 0

)
T

=
(
fS fM
0 0

)
.

Take 0 �=
(

fs fm

0 0

)
∈

(
fS fM

0 0

)
.

Case 1. fm �= 0. Then since NR ≤ess fMR, N ∩ fmR �= 0, and so(
fs fm
0 0

)
T ∩

(
I N
0 0

)
�= 0.

Case 2. fm = 0. Then fs �= 0. Thus
(

fs fm

0 0

)
T =

(
fsS fsM

0 0

)
.

If fsM �= 0, then fsm0 �= 0, for some m0 ∈ M . So
(

0 fsm0

0 0

)
∈
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(
fsS fsM

0 0

)
and hence

(
0 fsm0R

0 0

)
⊆

(
fsS fsM

0 0

)
. But since fsm0R ∩

N �= 0, we have that
(

fsS fsM

0 0

)
∩

(
I N

0 0

)
�= 0. If fsM = 0, then

fs ∈ AnnS(M) and so 0 �= fs ∈ fS ∩ AnnS(M). Thus by (ii),
fsS ∩ (I ∩AnnS(M)) �= 0, so

(
fs 0
0 0

)
T ∩

(
I N
0 0

)
�= 0.

From Cases 1 and 2,
(

I N

0 0

)
T

≤ess
(

fS fM

0 0

)
T
, and hence E11TT is

FI-extending. Therefore TT is FI-extending, by Corollary 1.3.

Corollary 1.5. Let TT be FI-extending. Then a left semicentral
idempotent e ∈ S exists such that AnnS(M) = eS and eSS is FI-
extending. In particular, if M �= 0 and S is semicentral reduced, then
SM is faithful.

Proof. In the proof of (1) ⇒ (2) of Theorem 1.4, AnnS(M) = eS
for some left semicentral idempotent e of S. To show that eSS is FI-
extending, let IS ≤ eSS be a fully invariant S-submodule of S. Since
eS � S, I is an ideal of S. Applying condition 2(i) of Theorem 1.4
with N = 0, we see that fM = 0, hence f ∈ eS. So fS ⊆ eS. Now
I = (I ∩ eS)S ≤ess (fS ∩ eS)S = fS and fS is an S-direct summand
of eS by the modular law. Thus eSS is FI-extending.

Corollary 1.6. Let SM be faithful. Then the following are equiva-
lent:

(1) TT is FI-extending.

(2) (i) For any SNR ≤ SMR, f = f2 ∈ S exists such that NR ≤ess

fMR; and

(ii) RR is FI-extending.

Proof. (1) ⇒ (2). Assume that TT is FI-extending. Since SM is
faithful, AnnS(M) = 0. By taking I = 0 in Theorem 1.4, we have (i).
Then (ii) follows from Theorem 1.4.
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(2) ⇒ (1). Assume (i) and (ii) hold. Let SNR ≤ SMR and I be
an ideal of S such that IM ⊆ N . By (i), there is f = f2 ∈ S such
that NR ≤ess fMR. Since IM ⊆ N ⊆ fM , fn = n for all n ∈ N , in
particular fsm = sm for any s ∈ I and m ∈ M . Thus (s− fs)M = 0
for any s ∈ I and hence s − fs = 0 for any s ∈ I. So I = fI ⊆ fS.
Therefore by Theorem 1.4, TT is FI-extending.

Since MR is always a left S-module for S = End (MR) or S = Z, we
consider these cases in our next two results.

Corollary 1.7. Let S = Z. Then TT is FI-extending if and only if
ZM is faithful , MR is uniform and RR is FI-extending.

Proof. Since Z is semicentral reduced, Corollaries 1.5 and 1.6 yield
the result.

Corollary 1.8 [4, Theorem 2.4]. Let S = End (MR). Then TT is
FI-extending if and only if MR and RR are FI-extending.

Proof. This result follows immediately from Corollary 1.6.

Thus from Corollary 1.8 and [4, Proposition 1.2], if M � R and
S = End (MR) then TT is FI-extending if and only if RR is FI-
extending. The next corollary applies our results to the endomorphism
ring of certain Abelian groups.

Corollary 1.9. Let G be an Abelian group such that G = M ⊕ C
where M is a direct sum of finite cyclic groups and C is an infinite
cyclic group. Then End (GZ) is right FI-extending.

Proof. Observe End (GZ) ∼=
(

End (MZ) M

0 Z

)
. Since every cyclic group

is an FI-extending Z-module, Lemma 1.1 shows that M is an FI-
extending Z-module. Now Corollary 1.8 yields the result.

From our previous results, we have two classes of rings which are
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right FI-extending, but not left FI-extending as the following examples
illustrate.

Example 1.10. Note that if T =
(

S M

0 R

)
is left FI-extending, then

by a similar method as in the proof of (1) ⇒ (2) of Theorem 1.4,
AnnR(M) = Rf for some right semicentral idempotent f of R.

(i) Let R be a right self-injective ring with J(R) �= 0. Let

T =
(
R/J(R) R/J(R)
0 R

)
.

Then the ring R/J(R) is right self-injective. So it can be easily checked
that R/J(R) is an FI-extending right R-module because R/J(R) ∼=
End((R/J(R))R). Thus the ring T is right FI-extending by Corollary
1.8. If TT is FI-extending, then AnnR((R/J(R))R) = J(R) = Rf for
some right semicentral idempotent f of R. Thus f = 0 and hence
J(R) = 0, a contradiction.

(ii) Let R be a prime ring with a nonzero prime ideal P . Let

T =
(
R/P R/P
0 R

)
.

Note that prime rings are both left and right strongly FI-extending.
Therefore as in part (i), the ring T is right FI-extending, but not left
FI-extending.

(iii) Let R be a left or right principal ideal domain and let I be a
nonzero proper ideal of R. Then the ring R/I is QF. Thus as in part
(i), the ring

T =
(
R/I R/I
0 R

)

is right FI-extending, but not left FI-extending.

2. The strongly FI-extending property. The ring T in Exam-
ple 1.10 (ii) is isomorphic to Λ =

(
End ((R/P )R) R/P

0 R

)
. By Corollary 1.8,

T is right FI-extending because R/P and R in the righthand column are
FI-extending. Since R and R/P are prime rings, then RR and (R/P )R
are strongly FI-extending. However, in contrast to the FI-extending
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case, the righthand column being strongly FI-extending in each com-
ponent does not ensure that ΛΛ is strongly FI-extending. In fact ΛΛ

is not strongly FI-extending because
(

0 0

0 P

)
� Λ, but there does not

exist b ∈ Sl(Λ) such that
(

0 0

0 P

)
is right essential in bΛ.

In this section we determine necessary and sufficient conditions to
ensure that a 2-by-2 generalized triangular matrix ring is right strongly
FI-extending.

Lemma 2.1. Let X be a right ideal of R such that XR ≤ess bRR

for some b ∈ Sl(R). If XR ≤ess eRR where e = e2, then bR = eR and
e ∈ Sl(R).

Proof. Observe that XR ≤ess (eR ∩ bR)R. Then eR ∩ bR = ebR,
where eb = (eb)2. Hence eR = ebR = bR. Since eR � R, e ∈ Sl(R).

Definition 2.2. Let NR ≤ MR. We say NR has a direct summand
cover D(NR) if e = e2 ∈ End (MR) exists such that NR ≤ess eMR =
D(NR). In general a submodule may have several direct summand
covers; however, Lemma 2.1 yields that ifMR is a strongly FI-extending
module then every fully invariant submodule has a unique direct
summand cover.

Let M be an (S,R)-bimodule and SNR ≤ SMR. If there is e = e2 ∈
Sl(S) such that NR ≤ess eMR, then we write DS(NR) = eM .

For NR ≤ MR, let (NR : MR) = {a ∈ R | Ma ⊆ N}. Then
D((NR : MR)R) denotes a direct summand cover of the right ideal
(NR :MR) in RR.

Lemma 2.3. Let e =
(

e1 k

0 e2

)
∈ T =

(
S M

0 R

)
, where e1 = e21 and

e2 = e22.

(1) e ∈ Sl(T ) if and only if

(i) e1 ∈ Sl(S);

(ii) e2 ∈ Sl(R);

(iii) e1k = k; and
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(iv) e1me2 = me2 for all m ∈M .

(2) e1k = k if and only if eT ⊆
(

e1 0

0 e2

)
T .

(3) If e1me2 = me2 for all m ∈M , then
(

e1 0

0 e2

)
T ⊆ eT .

(4) If e ∈ Sl(T ), then eT =
(

e1 0

0 e2

)
T .

Proof. Observe e = e2 if and only if e1 = e21, e2 = e22 and
e1k + ke2 = k. Let t =

( s m

0 r

) ∈ T . Then te =
(

se1 sk+me2

0 re2

)
and

ete =
(

e1se1 e1sk+e1me2+kre2

0 e2re2

)
.

(1) Assume e ∈ Sl(T ). Then te = ete. Hence conditions (i) and (ii)
are satisfied. Letting s = 1, m = 0 and r = 0 yields k = e1k. So
condition (iii) is satisfied. Also k = e1k + ke2 implies ke2 = 0. Since
sk = se1k = e1se1k = e1sk and kre2 = ke2re2 = 0, then e1me2 = me2.
Hence condition (iv) is satisfied. The converse is routine.

(2) This proof is straightforward.

(3) Observe e
(

e1 −ke2

0 e2

)
=

(
e1 0

0 e2

)
. Thus

(
e1 0

0 e2

)
T ⊆ eT .

(4) This is a consequence of the previous parts.

The next result gives a characterization for the strongly FI-extending
condition for a 2-by-2 generalized triangular matrix ring.

Theorem 2.4. Assume M is an (S,R)-bimodule, and let T =(
S M

0 R

)
. Then the following are equivalent:

(1) TT is strongly FI-extending.

(2) (i) For any SNR ≤ SMR and any ideal I of S with IM ⊆ N , e ∈
Sl(S) exists such that I ⊆ eS, NR ≤ess eMR and (I ∩AnnS(M))S ≤ess

(eS ∩AnnS(M))S;

(ii) RR is strongly FI-extending; and

(iii) for any SNR≤SMR,

DS(NR)D((NR :MR)R)=MD((NR :MR)R).
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Proof. (1) ⇒ (2). Assume TT is strongly FI-extending. Then, by
[5, Theorem 2.4],

(
1 0

0 0

)
TT and

(
0 0

0 1

)
TT are strongly FI-extending.

So, as in Theorem 1.4, we can show that (i) and (ii) hold. For
(iii), let SNR ≤ SMR and put A = (NR : MR). By (i) and (ii),
there are e ∈ Sl(S) and f ∈ Sl(R) such that DS(NR) = eM and
D(AR) = fR. Since MA ⊆ N , it follows that

(
0 N

0 A

)
� T . So

θ2 = θ ∈ Sl(T ) exists such that
(

0 N

0 A

)
T

≤ess θTT . By Lemma 2.3,

there exist e0 ∈ Sl(S) and f0 ∈ Sl(R) such that θT =
(

e0 0

0 f0

)
T

and
(

e0 0

0 f0

)
∈ Sl(T ). Hence NR ≤ess e0MR and AR ≤ess f0RR.

So DS(NR) = eM = e0M and D(AR) = fR = f0R. Thus, from
the fact that e0Mf0 = Mf0, it follows that eMf = Mf . Therefore
DS(NR)D((NR :MR)R) =MD((NR :MR)R).

(2) ⇒ (1). Let
(

I N

0 A

)
� T . Then SNR ≤ SMR, I � S and

IM ⊆ N . So by (i), there exists e ∈ Sl(S) such that I ⊆ eS
and DS(NR) = eM . Since A � R, by (ii), f ∈ Sl(R) exists such
that D(AR) = fR. Also, by (ii), D((NR : MR)R) = f0R for
some f0 ∈ Sl(R). Since

(
I N

0 A

)
� T , we have MA ⊆ N and so

A ⊆ (NR :MR). Thus AR ≤ess (fR∩f0R)R = f0fR with f0f ∈ Sl(R).
So D(AR) = f0fR. By Lemma 2.1, fR = f0fR and hence f0f = f .
Since DS(NR)D((NR : MR)R) = MD((NR : MR)R), part (iii) yields
eMf0R = Mf0R. So eMf0 = Mf0. Thus eMf0f = Mf0f , so
eMf = Mf . Since I ⊆ eS, we have

(
I N

0 A

)
T

≤
(

e 0

0 f

)
TT . By (i),(

I N

0 0

)
T
≤ess

(
e 0

0 0

)
TT . Because AR ≤ess fRR, we have

(
0 0

0 A

)
T
≤ess

(
0 0

0 f

)
TT . So

(
I N

0 A

)
T
≤ess

(
e 0

0 f

)
TT . Since eMf = Mf , Lemma 2.3

yields
(

e 0

0 f

)
∈ Sl(T ). Therefore TT is strongly FI-extending.

Corollary 2.5. Let SM be faithful. Then the following are equiva-
lent:

(1) TT is strongly FI-extending.

(2) (i) For any SNR ≤ SMR, e2 = e ∈ Sl(S) exists such that
NR ≤ess eMR;
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(ii) RR is strongly FI-extending; and

(iii) for any SNR ≤ SMR,

DS(NR)D((NR :MR)R) =MD((NR :MR)R).

Proof. The proof is similar to that of Corollary 1.6.

Corollary 2.6. Let S = Z. Then TT is strongly FI-extending if and
only if ZM is faithful, MR is uniform and RR is strongly FI-extending.

Proof. Since Z is semicentral reduced, Corollaries 1.5 and 2.5 yield
the result.

Observe in Theorem 2.4 that, for S = End (MR) and TT strongly
FI-extending if A � R and MA = 0, then MD(AR) = 0.

Corollary 2.7. For a right R-module M , let T =
(

S M

0 R

)
with

S = End (MR). Then the following are equivalent:

(1) TT is strongly FI-extending.

(2) (i) MR is strongly FI-extending;

(ii) RR is strongly FI-extending; and

(iii) for any NR � MR,

D(NR)D((NR :MR)R) =MD((NR :MR)R).

Proof. The proof is similar to that of Corollary 1.8.

Theorem 2.8. Assume R is a ring. Then the following are
equivalent:

(1) R is right strongly FI-extending.

(2) Tn(R) is right strongly FI-extending for every positive integer n.

(3) Tn(R) is right strongly FI-extending for some positive integer
n > 1.
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Proof. (1) ⇒ (2). Assume that R is right strongly FI-extending. We
proceed by induction.

Step 1. Assume n = 2. Then T2(R) =
(

R R

0 R

)
. Take M = R,

then RM is faithful. Let RNR ≤ RMR. Since RR is strongly FI-
extending, e = e2 ∈ Sl(R) exists such that NR ≤ess eMR. Now
note that (NR : MR) = NR ≤ess eRR = eMR. So we have that
DR(NR)D((NR : MR)R) = eReR = ReR = MD((NR : MR)R).
Therefore T2(R) is a right strongly FI-extending ring by Corollary 2.5.

Step 2. Assume that Tn(R) is right strongly FI-extending. Then
we need to show that Tn+1(R) is right strongly FI-extending. Note
that Tn+1(R) =

(
R M

0 Tn(R)

)
, where M = (R,R, . . . , R) (n-tuple). Let

RNTn(R) ≤ RMTn(R) with N = (N1, N2, . . . , Nn). Then Ni � R for
each i and N1 ⊆ N2 ⊆ · · · ⊆ Nn. Since RR is strongly FI-extending,
e ∈ Sl(R) exists such that NnR ≤ess eRR. It can be easily checked that
N = (N1, N2, . . . , Nn)Tn(R) ≤ess e(R,R, . . . , R)Tn(R) = eM .

Note that

(NTn(R) :MTn(R))=



N1 N2 · · · Nn

0 N2 · · · Nn
...

...
. . .

...
0 0 · · · Nn




Tn(R)

≤ess (eIn)Tn(R)Tn(R)

where In is the identity matrix in Tn(R). HenceDR(NTn(R))D((NTn(R) :
MTn(R))Tn(R)) = e(R,R, . . . , R)(eIn)Tn(R) and so we have that
MD((NTn(R) : MTn(R))Tn(R)) = M(eIn)Tn(R) = eM(eIn)Tn(R) =
DR(NTn(R))D((NTn(R) :MTn(R))Tn(R)) because e ∈ Sl(R).

Next, by the induction hypothesis, Tn(R) is a right strongly FI-
extending ring. Therefore, from Corollary 2.5, Tn+1(R) is a right
strongly FI-extending ring.

(2) ⇒ (3) is obvious. (3) ⇒ (1) is a consequence of Theorem 2.4.

Corollary 2.9 [4, Corollary 2.5]. A ring R is right FI-extending if
and only if Tn(R) is right FI-extending for every positive integer n if
and only if Tn(R) is right FI-extending for some positive integer n > 1.
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Proof. The proof follows by using Theorem 1.4 and an argument
similar to that used in the proof of Theorem 2.8.

3. Quasi-Baer rings. As indicated in the introduction, for rings,
the FI-extending property and the quasi-Baer property are closely
linked. In fact, for semi-prime rings, RR is FI-extending if and only if
RR is strongly FI-extending if and only if R is quasi-Baer [4, Theorem
4.7]. In this section we characterize the quasi-Baer property for 2-by-2
generalized triangular matrix rings.

Lemma 3.1. Let
(

I N

0 L

)
� T . Then

rT

((
I N
0 L

))
=

(
rS(I) rM (I)
0 rR(L) ∩AnnR(N)

)
.

Proof. Clearly
(

rS(I) rM (I)

0 rR(L)∩AnnR(N)

)
⊆ rT

((
I N

0 L

))
. Let

( s m

0 r

) ∈
rT

((
I N

0 L

))
. Then Is = 0, Lr = 0 and Im + Nr = 0. Hence

s ∈ rS(I), r ∈ rR(L) ∩ AnnR(N) and m ∈ rM (I). So rT
((

I N

0 L

))
=(

rS(I) rM (I)

0 rR(L)∩AnnR(N)

)
.

Theorem 3.2. Let T =
(

S M

0 R

)
. Then the following are equivalent:

(1) T is quasi-Baer.

(2) (i) R and S are quasi-Baer;

(ii) rM (I) = (rS(I))M for all I � S; and

(iii) if N is any SNR ≤ SMR, then AnnR(N) = aR for some
a = a2 ∈ R.

Proof. (1) ⇒ (2). By [13, p. 128], R and S are quasi-Baer. Let
I � S. Then

(
I M

0 0

)
� T . Hence rT

((
I M

0 0

))
= eT , where

e ∈ Sl(T ). Let e =
(

e1 k

0 e2

)
, so eT =

(
e1S e1M+kR

0 e2R

)
. By Lemma
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2.3, kR = e1kR. Thus e1M = e1M + kR. By Lemma 3.1, e1S = rS(I)
and rM (I) = e1M = e1SM = (rS(I))M .

Now let SNR ≤ SMR. Then
(

0 N

0 0

)
� T . So rT

((
0 N

0 0

))
= cT

where c ∈ Sl(T ). Let c =
(

c1 h

0 c2

)
. By Lemma 3.1, AnnR(N) =

rR(0) ∩ AnnR(N) = c2R. Therefore, conditions (i), (ii) and (iii) are
satisfied.

(2) ⇒ (1). Let
(

I N

0 L

)
� T . Since I � S, L � R and SNR ≤

SMR, e1 ∈ Sl(S), f ∈ Sl(R) and a = a2 ∈ R exist such that
rS(I) = e1S, rR(L) = fR and AnnR(N) = aR. Observe that,
since AnnR(N) � R, then a ∈ Sl(R). Let e2 = af . Then af ∈
Sl(R) and afR = rR(L) ∩ AnnR(N). Let e =

(
e1 0

0 e2

)
. Then

eT =
(

e1S e1M

0 e2R

)
=

(
rS(I) rM (I)

0 rR(L)∩AnnR(N)

)
. From Lemma 3.1, eT =

rT

((
I N

0 L

))
. Therefore T is a quasi-Baer ring.

Theorem 3.2 easily yields that if R = S and M � R, then T is quasi-
Baer if and only if R is quasi-Baer. Observe that [4, Example 4.11]
provides a 2-by-2 generalized triangular matrix ring T which is quasi-
Baer, left and right nonsingular, but neither right nor left FI-extending.

Corollary 3.3. Let S = Z. Then T is quasi-Baer if and only if

(i) R is quasi-Baer;

(ii) ZM is torsion-free; and

(iii) if NR ≤MR, then AnnR(N) = aR for some a = a2 ∈ R.

One can construct examples illustrating Corollary 3.3 by taking R to
be a direct sum of simple rings and M any R-module whose additive
group is torsion-free.

Corollary 3.4. Let S = End (MR). Then the following are
equivalent:

(1) T is quasi-Baer.

(2) (i) R is quasi-Baer;
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(ii) rM (I) is a direct summand of M for all I � S; and

(iii) if SNR ≤ SMR, then AnnR(N) = aR for some a = a2 ∈ R.

Proof. The proof follows from Theorem 3.2 and a routine argument
which shows that the condition “rM (I) is a direct summand of M” is
equivalent to “S is quasi-Baer and condition (ii) of Theorem 3.2.”

Corollary 3.5. Let MR be a nonsingular FI-extending module and
S = End (MR). Then the following are equivalent:

(1) T is quasi-Baer.

(2) (i) R is quasi-Baer; and

(ii) for N � M , AnnR(N) = aR for some a = a2 ∈ R.

Proof. (1) ⇒ (2). This implication follows from Theorem 3.2.

(2) ⇒ (1). By [5, Proposition 4.8], S is quasi-Baer. Since MR is
FI-extending and rM (I) � M , e = e2 ∈ End (MR) exists such that
rM (I)R ≤ess eMR. Let em ∈ eM . There exists LR ≤ess RR such that
IemL = 0. Hence Iem = 0. Thus rM (I) = eM . By Corollary 3.4, T is
quasi-Baer.

Examples illustrating Corollary 3.5 can be constructed by taking R
to be a finite direct sum of simple rings and M any nonsingular FI-
extending R-module, e.g., any fully invariant submodule of a projective
R-module. For another illustration, take R to be a right primitive ring
and M a faithful irreducible R-module. By Corollary 1.8, the above
examples are at least right (and in some cases strongly) FI-extending.

4. Examples and constructions. In this section we provide some
examples and constructions illustrating and delimiting our results in
previous sections.

From [4, Theorem 4.7], if R is semi-prime and either quasi-Baer or FI-
extending, then R is strongly FI-extending. By [5, Proposition 1.5], if
RR is nonsingular and FI-extending, then RR is strongly FI-extending.
Hence one may wonder if there are any right strongly FI-extending
rings R that are neither semi-prime, quasi-Baer, nor right nonsingular.
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Our first example provides a class of such rings.

Example 4.1. Let A be a commutative principal ideal domain
which is not a field. Let p be a nonzero prime in A. For n ≥ 2,
let R = T2(A/pnA). Then: (1) R is not semi-prime; (2) R is not right
nonsingular; (3) R is not right extending; (4) R is not quasi-Baer; but
(5) RR is strongly FI-extending.

Clearly R is neither semi-prime nor right nonsingular. Consider the
right ideal

X =
(
0 1
0 p

)
R.

Assume R is right extending. Then e = e2 ∈ R exists such that
XR ≤ess eRR. But the only possible such e is the unity. SoXR ≤ess RR.
But X ∩

(
0 1

0 1

)
R = 0, which is a contradiction. So R is not right

extending. Since A/pnA is commutative QF and not reduced, A/pnA
is strongly FI-extending but not quasi-Baer. By Theorems 2.8 and 3.2,
the ring R is right strongly FI-extending.

By [4, Proposition 1.2], fully invariant submodules of an FI-extending
module are FI-extending. However this does not hold for the case of
strongly FI-extending modules as indicated in our next example.

Example 4.2. Let R be as in Example 4.1. Then RR is strongly
FI-extending, but R contains a nonzero ideal I such that IR is not
strongly FI-extending. Let

I =
(
0 A/pnA
0 pn−1A/pnA

)
.

Then I � R. First we show that End (IR) ∼=
(

A/pnA A/pnA

pn−1A/pnA A/pnA

)
.

Let g ∈ End (IR). Then g is completely determined by g
[(

0 1

0 0

)]
and g

[(
0 0

0 pn−1

)]
. Let g

[(
0 1

0 0

)]
=

(
0 a

0 pn−1b

)
and g

[(
0 0

0 pn−1

)]
=(

0 pn−1c

0 pn−1d

)
. Then it can be checked that g(α) =

(
a c

pn−1b d

)
· α, for

α ∈ I. So End (IR) ∼=
(

A/pnA A/pnA

pn−1A/pnA A/pnA

)
.



1316 G.F. BIRKENMEIER, J.K. PARK AND S.T. RIZVI

Now let J =
(

0 pn−1A/pnA

0 0

)
. Then J � R and J ⊆ I. It is easy to

see that J is a fully invariant submodule of IR. We show that IR is
not strongly FI-extending. Assume to the contrary that IR is strongly
FI-extending. Then, since JR is a fully invariant submodule of IR, a
fully invariant R-direct summand K of IR exists such that JR ≤ess KR.
Since KR is a fully invariant submodule of IR, KR is a fully invariant
submodule of RR by [4, Proposition 1.2]. Hence K � R. So candidates
for K are of the form

(
0 C

0 D

)
I with C ⊆ A/pnA, D ⊆ pn−1A/pnA and

D ⊆ C. Since D ⊆ pn−1A/pnA, we have the following two cases.

Case 1. D = 0. Then K =
(

0 pkA/pnA

0 0

)
where 0 ≤ k ≤ n.

Case 2. D = pn−1A/pnA. Then K =
(

0 pkA/pnA

0 pn−1A/pnA

)
, where

0 ≤ k ≤ n. Since JR ≤ess KR, Case 2 and the case when K = 0
cannot hold. Also note that

(
0 pkA/pnA

0 0

)
, with 1 ≤ k ≤ n− 1, cannot

be an R-direct summand of IR. So the only possible candidate for K is(
0 A/pnA

0 0

)
. But

(
0 A/pnA

0 0

)
is not a fully invariant submodule of IR. In

fact, take g ∈ End (IR) such that g is represented as right multiplication
by

(
a c

pn−1b d

)
. Then g

[(
0 A/pnA

0 0

)]
=

{(
0 ax

0 pn−1bx

)
| x ∈ A/pnA

}

which may not be contained in
(

0 A/pnA

0 0

)
by choosing b = 1. Therefore

the fully invariant submodule IR of the strongly FI-extending module
RR is not a strongly FI-extending module.

As in Example 4.2 let I =
(

0 A/pnA

0 pn−1A/pnA

)
. Then it can be seen that

End (RI) ∼= A/pnA, so every left R-module homomorphism of RI can
be represented as a right multiplication by an element in A/pnA. Thus
all fully invariant submodules of RI are all ideals of R contained in
I. Also it can be verified that all these nonzero ideals are essential
submodules of RI. Thus RI is strongly FI-extending.

We also can apply our characterizations of strongly FI-extending
generalized matrix rings to construct a right strongly FI-extending ring
which is not left FI-extending, thereby showing that the strongly FI-
extending property is not left-right symmetric.
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Example 4.3. Assume that R is a right strongly FI-extending ring,
e.g., a prime ring. LetM =

(
0 R

0 0

)
. ThenM can be considered as a left

R-right T2(R)-bimodule. Now we show that the generalized triangular
matrix ring

T =
(
R M
0 T2(R)

)

is right strongly FI-extending, but it is not left FI-extending (hence
not left strongly FI-extending). Note that RM is faithful. For any

RNT2(R) ≤ RMT2(R), an ideal I of R exists such that N =
(

0 I

0 0

)
. Since

RR is strongly FI-extending, there is e ∈ Sl(R) such that IR ≤ess eRR.
Therefore, we have that N =

(
0 I

0 0

)
T2(R)

≤ess e
(

0 R

0 0

)
T2(R)

. Since R is

right strongly FI-extending, T2(R) is also right strongly FI-extending
by Theorem 2.8.

Now DR(NT2(R)) =
(

0 eR

0 0

)
= e

(
0 R

0 0

)
= eM . Also (NT2(R) :

MT2(R)) =
(

R R

0 I

)
T2(R)

≤ess
(

R R

0 eR

)
T2(R)

. Observe that
(

R R

0 eR

)
=(

1 0

0 e

)
T2(R) and

(
1 0

0 e

)
∈ Sl(T2(R)). So D((NT2(R) : MT2(R))T2(R)) =(

R R

0 eR

)
. Therefore we have that

DR(NT2(R))D((NT2(R) :MT2(R))T2(R)) =
(
0 eR
0 0

) (
R R
0 eR

)

=
(
0 eReR
0 0

)

and

MD((NT2(R) :MT2(R))T2(R)) =
(
0 R
0 0

) (
R R
0 eR

)
=

(
0 ReR
0 0

)
.

Since e ∈ Sl(R), ReR = eReR and so it follows that

DR(NT2(R))D((NT2(R) :MT2(R))T2(R)) =MD((NT2(R) :MT2(R))T2(R)).

Therefore, TT is strongly FI-extending by Corollary 2.5. But note that
AnnT2(R)(M) is not generated, as a left ideal, by a right semicentral
idempotent in T2(R). Thus TT is not FI-extending.
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Since the quasi-Baer condition is left-right symmetric and is related
to the strongly FI-extending condition, one may conjecture that a
quasi-Baer right strongly FI-extending ring is left FI-extending. In
Example 4.3, by taking R to be a prime ring and using Theorem 3.2, it
can be seen that T is quasi-Baer and right strongly FI-extending but
not left FI-extending.

In the following example, which appears in [7], there is a right self-
injective and right strongly bounded, i.e., every nonzero right ideal
contains a nonzero ideal, ring which is not strongly FI-extending on
either side, and is not quasi-Baer.

Example 4.4 [7, Example 5.2]. Let R =
(

D S

0 Q

)
, where Q is a

non-semisimple commutative injective regular ring, M is a maximal
essential ideal of Q,S = Q/M and D = End (SQ). Then R is right self-
injective, right strongly bounded, Z(RR) �= 0 but Z(RR) = 0. Take(

0 0

0 M

)
� R. Then

(
0 0

0 M

)
R
≤ess

(
0 0

0 Q

)
R
but

(
0 0

0 Q

)
is not an ideal of

R. So RR is not strongly FI-extending.

On the other hand,
(

0 0

0 M

)
is not essential as a left R-submodule of

R. Also it is not essential as a left R-submodule of
(

0 S

0 Q

)
. Thus R is

not left strongly FI-extending. From Corollary 3.4, R is not quasi-Baer.
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