
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 32, Number 4, Winter 2002

A GEOMETRIC SETTING FOR SOME
PROPERTIES OF TORSION-FREE MODULES

BRUCE OLBERDING

Dedicated to Jim Reid

1. Introduction. In this note we give examples of how certain
properties of torsion-free modules that have been of recent interest
arise in algebro-geometric settings. In particular, we find subrings of
function fields whose torsion-free modules behave in ways similar to
that of torsion-free abelian groups, and we indicate how these module-
theoretic properties distinguish the associated rings and their geometry.

Some of our results are expository, the necessary commutative alge-
bra having been developed elsewhere. In Section 2, relying on the work
in [7], we interpret some Krull-Schmidt properties for modules geomet-
rically. Our focus in this section is the Noetherian case, so it is natural
that we find geometric analogues for the algebraic characterizations in
[7].

In Section 3, we report on some recent results on the existence of
finite character Prüfer domains in function fields. Here the “geometry”
is more abstract in that our Prüfer rings do not arise as coordinate
rings of varieties. Instead, they are intersections of valuation overrings
of coordinate rings. The class of Noetherian Prüfer domains is precisely
the class of Dedekind domains, so it is not surprising that one must
search beyond coordinate rings of varieties to find Prüfer examples in
function fields of transcendence degree greater than one.

We also push this construction a bit farther by indicating how h-local
Prüfer domains can be found in function fields. An integral domain R
is h-local if R has finite character and each nonzero prime ideal of R is
contained in a unique maximal ideal of R. The classes of finite character
and h-local Prüfer domains are playing an increasingly central role in a
number of aspects of module theory, as is evidenced by the recent text
[5].
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Our construction of h-local Prüfer domains leads to issues involving
Warfield duality of torsion-free modules, and in Section 4 we explore
this topic further. We indicate briefly why for rings of Krull dimension
greater than one, the full strength of Warfield duality pushes our
construction in Section 3 beyond the geometric setting of function
fields. Then we show that, although we have left our original setting,
one can still construct Warfield domains with diverse prime spectra.

Notation and terminology. Let R be an integral domain with quotient
field F . Then R has finite character if each nonzero element r ∈ R is
contained in at most finitely many maximal ideals of R. The domain
R is a Prüfer domain if every finitely generated ideal of R is invertible;
equivalently, RM is a valuation domain for all maximal ideals M of R.
If G is a torsion-free R-module, then R(G) is the ring of coefficients of
G, that is, R(G) := {f ∈ F : fG ⊆ G}. Note that if G has rank one as
a torsion-free R-module, then R(G) can be identified with EndR(G).
In Section 2 we will be particularly interested in the class of torsionless
modules, those R-modules that are isomorphic to a submodule of a
finitely generated free R-module.

2. The Krull-Schmidt property. Let R be a domain and C a class
of R-modules. The Krull-Schmidt property holds for C if whenever

G1 ⊕G2 ⊕ · · · ⊕Gn
∼= H1 ⊕H2 ⊕ · · · ⊕Hm

for Gi, Hj ∈ C, then n = m and after reindexing, Gi
∼= Hi for all

i ≤ n. If, instead of Gi
∼= Hi, we require only that there exists k > 0

such that G(k)
i

∼= H
(k)
i for all i, then we say the weak Krull-Schmidt

property holds for C. (We write G(k) for a direct sum of k copies of a
module G.)

Although variations of the Krull-Schmidt property have been studied
by many authors, we are mainly concerned here with those properties
studied in [7], and it may be convenient for the reader to have a copy
of this article at hand since it is quoted often in this section. We are
interested in how the following properties are manifested geometrically.

• TFKS: the class of indecomposable torsionless modules has the
Krull-Schmidt property
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• weak TFKS: the class of indecomposable torsionless modules
has the weak Krull-Schmidt property

• UDI: the class of ideals has the Krull-Schmidt property

• weak UDI: the class of ideals has the weak Krull-Schmidt prop-
erty

The classification of the Noetherian cases of these properties is re-
viewed in [7]. In this section we focus exclusively on the Noetherian
case and give geometrical interpretations of these properties.

Two key features of our Krull-Schmidt properties help determine their
geometric interpretations. First, domains possessing weak UDI must
have a complemented maximal ideal, that is, a maximal ideal M such
that every ideal not contained in M is invertible [7, Lemma 2.4]. Since
all our Krull-Schmidt properties imply weak UDI, this phenomenon
occurs for all of them. It is quite natural from the geometric standpoint:
a noninvertible complemented maximal ideal corresponds to a unique
singular point.

Second, domains with UDI have trivial Picard group, while domains
with weak UDI must have torsion Picard group [7, Lemma 2.4]. Since
TFKS domains possess UDI and weak TFKS domains possess weak
UDI, one may deduce similar assertions for weak UDI and weak TFKS.
Theorem 2.1 shows that UDI and TFKS are very strong geometrically.
We denote the affine coordinate ring of a variety X by A(X). Recall
that a rational curve is a curve of genus 0, and that a nonsingular curve
C is rational if and only if Pic (C) = 0.

Theorem 2.1. Let X be an irreducible variety over an algebraically
closed field. Then X is a nonsingular rational curve if and only if A(X)
has UDI, TFKS or the torsion-free rank one modules of A(X) satisfy
the Krull-Schmidt property.

Proof. Suppose first that A(X) has UDI. Every UDI Noetherian
domain is h-local [6, Lemma 2.2], so if A(X) has UDI, A(X) is an
h-local Hilbert ring. Hence A(X) has Krull dimension one and X
is a curve. Let X̃ be the normalization of X. If X is singular,
then the kernel of the group homomorphism, Pic (X) → Pic (X̃) is
never finitely generated [22, Theorem 3.2]. But since A(X) has UDI,
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Pic (X) = 0; hence, X is nonsingular. The converse follows from the
fact that the affine coordinate ring of an irreducible nonsingular curve
with Pic (X) = 0 is a PID.

It is a classical theorem of Baer that the ring of integers has the
Krull-Schmidt property for rank one modules (i.e., torsion-free rank
one abelian groups). A consequence of Theorem 2.1 is that if R is a
domain that is finitely generated over an algebraically closed field, then
the Krull-Schmidt property holds for rank one R-modules if and only
if R is a PID.

Examination of the proof of 2.1 shows that the fact that UDI forces
the Picard group to be trivial bears sharply on the strength of UDI
and related properties in the geometric setting. The search for versions
of UDI and TFKS that would “register” geometrically led to the
introduction of weak UDI and weak TFKS in [7 ]. Curves with torsion
Picard group arise naturally in arithmetic geometry, as is indicated by
the examples that close the section.

Let C be an irreducible curve over an algebraically closed field k with
singularity at some point P . Let ν : C̃ → C denote the normalization
of C. Then a branch of C at P is an element of ν−1(P ). A branch Q of
C at P is linear if M �⊆ N2 where M is the maximal ideal of the local
ring of C at P and N is the maximal ideal of the local ring of C̃ at Q.

Theorem 2.2. Let X be an irreducible variety over an algebraically
closed field. Then A(X) has weak UDI if and only if Pic (X) is torsion
and X is a nonsingular curve or X is a curve with unique singularity
p such that if ν : X̃ → X is the normalization of X, then p satisfies
one of the following conditions :

(i) p is unibranched,

(ii) p has two branches, one of which is linear, or

(iii) p has three branches, all of which are linear.

Proof. Suppose A := A(X) has weak UDI. As in Theorem 2.1, X is
a curve. If X is singular, then by [7, Theorem 3.4], it has at most one
singularity, say p. Thus if M is the maximal ideal of A corresponding
to p, AM has UDI [7, Theorem 3.4]. Now apply Theorem 4.1 of [7]
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to AM to obtain the geometrical analogues of (i) (iii) of the referenced
theorem. Conversely, suppose X is an irreducible curve, Pic (X) is
torsion and p satisfies (i), (ii) or (iii). To show A has weak UDI,
it suffices to show Ap has UDI [7, Theorem 3.4]. We do this by
direct appeal to Theorem 4.1 of [7]. Since the ground field k of A is
algebraically closed, the residue fields of the normalization of X remain
the same as the residue fields of X, namely, they are all isomorphic to
k. Thus, since the integral closure of A is module-finite, Ap, and hence
A, have UDI.

Theorem 2.3. Let X be an irreducible variety over an algebraically
closed field. Then A(X) has weak TFKS if and only if Pic (X) is
torsion, and X is a nonsingular curve or X is a curve with unique
singularity p such that if ν : X̃ → X is the normalization of X, then p
is unibranched or p has two branches, both of which are linear.

Proof. The proof is similar to that of Theorem 2.2, only we appeal
to [7, Corollary 4.3] instead of [7, Theorem 4.1].

Remark. If K is the algebraic closure of a finite field and D is a
one-dimensional domain that is finitely generated as a K-algebra, then
Pic (D) is torsion [21, Lemma 2]. Thus it follows that, over such a field
K, the requirement in Theorem 2.2 and Theorem 2.3 that Pic (X) be
torsion is superfluous.

In light of 2.2, 2.3 and the remark, it is not difficult to give examples
of curves with unique singularities whose coordinate rings are examples
of weak UDI and weak TFKS. Let K be the algebraic closure of a finite
field of characteristic p > 5. Then the following list shows each type of
singularity can occur on a (rational) curve over K.

• The coordinate ring of the cusp C : y3 − x2 = 0 has weak TFKS,
since the singularity (0, 0) is unibranched.

• The coordinate ring of the node C : y2 − x2 − x3 = 0 has weak
TFKS, since the singularity (0, 0) has two branches, both of which
are linear.

• The coordinate ring of the curve C : y3 − x2y − x4 = 0 has weak
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UDI but not weak TFKS, since the singularity (0, 0) has three
branches, all of which are linear.

3. Warfield’s category equivalence. R.B. Warfield, Jr., in his
1968 paper on duality, introduced a category equivalence for torsion-
free abelian groups that has recently been shown to hold in much more
general settings. In this section we review the formulation of this cate-
gory equivalence for torsion-free modules over domains and summarize
its ring-theoretic characterization. Using this characterization, we as-
sociate these domains to a geometric notion.

Let R be an integral domain with quotient field F . If X is a rank
one module and G is a torsion-free R module, then G dominates X if
the canonical homomorphism

HomR(X,G) ⊗R F −→ HomR(X,G⊗R F )

is an isomorphism. In case G has finite rank, G dominates X if and
only if TypeX ≤ IT(G). See [18] for a treatment of types in the
setting of integral domains.

Let X be a torsion-free rank one R-module. Define EX to be the
category of torsion-free R(X)-modules, and let DX be the category of
torsion-free R(X)-modules that dominate X. Define a pair of functors

HX : DX −→ EX and TX : EX −→ DX

by HX(G) = HomR(X)(X,G) for all G ∈ DX and TX(H) = X⊗R(X)H
for all H ∈ EX .

In [13], the following terminology was provisionally introduced. We
recall it here in order to give a module-theoretic background for the
notion of “stability.”

(HT): For all torsion-free rank one modules X, HX ◦ TX
∼= 1EX

.

(TH): For all torsion-free rank one modules X, TX ◦HX
∼= 1DX

.

In [13, Theorem 2.3], it is shown that an integral domain R satisfies
(TH) if and only if R is stable, that is, every nonzero ideal of R is
projective over its ring of endomorphisms. The desire for a classification
of rings satisfying (TH) (as well as Warfield duality) has motivated
much of the recent work on the structure and classification of stable
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domains. Moreover, (TH) implies (HT), so the integral domains
that support Warfield’s category equivalence are precisely the stable
domains [13, Corollary 2.4]. (For Noetherian domains, (HT) implies
(TH), but this is not always true for non-Noetherian domains [13,
Proposition 4.6]. An ideal-theoretic characterization of (HT) domains
is given in [13, Section 4].

The stability property has an interesting history dating back at
least to a 1963 paper of Bass [2]. For surveys of the recent work on
stability and the uses to which stability has been put, see [12] and [13].
Noetherian stable domains are well-understood, and it is known that
geometrically, stable Noetherian rings arise as the coordinate rings of
irreducible curves whose singularities are double points [12].

From a structural point of view, the Prüfer case is also well-
understood: An integrally closed domain R is a stable domain if and
only if R is a strongly discrete Prüfer domain of finite character [14,
Theorem 4.6], but see [11, Theorem 3.3] for a more general result. A
Prüfer domain R is strongly discrete if P �= P 2 for all nonzero prime
ideals P of R. Valuation domains having free value groups that are
ordered anti-lexicographically are strongly discrete [5]. Valuation do-
mains with such value groups arise naturally in the study of function
fields, and we exploit this observation in the construction of stable
Prüfer domains in function fields.

Rather comprehensive existence results for stable Prüfer domains
already appear in the literature [14, Proposition 5.4]. These results,
however, rely ultimately on the Kaplansky-Jaffard-Ohm construction
[5, Theorem III.5.3], so that the stable domains there constructed are
certain overrings of the group ring K[G], where K is a field and G is
a partially ordered abelian group. If a stable Prüfer domain R having
infinitely many maximal ideals is constructed in such a manner, then
the construction forces K[G] to have infinite transcendence degree over
K.

By contrast, the function fields that arise in classical algebraic geom-
etry have finite transcendence degree over K. Thus the finite character
Prüfer domains arising in the Kaplansky-Jaffard-Ohm construction are
often outside the scope of the classical geometric setting.

One of the intents of the article [17] is to remedy this problem by
finding examples of stable, hence finite, character, Prüfer domains in
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function fields. We first state a realization theorem for stable Prüfer
domains, then we outline the construction of such rings.

If (X,≤) is a partially ordered set, then X is a tree if for all x, y, z ∈ X
with x ≤ z and y ≤ z, it is the case that x ≤ y or y ≤ x. The dimension
of X is n if there is a chain of elements x0 < x1 < · · · < xn in X but no
longer chain. If X has a least element x0, then X has finite character
if, given any x ∈ X such that x �= x0, there are only finitely many
maximal elements y of X such that x ≤ y.

Theorem 3.1 [17]. Let D be a domain of Krull dimension n that
is a finitely generated K-algebra, where K is a field or K = Z, and let
(X,≤) be a countable partially ordered set. The following are equivalent
for X.

(1) There exists a stable Prüfer overring H of D such that Spec (H)
is order isomorphic to X.

(2) X has a least element and Xis a finite character tree of dimension
≤ n.

Note that Theorem 3.1 also provides a source of h-local strongly
discrete Prüfer domains. This class of domains admits several nice
descriptions. In [15], a commutative ring R is defined to be a Zerlegung
in Prim- und Umkehrbaridealen (ZPUI) ring if every ideal I of R that
contains a nonzero divisor can be written in the form I = UP e1

1 · · ·P en
n ,

where U is an invertible ideal and the Pi are prime ideals of R.
A commutative ring R is a ZPUI ring if and only if R is a finite
direct product of ZPUI integral domains and special primary rings [15,
Theorem 3.3]. Thus the study of ZPUI rings reduces to the domain
case, and it is shown in [15, Theorem 2.3] that a domain R is a ZPUI
domain if and only if R is an h-local strongly discrete Prüfer domain.
Hence, by Theorem 3.1, one may find nontrivial examples of ZPUI
domains H in function fields.

There is another interpretation of h-local Prüfer domains that is
interesting in the present context and anticipates issues treated in the
next section. Bazzoni and Salce show in [3] (see [10, Theorem 3.1] for
further details) that a domain R is an h-local strongly discrete Prüfer
domain if and only if R is an integrally closed domain such that, for
all rank one R-modules X and Y with X ⊆ Y and R(Y ) ⊆ R(X), the
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canonical homomorphism
X −→ HomR(HomR(X,Y ), Y )

is an isomorphism. Thus, in the terminology of the next section, there
exist nontrivial examples in function fields of Prüfer domains for which
“Warfield duality” holds for rank one modules.

We now outline the construction of stable Prüfer domains in Theo-
rem 3.1. Let K be an algebraically closed field and V an irreducible
projective variety over K. We say an infinite set of points {pα} on
V determines V if, whenever W is a subvariety of V that contains
infinitely many of the pα, then W = V .

Generalizing this notion to schemes, we say an infinite set of closed
points {pα} of a projective scheme X over a domain D determines X
if the only closed subscheme of X that contains infinitely many of the
{pα} is X. We say the set {pα} is a determinative set of closed points
of X.

For affine integral schemes, we can rephrase the definition: An
infinite set of maximal ideals {Mα} of an integral domain D determines
Spec (D) if, whenever P is a prime ideal of D such that P is contained
in infinitely many of the maximal ideals Mα, then P = 0. We say {Mα}
is a determinative set of maximal ideals of D.

To relate determinative sets of points to sets of valuations, we adopt a
more sophisticated way to view points on varieties or schemes, namely
as centers of valuations. To simplify the discussion, we explain this
switch to valuations for affine integral K-schemes X, where K is a
field or K = Z. In case K is an algebraically closed field, one may
simply treat X as an irreducible K-variety. Whether or not we make
this restriction on K, we may view X as Spec (D) for some finitely
generated K-algebra D such that D is a domain. If V is a valuation
overring of D with maximal ideal M , then the center of V on D is the
prime ideal M ∩D of D. Thus, if ∆ is a finite character set of infinitely
many valuation overrings of D (meaning every nonzero d ∈ D is a unit
in all but finitely many of the elements V ∈ ∆), and each valuation
overring V ∈ ∆ is centered on a maximal ideal of D, then it follows
that the set of all such centers forms a determinative set of maximal
ideals of D.

Moreover, if the corresponding valuations are chosen to be zero-
dimensional, then each valuation remains centered on a closed point of
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a projective variety Y over D, and the set of centers of the valuations on
Y determines Y . In [17] it is shown that for any projective D-scheme,
where D is a finitely generated algebra over a field or Z, one can always
find such an infinite set of zero-dimensional valuations whose centers
on every projective scheme Y over D determines Y , and such that
the intersection of these valuation overrings is a finite character Prüfer
domain. (Stronger versions of this statement can be found in [17].)

Motivating example. Let I be a compact subset of C. Let
Γ = {(x, f(x)) : x ∈ I} be the graph of y = f(x) over I for some
transcendental function f , e.g., f(x) = ex. Then for each p ∈ Γ,
there exists a rank two valuation Vp centered on p. For example,
for each p := (t, f(t)) ∈ Γ, one may view elements of C[x, y] as
elements of C[x − t, y − f(t)]. Then a valuation ring Vp can be
defined as the ring corresponding to the valuation that maps an element
g =

∑
i,j cij(x − t)i(y − f(t))j to min{(i, j) : cij �= 0} ∈ Z ⊕ Z, where

Z ⊕ Z is ordered lexicographically. Moreover, no matter how the Vp

are defined, if they are of rank two, then the set of centers of the
Vp’s forms a determinative set of maximal ideals of C[x, y]. This is
because no algebraic curve in C2 can intersect a compact subset of the
graph of f infinitely many times. (Details can be found in [17].) The
corresponding holomorphy ring H := ∩p∈ΓVp is a stable Prüfer domain
[17]. Consequently, H supports Warfield’s category equivalence for
torsion-free modules.

4. Warfield duality. Let R be an integral domain. Let G be
a torsion-free finite rank R-module of rank n and Y be a rank one
R-module. It was observed by Reid in [18] that the canonical map

G −→ HomR(HomR(G, Y ), Y )

is an isomorphism only if (i) G is an R(Y )-module and (ii) G ↪→
Y ⊕Y ⊕· · ·⊕Y , n copies. An integral domain R is a Warfield domain if
conditions (i) and (ii) are not only necessary but sufficient to guarantee
the canonical map is an isomorphism for every torsion-free finite rank
R-module G and rank one R-module Y .

Every Dedekind domain is a Warfield domain, but the converse
fails roundly, since there exist Warfield domains that are not one-
dimensional, Noetherian or integrally closed (see [5, Example XV.9.6],
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for example). Recent work of several authors has led to the classifi-
cation of this class of domains; see [5, Chapter 15], [10] and [19] for
different perspectives on this topic. In the present section we show how
interesting examples of Warfield domains arise as overrings of complete
regular local rings.

A Noetherian domain D is a Warfield domain precisely when every
ideal of D can be generated by two elements [5, Theorem XV.9.3].
The class of Noetherian domains with 2-generated ideals has been well-
studied and the geometric analogue of this property is known to be that
singularities on irreducible curves are double points [8]. It is interesting
to note that in case a Noetherian domain R has module-finite integral
closure, then R is a stable domain if and only if R is a Warfield domain
[20].

An integrally closed domain R is a Warfield domain if and only if R is
a Prüfer domain that is strongly discrete and almost maximal, meaning
R/I is a linearly compact R-module for all nonzero ideals I of R [5,
Theorem XV.9.5]. This latter condition is absent from the version of
Warfield duality for rank one modules mentioned in the last section,
and it arises in this section from the introduction of modules of rank
greater than one. We shall see that the property of almost maximality
pushes us into an analytic setting, namely, our examples of Warfield
duality are found in fields such as K((x1, . . . , xn)).

One reason for this is that if K is a field and L is a field of finite
transcendence degree greater than one over K, then if W is a discrete
valuation domain of Krull dimension greater than one, K ⊆ W and W
has quotient field L, then W cannot be almost maximal. Indeed, if W
is almost maximal, then there exists a discrete valuation overring V of
W of Krull dimension 2 that is almost maximal. If Q is the unique
nonzero nonmaximal prime ideal of V , then V/Q is a maximal, hence
complete, discrete valuation domain. By the Cohen structure theorem
for complete rings, V/Q ∼= K[[w1, . . . , wm]]/I for some indeterminates
w1, . . . , wm and ideal I. The quotient field of V/Q thus has infinite
transcendence degree over K. However, the quotient field of V/Q is
isomorphic to VQ/Q so it is a residue field of a valuation on L. As
such, it has finite transcendence degree over K. (See [1, Theorem 1]
for example.) This contradiction shows that V , hence W , cannot be
almost maximal.
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Warfield domains of Krull dimension one are Noetherian [5, Exercise
XV.8.4], so we are interested here in examples of Warfield Prüfer
domains of Krull dimension greater than one (since those of Krull
dimension one are simply Dedekind domains). Theorem 4.2 shows
Warfield Prüfer overrings can be found in a setting of central geometric
importance.

Lemma 4.1. Let D be a complete regular local ring of Krull
dimension n > 1 and having residue field of cardinality α. Then, there
are at least α many distinct Warfield valuation overrings of D of Krull
dimension n.

Proof. Let M be the maximal ideal of D. Since D is a regular local
ring, M can be generated by n elements, say x1, x2, . . . , xn ∈ M . For
each u ∈ D \ M , note that since M = (x1 − ux2, x2, . . . , xn), the
sequence (x1 − ux2, x2, . . . , xn) is a system of parameters of D; hence
it is a regular sequence. Fix u ∈ D \M and define P1 := (x1 − ux2).
For each i with 2 ≤ i ≤ n, set Pi := (x1, x2, . . . , xi). Let i be such
that 1 ≤ i < n. Observe that the quotient field of DPi+1/PiDPi+1 is
isomorphic to DPi

/DPi
Pi. Now D/Pi is again a regular local ring

since it has a regular system of parameters, so it is an integrally
closed local domain. Thus DPi+1/PiDPi+1 is a complete DVR. We
now use induction to construct a valuation domain V with prime ideals
Q1 ⊂ Q2 ⊂ · · · ⊂ Qn such that Qi ∩D = Pi for all i ≤ n. Let V1 be
the complete DVR DP1 and set Q1 = DP1P1. Let k < n and suppose
there exists a valuation domain Vk such that D ⊆ Vk ⊆ V1 and Vk has
prime ideals Q1 ⊂ · · · ⊂ Qk such that (Vk)Qj+1/Qj is a complete DVR
for all j with 1 ≤ j < k. Let Vk+1 be defined as the pullback in the
following commutative diagram:

Vk+1

u

w (D/Pk)(Pk+1/Pk)

u

Vk w Vk/Qk

The following argument justifies the existence of the right vertical
mapping. Observe that, by the construction, Vk/Qk is the residue
field of (D/Pk−1)(Pk/Pk−1) so Vk/Qk

∼= DPk
/PkDPk

. Hence Vk/Qk
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is isomorphic to the quotient field of (D/Pk)(Pk+1/Pk) and the right
vertical mapping can be defined in the natural way. It follows that
Vk+1 is a Warfield valuation domain since it is a pullback of the
complete DVR (D/Pk)(Pk+1/Pk) and the Warfield valuation domain Vk

[10, Lemma 4.5]. If V = Vn, then V is the desired Warfield valuation
domain. It is easy to see that each u ∈ D \M yields a different prime
ideal (x1 − ux2) of D so each u yields a different Warfield valuation
domain Vu, and the claim follows.

Theorem 4.2. Let D be a complete regular local ring of Krull
dimension n. If k<min{ℵ0, α} where α is the cardinality of the residue
field of D, then D has an n-dimensional Warfield Prüfer overring with
k many maximal ideals.

Proof. In [16, Corollary 4.5], it is shown that the intersection of
finitely many Warfield valuation domains sharing the same quotient
field is a Warfield Prüfer domain. That such an intersection has Krull
dimension n is a consequence of Nagata’s theorem on the intersection
of finitely many valuation domains [5, Theorem III.1.7].

Since Warfield domains are h-local, the argument in the proof of
Theorem 4.2 shows any two distinct valuation overrings V and W
constructed as in Lemma 4.1 are independent in the sense that they
share no common prime ideals. This is somewhat striking because the
prime ideals of V and W contract to the same prime ideals of the base
ring D with the singular exception of the prime ideal P1 in the proof
of the lemma.

If D is a complete regular local ring with infinite residue field, then
by Lemma 4.1 there are infinitely many Warfield valuation overrings of
D having the same Krull dimension as D. In light of Theorem 4.2, the
question arises as to whether an intersection of infinitely many of these
Warfield valuation domains is a Warfield Prüfer domain. This is never
the case, however, since each of these valuation domains is centered on
the unique maximal ideal of D and a Warfield domain must have finite
character [5, Corollary IV.5.5].

Thus, while yielding an interesting source of Warfield Prüfer domains,
Theorem 4.2 does not provide examples of Warfield Prüfer domains that
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have Krull dimension greater than one and infinitely many maximal
ideals. To my knowledge, examples of Warfield domains of dimension
greater than one but having infinitely many maximal ideals have not
been previously constructed. More generally, the literature does not
seem to contain an example of an almost maximal Prüfer domain of
Krull dimension greater than one but having infinitely many maximal
ideals. See [10, pp. 35 36] for a discussion of this problem.

As a first example of such a phenomenon, we construct, as an
overring of the ring of Puiseaux series, a two-dimensional Warfield
Prüfer domain having infinitely many maximal ideals.

Example 4.3. Let K be a formally real field and x and y be
indeterminates. Then there is a Warfield Prüfer overring of K[[x]][y] of
Krull dimension 2 with infinitely many maximal ideals.

Proof. Let V = K[[x]] and F = K((x)), and let W be the valuation
domain V + yF [y](y). Then W is the pullback of the complete DVR
V and the DVR F [y](y), so W is the Warfield valuation domain [10,
Lemma 4.5]. For each nonzero f ∈ F , define Wf to be the DVR,
F [y](y−f). Set R := W ∩ (∩f∈FWf ) and note that, since W and Wf

each has formally real residue field, R is a Prüfer domain [4, Theorem
2.1.4]. Now the maximal ideal of each Wf lies over the prime ideal
(y − f) of K[[x]][y] and the maximal ideal of W lies over the maximal
ideal (x, y) of K[[x]][y]. Since every nonzero element of F [y] is contained
in at most finitely many of the prime ideals (y − f), f ∈ F , it follows
that the collection {(x, y)} ∪ {(y − f) : 0 �= f ∈ F} of prime ideals of
K[[x][y] has finite character in the sense that every element of K[[x]][y]
is contained in at most finitely many of these prime ideals. Thus the
collection {Wf : f ∈ F}∪ {W} has finite character and, by [17], R is a
finite character Prüfer domain and each localization of R at a maximal
ideal is either W or Wf for some f ∈ F . Thus R is a finite character
Prüfer domain that is locally a Warfield domain; hence R is a Warfield
Prüfer domain [10, Lemma 4.2].

Examination of the justification of Example 4.3 shows that, while the
Warfield Prüfer domain constructed in the proof has infinitely many
maximal ideals, only one of these maximal ideals has height greater
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than one. This leaves the problem of constructing Warfield Prüfer
domains with more diverse prime spectra, and to accomplish this we
leave our geometric setting and work over large power series rings.

If D is a domain and X is a collection of indeterminates for F , then
we adopt the following definition (from several possible) for a ring of
power series over D:

D[[X]] :=
{ ∞∑

i=1

dix
e1i
1 xe2i

2 · · ·xeni
n : di ∈ D and {x1, x2, . . . , xn} ⊆ X

}
.

Theorem 4.4. Let α be a cardinal number and {nβ}β<α be a
sequence of natural numbers. Then there exists a Warfield Prüfer
domain R with maximal ideals {Mβ : β < α} such that for each β,
Mβ has height nβ.

Proof. Let K be a formally real field and, for each β < α, let
Xβ := {xβ,1, xβ,2, . . . , xβ,nβ

} be a set of indeterminates for K. Define
D := K[[Xβ : β < α]] and

Dβ := K((Xγ : γ < α and γ �= β))[[Xβ]].

Then Dβ is a complete regular local ring of Krull dimension nβ so, by
Lemma 4.1, there exiats a Warfield valuation overring Vβ of Dβ of Krull
dimension nβ. Define R := ∩β<αVβ. Then R is a Prüfer domain since
each Vβ has formally real residue field K [4, Theorem 2.1.4]. Moreover,
{Vβ : β < α} is a finite character collection of valuation overrings of
D. This is because each element of D is contained in at most finitely
many of the prime ideals Pβ of D where Pβ is generated by the set
Xβ, and each Vβ is centered on Pβ. Thus R is a finite character Prüfer
domain and {Vβ} is precisely the set of localizations of R at maximal
ideals [17]. It follows that R is locally a Warfield domain. Since R has
finite character, R is a Warfield domain [10, Lemma 4.2], proving the
claim.

Motivated by Theorem 4.4, we pose the following question.

Suppose (X,≤) is a partially ordered set with least element x0 such
that X satisfies the ascending chain condition and, for all x ∈ X with
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x �= x0, the set {y ∈ X : y ≥ x} is linearly ordered. Does there exist
a Warfield Prüfer domain R such that Spec (R) is order isomorphic to
X?

Compare [14, Proposition 5.5] and note that by the referenced result
the converse assertion is true; namely, the prime spectrum of a Warfield
domain satisfies the properties in the supposition.
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York, 1997.

5. L. Fuchs and L. Salce, Modules over non-Noetherian domains, Math. Surveys
Monographs 48, Amer. Math. Soc., Providence, RI, 2001.

6. H.P. Goeters and B. Olberding, Unique decompositions into ideals for Noethe-
rian domains, J. Pure Appl. Algebra 165 (2001), 169 182.

7. , The Krull-Schmidt property for ideals and modules over integral
domains, Rocky Mountain J. Math. 32 (2002), 1409 1429.

8. L. Levy and R. Wiegand, Dedekind-like behavior of rings with 2-generated
ideals, J. Pure Appl. Algebra 37 (1985), 41 58.

9. E. Matlis, Torsion-free modules, University of Chicago Press, Chicago, IL,
1972.

10. B. Olberding, Stability, duality and 2-generated ideals, and a canonical
decomposition of modules, Rend. Sem. Mat. Univ. Padova 106 (2001), 261 290.

11. , On the structure of stable domains, Comm. Algebra 30 (2002),
877 895.

12. , Stability of ideals and its applications, in Ideal-theoretic methods
in commutative algebra (I. Papick and D.D. Anderson, eds.), Marcel-Dekker, New
York, 2001.

13. , Homomorphisms and duality for torsion-free modules, Proc. of
AGRAM Conf. (Perth, Australia, 2000), Contemp. Math., Amer. Math. Soc.,
Providence, RI, 2001.

14. , Globalizing local properties of Prüfer domains, J. Algebra 205 (1998),
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