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VALUES OF LUCAS SEQUENCES
MODULO PRIMES

ZHI-HONG SUN

ABSTRACT. Let p be an odd prime, and a, b be two inte-
gers. It is the purpose of the paper to determine the values
of u(pt1y/2(a,b) (mod p), where {un(a,b)} is the Lucas se-
quence given by ug(a,b) = 0, ui(a,b) = 1 and un41(a,b) =
bun(a,b) — aup—1(a,b) (n > 1). In the case a = —c?, a reci-
procity law is established. As applications we obtain the cri-
teria for plu(,_1y/4(a,b) (if p=1 (mod 4)) and for k € Qo(p)
and k € Q1(p), where Qo(p) and Q1(p) are defined as in [10].

1. Introduction. Let a and b be two real numbers. The Lucas
sequences {u,(a,b)} and {v,(a,b)} are defined as follows:

uo(a,b) =0, wuy(a,b) =1,
Unt1(a,b) = bup(a,b) — auy—1(a,b), n>1;

(1.1)

vo(a,b) =2, wvi(a,b) =Db,

1.2
(12) Unt1(a, b) = bu,(a,b) —av,—1(a,b), n>1.

It is well known that

b+ b2 4a
un(a,b) =
o (< )
(b ) ) (b2 — 4a £ 0)
and

(14)  wnla,b) = <@>+ (@)

2
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Suppose that p is an odd prime. For two integers a and b, it is known
that (see [2], [5])

upi(bz,T“)(a,b) =0 (mod p)

and
b% —4da
D

up(a,b) = (
where () is the Legendre symbol.
Let {F,} be the Fibonacci sequence defined by F,, = u,(—1,1), and
p # 5. In [14] we determined FpTil (mod p) by proving that

) (mod p),

0 (mod p) ifp=1 (mod 4),
(1.5) pr;%> = 2(_1)[%1 (§> 555 (mod p) if p=3 (mod 4)
p
and
p+5 5 p—1
(-5 (2) 5% (mod p) if p=1 (mod 4)
(1.6) F, s, = (p>

p+5

2 (15155 (mod p) if p=3 (mod 4),

where [-] is the greatest integer function.

In [7] the author determined the values of Ppzy (mod p) (the se-

(
quence {P,} is the Pell sequence defined P, = u,(—1,2)) by proving
that

0 (mod p) if p=1 (mod 4),
(1.7) P,z E{ P51, p=3 e
-2 (—-)I=712%5 (mod p) if p=3 (mod 4)
and
(1.8) P,z = ()25 (mod p).

2

Suppose p 1 a(b?® — 4a), (%) =1 and m? = a (mod p). In [8] the
author showed that

b—2m )
(1.9) U%(a,b)z ( D )(modp) 1f(

0 (mod p) if (b2_4“) -1
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and
b? — 4a
0 (mod p) if =1,
(110) wes(a,b) =4 mbO_Zm | (b2—p4a)
E( P )(mOdp) if( p ):_1'

In this paper we will determine wpt1(a,b) (mod p) and vpsi(a,b)
2 2
(mod p) on the condition that (#) =lor (5*) = 1. In the case
a = —c?, the following reciprocity law is established.

(1.11) Let p be an odd prime such that p 1 c¢(b® + 4¢?) and wu, =
un(—c?,b). Then there is a unique element 4, € {1, —1} such that

_{0 (mod p) if p=1 (mod 4),
u 7(1;24;402) QCP 5p(b2 + 462)13773 (mod p) lfp =3 (mod 4)

and

u 2 2
p ()

2

5 p—

2 (p? + 402)71 (mod p) if p=1 (mod 4),
Cp

2 2
L (b e )7 +4%)"5 (mod p) i p=3 (mod 4),

Cp

where

Furthermore, if ¢ is also an odd prime satisfying ¢ t ¢ and p
+¢ (mod (3 — (—1)?)(b? + 4¢?)), then §, = d,.

As an application we obtain the criteria for p | up-1(a,b) (if p =
4

—_

(mod 4) is a prime). In particular we have the following result.

(1.12) Let p=1 (mod 4) be a prime, and b be odd with b* + 4 # p. If
p = 22 + (b? + 4)y? for some integers x and y, then p | uprl(—l, b) if
and only if 4 | zy.
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Let Qo(p) and Q1 (p) be defined as in [10]. In Section 5 we also obtain
the criteria for k € Qo(p) and k € Q1(p).

2. The case (#) = 1. Let Z be the set of integers, i = v/—1 and
Z[i] = {a+bi|a,be Z}. For m =a+ bi € Z[i] the norm of 7 is given
by Nm = 77 = a® + b?. Here 7 means the complex conjugate of .
When b =0 (mod 2) and a4+ b =1 (mod 4) we say that 7 is primary.

If 7 or —7 is primary in Z[é], then we may write 7 = +myms - - - 7,

where 71, ..., are primary primes. For a € Z[i] the quartic Jacobi
symbol (£)4 is defined by (£)a = ()4 (£ )4, where ()4 is the

quartic residue character of a modulo 7, which is given by

(a) {0 if T | o,
ms/a \iT it =" (mod ).

According to [3, pp. 123, 311] or [1, pp. 242-243, 247] the quartic
Jacobi symbol has the following properties:

(2.1) If @ + bi is primary in Z[i], then

i  a?4b2o1 . l-a 1+ La—b-b2-1
( ) =17 14 =1 2 and ( ) =3 E: .
a+bi/4 a+bi/4

(2.2) If a and 7 are relatively prime primary elements in Z[i], then

(5.=(). =)
/e \n/a  \7/4
(2.3) If a4 bi and ¢ + di are relatively prime primary elements in Z[i],

then a+ bi c+ di
a-1 e—1
(c+di)4:(_1) o (a+bi>4'

Now we can give

Theorem 2.1. Let p be an odd prime, a,b € Z, p { a, (#) =1
and s* = 4a — b* (mod p) (s € Z). Then

0 (mod p) if (%) =1,
u, -1 (a,b)= ! (p)

%) %(%)(ﬂ)#(szbl)zf (mod p) if (%):_17
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and

) (mod p) if (
+bi

a,b) =
)4‘ (mod p) if (%) =-1.

p+(—)(
-

p

Proof. From [10, Lemma 2.1] we see that

(55 - (55 -()- )

Thus, if (£) = —1, then

; i\ —1
(s—l-bz) :(s—l-bz) Sy
P 4 P 4

if (2) = —1, then

; i\ —1
(s—|—bz) :_(s+bz) 1
p /4 p /4
If p=1 (mod 4), then t*> = —1 (mod p) for some integer t. Hence

by (1.3) we have

N R =)

2

[(n—=1)/2]
2 n n—2r—1 2 _ 2r+1
/D2 — 4a ; <2r+1)b ( b 4“)

[

r=0
[(n—1)/2]

vy ()@
_t b+s/t b—s/t\"
{es-e50)

— (Qt)ns{(s-‘rbt) ( 1)n_1(8—bt)n} (mod p).
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Suppose p = 22 +y? (v,y € Z) with 2 | y and x +y = 1 (mod 4).
Clearly we may choose the sign of y so that y = zt (mod p). For
T = x + yi it is easily seen that N7 = p and ¢t = y/z =4 (mod 7). So
by using (2.2), we get

(s—;bi>4 _ (s+bi>4

G,
()= (5.5,

ST = () e

It then follows that

(s—i-bt)p%1 = (82 — bth)%(s—i—bi)4 = (4@)%(84_“)4 (mod )

and so that

(s —bt)pT_1 = (i—%?)PTI = (4a)pT_l(s_;bi>;1 (mod 7).

Recall that ¢t =4 (mod 7). By the above we obtain

—(%)ZTIS {5400 — (s— b7}

o {5, (25,
{0 (mod p) if (%) =1,

L —a)t -2(52’”)4 (mod 7) if (%) = -1

u%(a,b) =
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and
upsi (a,b) = (Qt)iTls{(erbt)% +(s—bt)p_21}
E%{<s+bﬂ(8;m)4+< s-m (1)
= o (-a) 41{(s—|—bt)(s+bi) o b) }
(—a) (‘S;bi)4 (mod 7) if (5) —1,

é(—a)”%(”b")ﬂ' (mod ) if (%) _

§ p
Since both sides of the above congruences are rational, the congruences
are also true when 7 is replaced by p (= N).

If p =3 (mod 4), one can similarly prove that
i

n(a,b) = 70—

un(a,?) (20)ms

Since (s+ bi)? = s — bi (mod p), we see that

{(s+b)" + (~1)" " (s = b))"} (mod p).

+

(29, = 0 = (T o)
Thus,
(s—i—bz)% = (s? —|—b2)% (s—;bz);l = (4a)% (S—;bl)_l (mod p)
and
(s—bz)% 5(32+b2)% (8262)4:(4@% (S+bz> (mod p)
Hence,

Umzl(%b) = (QZ)ZPTIS (4 )pTl {(S—;bz)41 B (5—;61)4}
0 (mod p) if (E) =1,
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) p+1 s+bin-1 1 s+ b 1
= —— (4a) *
(Qi)%ls(a) ! {( P )4 s—|—bi+( D >4s—bi}

Combining the above we obtain the result.

4(L—b2) =1

Corollary 2.1. Let p be an odd prime, a,b € Z, p 1 a, ( >

and s* = 4a — b* (mod p) for s € Z. Then

v, 1, (0,h) = 2(_”)%%)(8;%)4 mod p) if () =1
p—(zH (B V) = a
z 0 (mod p) if (5> = -1,
and
), ot (2
vp+( 1)((171)) - -1 » 5_|_bi . . a
_ ?)(—a)[Z]s( " )42 (mod p) if (;) =-1.

Proof. Let u, = uy(a,b) and v, = v,(a,b). It follows from (1.3)
and (1.4) that u,, = (2v,41 — bv,)/(b? — 4a) and v, = 2u,41 — bu, =
buy, — 2at,—1 (n > 1). Thus,

(2.4) Upy = 2upp —bup—1 and Vpa = bu% —2aUp-1.

2 2

This together with Theorem 2.1 proves the corollary.

3. The case () =1.
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Lemma 3.1. Let p be an odd prime, a,b € Z and o' = Iﬁff“‘. Then

() s (@,0) = = (= Jusn (¢,1) (mod p);
(i) usga(a,8) = 5 (3)ven (@) (mod p)
(iii) vpi (a,b) = (%)u%ﬂ(a/,b) (mod p);
(iv) vpp1 (a,) = (%)%i(a’,b) (mod p).

Proof. By induction one can easily prove the following known result,
see [6]:

[n/2]

n—r T 1n—2r
e — > .
Un+1(a,b) ZO( ., )( a)"b , n>0
Forr=0,1,... ,[%] it is clear that
o —
T T p_;lpz;gpz;l_']ﬂ_,_l)r'
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and hence
1/2 b? — 4a’
/ = — —_— —1 —_— .
upt (a',b) = 5 ( )vp2 ( ,b) (mod p)
That is,
— 2 /!
Up (a,b) =2 (Z—))Upﬁz»l (a',b) (mod p).

If p b, by using (2.4) and the above we derive

uprl(a, b) = (2upT+1(a7 b) — Vp1 (a,b))

(3)eeps @)= 5 (2)uspat

p 2

= —(%)“%(G"b) (mod p)-

S = O

If p | b, by using (1.3) we also have

upTa(a,b)

1l
I
~~

Hence

v%(a, b) = bu%(a, b) — 2au%(a, b)
b /2 2
=3 (—)v?(a', b) + 2(1(]_))11417_;1(0/, b)

p
= (%)v%(a’,b) (mod p).

The proof is now complete.
We are now ready to give

Theorem 3.1. Let p be an odd prime, a,b € Z, p 1 a(b*> — 4a),
(5%) =1 and c? = —a (mod p) for c € Z.
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(i) If p=1 (mod 4), then

0 (mod p) if (b2;4a> =1,
u%(a,b)z 1., p—1 (b—2ci b2 —4a

_E(b —4a) ( » ) i (mod p) zf( , ):—17
and

(b2_4a)p11 b—2ci (mod p) if b2 —4a _1
| (58

0 (mod p) if (b ;4@):_1.

(ii) If p=3 (mod 4), then

2(b? —4a)%(b_26i>4 (mod p) if (b2;4a)_1’
up-1(a,b)= .

g(b2_4a)‘%3(b‘p2“)4i (mod p) if (b2;4“)_—1
and

b(b2—4a)p73 b 2ci (mod p) if b'—da =1,
S T O

_20(b2—4a)ﬂ( pcz)4l( od p) zf( ’ a):—l.

Proof. Let a' € Z be such that a/ = szf““ (mod p). Then
clearly (2¢)?2 = —4a = 4a’ — b (mod p). Also, u,(a’,b) = u,((b* —
4a)/4,b) (mod p) and v,(a’,b) = v,((b* — 4a)/4,b) (mod p). Now,
using Theorem 2.1 and Corollary 2.1 for the Lucas sequence {u,,(a’,b)}
and then applying Lemma 3.1 and the fact that

(202171')4 _ (%)4(b—p2ci>4 _ (%)(b—chiL
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we obtain the result.

Remark 3.1. Suppose that p is a prime of the form 4n + 3, b,c € Z,
2 2
p1tcand (H%) = —1. In [11] the author proved that

upi (—c?,0) c AN
() =) (),

Now it is an easy consequence of Theorem 3.1.

Corollary 3.1. Let p be an odd prime, a,b € Z, p 1 a(b? — 4a),
(5% =1 and c? = —a (mod p) for c € Z.

(i) If p=1 (mod 4), then

2(b2—4a)pT_1(b_p26i)4 (mod p) if (62;4(1)—1,
vp-1(a,b)= '
’ g(b2—4a)p%1(b_p2m)4i (mod p) if (b2;4a):_1
and
b(b2_4a)p71(b—p20i) (mod p) if (b2;4a)_17
v%(a,b)z 9 po1 /b—2ci\ . o rb*—4a
—2¢(b*—4a) 7 ( ) )42 (mod p) zf( ’ ):—1.

(ii) If p=3 (mod 4), then

Uprl(cub)

0 (mod p) if (b2—4a> =1,
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Proof. This is immediate from (2.4) and Theorem 3.1.
4. The reciprocity law for u%(—CQ, b) (mod p).

Lemma 4.1. Let p and q be two positive odd numbers, b,c € Z,
ged (b2 + 4c?,pq) = 1 and p = +q(mod (3 — (—1)°)(b? + 4¢?)). Then

(b +p20i)4 _ (b +q20i)4~

Proof. If b =1 (mod 2), then (—1)12_71“‘0(1) + 2¢i) is primary. Using
(2.3), we see that

b .
( +p202)4 _

' ()=
((—1)%+c(bi2m’))4

(
()= ¢q b+ 2c
Lt '))4_ ( >4'

q
If b=0 (mod 2), then clearly
(3 — (=1)")(b% + 4c?) = 2(b* + 4c%) = 8((b/2)* + c2).
Thus, according to the proof of Theorem 2.1 of [10] we have
(b+20i) _ (b/2+ci) _ (M) _ (M) .
p 4 p 4 q 4 q 4

This completes the proof.

Now we present the following reciprocity law for u =1 (—c?,b) (mod p).
2

Theorem 4.1. Let b,c € Z, uyp =0, uy =1, upy1 = bu, + up_1
(n > 1), and let p be an odd prime such that p 1 c(b>+4c?). Then there
is a unique element 6, € {1,—1} such that

_{O (mod p) if p=1 (mod 4),
U, 2¢, 6,(b + 4¢2)" T (mod p) if p=3 (mod 4)



1136 Z.-H. SUN

and

u 2 2
pt (2L,

<SRN

2 (1 4 4¢2)" T (mod p) if p=1 (mod 4),
Cp

2 2
%(Hi)(bQ —1—402)% (mod p) if p=3 (mod 4),

Cp
where
1

)

(b2 +4c?
1 zf( » )
L b% +4c?
c zf( » ) =—1.
Furthermore, if q is also an odd prime satisfying ¢ 1 ¢ and p =
+q(mod (3 — (—=1)%)(b% + 4c?)), then &, = &,. Moreover,

(b+p20i)4 if<b2 —11—)4c2> _1

(b+p20i)4i if (b2 —;402) _

Cp:

(4.1) 5, =

Proof. Let 6, be defined by (4.1). Since (b+p2“i)i = (b2+p4c2) by [10,
Lemma 2.1] we see that §, € {1, -1} and

(b—chi)4 _ (b +p20i)4 _ (b +p20i);1 _ (b +p20i)z

_ (b+20i)4(b2 +402>'

p p
So ) 2 )
— 2ci 4
(), 1 ()=
5. = p 4 p
p = 2 2
, 4
—(b*—?) i if(b +ie ):—1.
p 4 p
Now putting a = —c? in Theorem 3.1, we see that the congruences in

Theorem 4.1 hold.
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If ¢ is also an odd prime satisfying ¢ t ¢ and p = £g(mod (3 —

(=1)®)(b* + 4c?)), then (%)4 = (%)4 by Lemma 4.1. Since

b+ 2ciy 2 b2 + 4c? b+ 2ciy 2 b2 + 4c¢?
(), =) ma (), =)
p /4 p q /4 q

we see that §, = d,. Hence the theorem is proved.

Remark 4.1. (1) We note that the appearance of all the zero-values
modulo p in Theorems 2.1, 3.1 and 4.1 can be inferred from the following
result given in [4, p. 441], which is due to Lehmer. If a,b € Z, (¢) =1

v
and p t b? — 4a, then

iz, (D) =0 (modp).

2

(2) In a similar way one can establish a reciprocity law for the Lucas

sequence {un(bzic2 ,b)} where b and c¢ are integers.

(3) Suppose that p > 3 is a prime and that a and b are integers. For
the values of u,_(»)(a,b) (mod p) one may consult [9] and [13].
3

Let 6, and ¢, be defined as in Theorem 4.1. From Theorem 4.1, we
see that

(4.2)
cp(bz+402)’pT_lup+(,,2+4c2) (—c%,b) (mod p) if p=1 (mod 4),
P
0p= Cp 12 2\ 2 2 2 ;
?(b +4c¢%) w,, 2iae2 (=%, b) (mod p) if p=3 (mod 4).

2

Thus, putting b =c =1 we find 3 = —1, 07 = 1, 611 = —1 and d19 = 1.
Hence

b3 =—1 ifp=+3

o7 =1 if p=47

(mod 20),
0p = (
(
(

mod 20
mod 20
mod 20

511:—1 1pr:|:9
(519:1 ipril

= (—1)[5] (g)

)

)
)
)
)
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Applying Theorem 4.1 gives (1.5) and (1.6).
Taking b = 2 and ¢ = 1 in (4.2) we find 03 = 1, §5 = —1, 7 = —1

and d;7 = 1. Hence
03=1 ifp=43

55 =—1 ifp=+5

(mod 16),
oy = (
(
(

mod 16
mod 16
mod 16

br=—-1 ifp=47
=1 ifp=41

(252

)

)
)
)
)

(=1)

Using Theorem 4.1 yields (1.7) and (1.8).

Corollary 4.1. Let ug =0, u; =1, upt1 = 3up +up—1 (n>1) and
let p # 3,13 be an odd prime. Then

B {O (mod p) if p=1 (mod 4),
»5) T | 26,135 (mod p) if p=3 (mod 4)

and

Op - 135 (mod p) if p=1 (mod 4),
AR - 35p<§) 135 (mod p) if p=3 (mod 4),
p

IS
k-
3
<k
|

5 _ {1 if p=F1,527,%0 %11, £33 (mod 52),
P71 if p=+3,415, 417,419, 421,425 (mod 52).

Proof. Putting b =3 and ¢ =1 in (4.2), we see that

653:65:57:643:511:523:1
and

0101 = 037 = 017 = 019 = 031 = 079 = —L.
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Thus, applying Theorem 4.1 we obtain the result.

5. The criteria for k£ € Q.(p) and p | up-1(a,b). For positive
4

integer p, let S, denote the set of those rational numbers whose
denominator is prime to p. Following [10], define

Q- (p) = {k‘ (k:;i>4:ir, kJESp} for r=0,1,2,3.

Now, using Theorem 3.1 we give the following criteria for k € Qo(p)
and k € Q1(p).

Theorem 5.1. Let p be an odd prime and k € Z with k* # 0, £1
(mod p). Then

(i) k € Qo(p) if and only if

(—kz—l)% (mod p) if p=1 (mod 4),

pr1(—1,2k) = —3
uT( 1,2 ) {_k(—kz—l)pT (modp) if p=3 (mod 4).

(ii) k € Q1(p) if and only if

Uyt (—1,2k) = { ‘(‘kQ‘l)%g(mod p) if p=1 (mod 4),
’ —k(=k*~1)"T (mod p) if p=3 (mod 4).

Proof. Let a = —1, b =2k and ¢ = —1. Then clearly

oty ma () - () (),

Note that 2"z = (2) = (=) (mod p) and (k;i)i = (%) by
[10, Lemma 2.1]. Applying the above and Theorem 3.1, we obtain the

desired result.

Let p = 1 (mod 4) be a prime, a,b € Z, p 1 a(b? — 4a) and

(%) = (1727#4“) = 1. Tt follows from Remark 4.1 that p | upTa(a,b).
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Since ugy (a,b) = up(a,b)v,(a,b) (see [5]), we see that p|upT_1(a,b) or
D | Uprl(cu b).

Now we give the criteria for p|luy-1(a,b).
4

Theorem 5.2. Letp =1 (mod 4) be a prime, a,b € Z, pt a(b*—4a),
(52) = (4“1.%”2) =1,c® = —a (mod p) and s*> = 4a—b* (mod p). Then
the following statements are equivalent:

() p | (a,)
L (-2,

(iii) (bZSi)4=(—1)%(8;bi)4=1.

Proof. From [9, Lemma 6.1], we know that p | u,(a,b) if and only if
van(a,b) = 2a™ (mod p). So we have

D | up%l(a,b) = v%(a,b) =2 T (mod p).
Hence, using Corollary 3.1 and the fact that

(4a — 172)13%1 =5z = (%) (mod p)

we obtain
p|up(a,b) <= 2(b* — ZLCL)I%1 (b_ZCi) =24"T (mod p)
=7 p 4
p=1 (b—2ci p—1 c
— 2 4 = (— 1 = —
< (4a—b) ( p )4 =(—a)* = (p) (mod p)
2

=) -G -0,

So (i) is equivalent to (ii).
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Since (3) = (5*) = 1, in view of Corollary 2.1 we find that

D | uprl(a,b) = vafl(a,b) =2 T (mod p)

b— b. pP—
= 2(—a)Tl (S+ Z)4 =2 T (mod p)

. p
PN <s+bz>4 _ (_1);,771
(5, = (5 =
= () = (0,52, = () e <

Thus, (i) is equivalent to (iii). Hence the proof is complete.
Using Theorem 5.2 we can prove

Theorem 5.3. Let p=1 (mod 4) be a prime, and let b be odd with
b2+4 #p. If p= 22+ (b*+4)y? for some x,y € Z, then p | U/p%l(—17b)
if and only if 4 | xy.

Pmof Clearly p { b* +4 and (§)* = —(b* +4) (mod p). Suppose

= —(b2 +4) (mod p), = 2%(2 { x0) and y = 2°yo(2 { yo). Then

s =+ 7 (mod p) and so (5) = (3)(£). Using the Jacobi symbol, we
see that

)

2
- (),

(5%
- (S5a ) ()
2.

(by using [10, Lemma

( —1pb+2z))
.= (s (750,
)2

@ B2
(%)

+ 24
=
1))

= (D)) Oy D),
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and

(5)-EE-ENE®) -0 ()
() (E e

() (B e (),

Hence by Theorem 5.2 we have

plusn(=10) = (2) =

b+2i)
p /4

= (~1)EF ) = (1o,
If =0, then 242 and so 2 | y. Clearly,
p=a?+ B +4)y?=1+5y2=3-2(-1)"? (mod 8).

So we have (—1)pr1'3 = 1if and only if 4 | y.
If 3=0, then 2ty and so 2 | z. Since

p=a?+ WP+ =22 +52 =22 +5=3+2(-1)"? (mod 8)

we see that (—1)pr1‘y = (=1)*if and only if 4 | .
Observe that  Z y (mod 2) and hence « = 0 or 8 = 0. By the above
we get
plups (<1,0) <= (-1)"T ) = (-1)°

4|z or 4|y<=4]axy.

This proves the theorem.

Remark 5.1. Let {F,} be the Fibonacci sequence, and let p = 1,9
(mod 20) be a prime. Then clearly p = 22 + 5y? for some z,y € Z.
Hence it follows from Theorem 5.3 that p | F' ot if and only if 4 | zy.

This result was given in [14].
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Corollary 5.1. Let p = 1 (mod 4) be a prime, and b be odd with
b2 +4 # p. If p is represented by 12 +16(b% +4)y? or 1622 + (b% +4)y?,
then p | ’LLprl(—].,b).

Corollary 5.2. Let p # 13 be a prime of the form 4n 4+ 1. Then
D | 'U;p%l(—l,g) if and only if p can be represented by =2 + 208y> or

1622 + 13y2.

Proof. Set u, = un(—1,3). If p | up-1, then p | up—1 since
4 2

4

Up—1 = up-10p-1(—1,3) (see [5]). Thus, applying Theorem 3.1, we
4
(13) = 1. If p = 22 4 208y? or 1622 + 13y? (x,y € Z), then

Now assume (%) = 1. Since p = 1 (mod 4), from the theory of

binary quadratic forms we know that p = 22 + 13y? for some z,y € Z.
Hence, applying Theorem 5.3, we get

plups < p=2a?+13y* with 4|zy
4
= p=a2>4+16-13y> or 16a2+ 13y>.

This is the result.

Remark 5.2. Let p = 1 (mod4) be a prime and b € Z with
(1’2‘7*4) = 1. Then p | Up—1 (—1,b) if and only if p can be represented by
one of the primitive (integral) binary quadratic forms Az?+2Bzy+Cy?
of discriminant —4(3 — (—1)*)2(b? + 4) with the condition that 2 A

and (G=CUD0EBY) g Thig result will be published in [12].

In the end we pose the following two conjectures. The two conjectures
have been checked for all primes less than 3000.

Conjecture 5.1 (see [8]). Let p =3 (mod 8) be a prime, and hence
p = x24+2y? for some integers x and y. If P, is the Pell sequence given
by Po=0, P, =1 and P11 =2P,+ P,_1 (n > 1), then

2
— (=)
PpTl = I% (mod p).
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Conjecture 5.2. Let p = 3,7 (mod 20) be a prime, and hence
2p = 1245y for some integers x andy. If F, is the Fibonacci sequence
given by Fo =0, F1 =1 and F,,11 = F,, + F,_1 (n > 1), then

p—5 p—3 _ 1
2(-1)"w ] 105 (mod p) if y= ipT (mod 8),

ba L p “1
—o(~1)I5) - 1057 (mod p) if y#£+ pT (mod 8).

REFERENCES

1. B.C. Berndt, R.J. Evans and K.S. Williams, Gauss and Jacobi sums, Wiley,
New York, 1998.

2. L.E. Dickson, History of the theory of mumbers, Vol. I, Chelsea, New York,
1952, 393-407.

3. K. Ireland and M. Rosen, A classical introduction to modern number theory,
Springer, New York, 1982.

4. D.H. Lehmer, An extended theory of Lucas’ functions, Ann. Math. 31 (1930),
419-448.

5. P. Ribenboim, The book of prime number records, 2nd ed., Springer, Berlin,
1989, pp. 44-50.
6. Z.H. Sun, Combinatorial sum ZZ:O k=r (mod m) (Z) and its applications

in number theory I, J. Nanjing Univ. Math. Biquarterly 9 (1992), 227-240.
MR94a:11026.

7. ——, Combinatorial sum EZ:O,kEr (mod m) (2) and its applications
in number theory II, J. Nanjing Univ. Math. Biquarterly 10 (1993), 105-118.
MR94j:11021.

8. , Combinatorial sum Zkzr (mod m) (Z) and its applications in number
theory III, J. Nanjing Univ. Math. Biquarterly 12 (1995), 90-102. MR96g:11017.

9. ——— On the theory of cubic residues and nonresidues, Acta Arith. 84
(1998), 291-335. MR99c:11005.

10. , Supplements to the theory of quartic residues, Acta Arith. 97 (2001),
361-377. MR2002c¢:11007.

11. , Notes on quartic residue symbol and rational reciprocity laws, J.
Nanjing Univ. Math. Biquarterly 9 (1992), 92-101. MR94b:11007.

12. , Quartic residues and binary quadratic forms, J. Number Theory,
submitted.
13. , Cubic and quartic congruences modulo a prime, J. Number Theory

102 (2003), 41-89.



VALUES OF LUCAS SEQUENCES 1145

14. Z.H. Sun and Z.W. Sun, Fibonacci numbers and Fermat’s last theorem, Acta
Arith. 60 (1992), 371-388. MR93e:11025.

DEPARTMENT OF MATHEMATICS, HUAIYIN TEACHERS COLLEGE, HUAIAN, JIANGSU
223001, P.R. CHINA
E-mail address: hyzhsun@public.hy.js.cn



