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VALUES OF LUCAS SEQUENCES
MODULO PRIMES

ZHI-HONG SUN

ABSTRACT. Let p be an odd prime, and a, b be two inte-
gers. It is the purpose of the paper to determine the values
of u(p±1)/2(a, b) (mod p), where {un(a, b)} is the Lucas se-

quence given by u0(a, b) = 0, u1(a, b) = 1 and un+1(a, b) =
bun(a, b) − aun−1(a, b) (n ≥ 1). In the case a = −c2, a reci-
procity law is established. As applications we obtain the cri-
teria for p|u(p−1)/4(a, b) (if p ≡ 1 (mod 4)) and for k ∈ Q0(p)

and k ∈ Q1(p), where Q0(p) and Q1(p) are defined as in [10].

1. Introduction. Let a and b be two real numbers. The Lucas
sequences {un(a, b)} and {vn(a, b)} are defined as follows:

(1.1)
u0(a, b) = 0, u1(a, b) = 1,

un+1(a, b) = bun(a, b) − aun−1(a, b), n ≥ 1;

(1.2)
v0(a, b) = 2, v1(a, b) = b,

vn+1(a, b) = bvn(a, b) − avn−1(a, b), n ≥ 1.

It is well known that

(1.3)
un(a, b) =

1√
b2 − 4a

((b+
√
b2 − 4a
2

)n

−
(b−√

b2 − 4a
2

)n
)

(b2 − 4a �= 0)

and

(1.4) vn(a, b) =
(
b+

√
b2 − 4a
2

)n

+
(
b−√

b2 − 4a
2

)n

.
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Suppose that p is an odd prime. For two integers a and b, it is known
that (see [2], [5])

u
p−( b2−4a

p )
(a, b) ≡ 0 (mod p)

and

up(a, b) ≡
(b2 − 4a

p

)
(mod p),

where ( ·
p ) is the Legendre symbol.

Let {Fn} be the Fibonacci sequence defined by Fn = un(−1, 1), and
p �= 5. In [14] we determined F p±1

2
(mod p) by proving that

(1.5) F p−( 5
p

)

2

≡



0 (mod p) if p ≡ 1 (mod 4),

2(−1)[
p+5
10 ]

(5
p

)
5

p−3
4 (mod p) if p ≡ 3 (mod 4)

and

(1.6) F p+( 5
p

)

2

≡

 (−1)[

p+5
10 ]

(5
p

)
5

p−1
4 (mod p) if p ≡ 1 (mod 4)

(−1)[
p+5
10 ]5

p−3
4 (mod p) if p ≡ 3 (mod 4),

where [ · ] is the greatest integer function.

In [7] the author determined the values of P p±1
2

(mod p) (the se-
quence {Pn} is the Pell sequence defined Pn = un(−1, 2)) by proving
that

(1.7) P p−( 2
p

)

2

≡
{

0 (mod p) if p ≡ 1 (mod 4),

(−1)[
p+5
8 ]2

p−3
4 (mod p) if p ≡ 3 (mod 4)

and

(1.8) P p+( 2
p

)

2

≡ (−1)[
p+1
8 ]2[ p

4 ] (mod p).

Suppose p � a(b2 − 4a), (a
p ) = 1 and m2 ≡ a (mod p). In [8] the

author showed that

(1.9) u p+1
2

(a, b) ≡




(b− 2m
p

)
(mod p) if

(b2 − 4a
p

)
= 1,

0 (mod p) if
(b2 − 4a

p

)
= −1,
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and

(1.10) u p−1
2

(a, b) ≡




0 (mod p) if
(b2 − 4a

p

)
= 1,

1
m

(b− 2m
p

)
(mod p) if

(b2 − 4a
p

)
= −1.

In this paper we will determine u p±1
2

(a, b) (mod p) and v p±1
2

(a, b)

(mod p) on the condition that ( 4a−b2

p ) = 1 or (−a
p ) = 1. In the case

a = −c2, the following reciprocity law is established.

(1.11) Let p be an odd prime such that p � c(b2 + 4c2) and un =
un(−c2, b). Then there is a unique element δp ∈ {1,−1} such that

u
p−( b2+4c2

p
)

2

≡
{ 0 (mod p) if p ≡ 1 (mod 4),

2cp δp(b2 + 4c2)
p−3
4 (mod p) if p ≡ 3 (mod 4)

and

u
p+( b2+4c2

p
)

2

≡




δp
cp

(b2 + 4c2)
p−1
4 (mod p) if p ≡ 1 (mod 4),

δp b

cp

(b2 + 4c2

p

)
(b2 + 4c2)

p−3
4 (mod p) if p ≡ 3 (mod 4),

where

cp =




1 if
(b2 + 4c2

p

)
= 1,

c if
(b2 + 4c2

p

)
= −1.

Furthermore, if q is also an odd prime satisfying q � c and p ≡
±q (mod (3 − (−1)b)(b2 + 4c2)), then δp = δq.

As an application we obtain the criteria for p | u p−1
4

(a, b) (if p ≡ 1
(mod 4) is a prime). In particular we have the following result.

(1.12) Let p ≡ 1 (mod 4) be a prime, and b be odd with b2 + 4 �= p. If
p = x2 + (b2 + 4)y2 for some integers x and y, then p | u p−1

4
(−1, b) if

and only if 4 | xy.
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Let Q0(p) and Q1(p) be defined as in [10]. In Section 5 we also obtain
the criteria for k ∈ Q0(p) and k ∈ Q1(p).

2. The case ( 4a−b2

p ) = 1. Let Z be the set of integers, i =
√−1 and

Z[i] = {a+ bi | a, b ∈ Z}. For π = a+ bi ∈ Z[i] the norm of π is given
by Nπ = ππ̄ = a2 + b2. Here π̄ means the complex conjugate of π.
When b ≡ 0 (mod 2) and a+ b ≡ 1 (mod 4) we say that π is primary.

If π or −π is primary in Z[i], then we may write π = ±π1π2 · · ·πr,
where π1, . . . , πr are primary primes. For a ∈ Z[i] the quartic Jacobi
symbol (α

π )4 is defined by (α
π )4 = ( α

π1
)4 · · · ( α

πr
)4, where ( α

πs
)4 is the

quartic residue character of α modulo πs which is given by( α
πs

)
4

=
{

0 if πs | α,
i r if α

Nπs−1
4 ≡ i r (mod πs).

According to [3, pp. 123, 311] or [1, pp. 242 243, 247] the quartic
Jacobi symbol has the following properties:

(2.1) If a+ bi is primary in Z[i], then( i

a+ bi

)
4

= i
a2+b2−1

4 = i
1−a
2 and

( 1 + i
a+ bi

)
4

= i
a−b−b2−1

4 .

(2.2) If α and π are relatively prime primary elements in Z[i], then(α
π

)
4

=
(α
π

)−1

4
=

( ᾱ
π̄

)
4
.

(2.3) If a+ bi and c+ di are relatively prime primary elements in Z[i],
then (a+ bi

c+ di

)
4

= (−1)
a−1
2 · c−1

2

(c+ di
a+ bi

)
4
.

Now we can give

Theorem 2.1. Let p be an odd prime, a, b ∈ Z, p � a, ( 4a−b2

p ) = 1
and s2 ≡ 4a− b2 (mod p) (s ∈ Z). Then

u
p−(−1

p
)

2

(a, b)≡




0 (mod p) if
(a
p

)
=1,

2
s

(−1
p

)
(−a)

p−(−1
p

)

4

(s+ bi
p

)
4
i (mod p) if

(a
p

)
=−1,
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and

u
p+( −1

p
)

2

(a, b) ≡




(−a)[ p
4 ]

(s+ bi
p

)
4

(mod p) if
(a
p

)
= 1,

b

s
(−a)[ p

4 ]
(s+ bi

p

)
4
i (mod p) if

(
a
p

)
= −1.

Proof. From [10, Lemma 2.1] we see that
(s+ bi

p

)2

4
=

(s2 + b2

p

)
=

(4a
p

)
=

(a
p

)
.

Thus, if (a
p ) = −1, then

(s+ bi
p

)
4

=
(s+ bi

p

)−1

4
= ±1;

if (a
p ) = −1, then

(s+ bi
p

)
4

= −
(s+ bi

p

)−1

4
= ± i.

If p ≡ 1 (mod 4), then t2 ≡ −1 (mod p) for some integer t. Hence
by (1.3) we have

un(a, b) =
1√

b2 − 4a

((b+
√
b2 − 4a
2

)n

−
(b−√

b2 − 4a
2

)n
)

=
2

2n
√
b2 − 4a

[(n−1)/2]∑
r=0

(
n

2r + 1

)
bn−2r−1

(√
b2 − 4a

)2r+1

=
2
2n

[(n−1)/2]∑
r=0

(
n

2r + 1

)
bn−2r−1(b2 − 4a)r

≡ 2
2n

[(n−1)/2]∑
r=0

(
n

2r + 1

)
bn−2r−1

(s
t

)2r+1 t

s

=
t

s

{(b+ s/t
2

)n

−
(b− s/t

2

)n
}

=
t

(2t)ns

{
(s+ bt)n + (−1)n−1(s− bt)n

}
(mod p).
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Suppose p = x2 + y2 (x, y ∈ Z) with 2 | y and x + y ≡ 1 (mod 4).
Clearly we may choose the sign of y so that y ≡ xt (mod p). For
π = x+ yi it is easily seen that Nπ = p and t ≡ y/x ≡ i (mod π). So
by using (2.2), we get

(s+ bi
p

)
4

=
(s+ bi

π

)
4

(s+ bi
π̄

)
4

=
(s+ bi

π

)
4

(s− bi
π

)
4

=
(s+ bi

π

)
4

(s− bi
π

)−1

4

≡
(s+ bi
s− bi

) p−1
4 ≡

(s+ bt
s− bt

) p−1
4

(mod π).

It then follows that

(s+ bt)
p−1
2 ≡ (s2 − b2t2) p−1

4

(s+ bi
p

)
4
≡ (4a)

p−1
4

(s+ bi
p

)
4

(mod π)

and so that

(s− bt) p−1
2 =

(s2 − b2t2
s+ bt

) p−1
2 ≡ (4a)

p−1
4

(s+ bi
p

)−1

4
(mod π).

Recall that t ≡ i (mod π). By the above we obtain

u p−1
2

(a, b) ≡ t

(2t)
p−1
2 s

{
(s+ bt)

p−1
2 − (s− bt) p−1

2

}

≡ t

s
(−a) p−1

4

{(s+ bi
p

)
4
−

(s+ bi
p

)−1

4

}

≡




0 (mod p) if
(a
p

)
= 1,

i

s
(−a) p−1

4 · 2
(s+ bi

p

)
4

(mod π) if
(a
p

)
= −1
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and

u p+1
2

(a, b) ≡ t

(2t)
p+1
2 s

{
(s+ bt)

p+1
2 + (s− bt) p+1

2

}

≡ (4a)
p−1
4 t

(2t)
p+1
2 s

{
(s+ bt)

(s+ bi
p

)
4

+ (s− bt)
(s+ bi

p

)−1

4

}

≡ 1
2s

(−a) p−1
4

{
(s+ bt)

(s+ bi
p

)
4

+ (s− bt)
(s+ bi

p

)−1

4

}

≡




(−a) p−1
4

(s+ bi
p

)
4

(mod π) if
(a
p

)
= 1,

b

s
(−a) p−1

4

(s+ bi
p

)
4
i (mod π) if

(a
p

)
= −1.

Since both sides of the above congruences are rational, the congruences
are also true when π is replaced by p (= Nπ).

If p ≡ 3 (mod 4), one can similarly prove that

un(a, b) ≡ i

(2i)ns
{(s+ bi)n + (−1)n−1 (s− bi)n} (mod p).

Since (s+ bi)p ≡ s− bi (mod p), we see that(s+ bi
p

)
4
≡ (s+ bi)

p(p+1)
4 − p+1

4 ≡
(s− bi
s+ bi

) p+1
4

(mod p).

Thus,

(s+ bi)
p+1
2 ≡ (s2 + b2)

p+1
4

(s+ bi
p

)−1

4
≡ (4a)

p+1
4

(s+ bi
p

)−1

4
(mod p)

and

(s− bi) p+1
2 ≡ (s2 + b2)

p+1
4

(s+ bi
p

)
4
≡ (4a)

p+1
4

(s+ bi
p

)
4

(mod p).

Hence,

u p+1
2

(a, b) ≡ i

(2i)
p+1
2 s

(4a)
p+1
4

{(s+ bi
p

)−1

4
−

(s+ bi
p

)
4

}

=




0 (mod p) if
(a
p

)
= 1,

− 2
s

(−a) p+1
4

(s+ bi
p

)
4
i (mod p) if

(a
p

)
= −1
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and

u p−1
2

(a, b) ≡ i

(2i)
p−1
2 s

{
(s+ bi)

p−1
2 + (s− bi) p−1

2

}

≡ i

(2i)
p−1
2 s

(4a)
p+1
4

{(s+ bi
p

)−1

4

1
s+ bi

+
(s+ bi

p

)
4

1
s− bi

}

≡




(−a) p−3
4

(s+ bi
p

)
4

(mod p) if
(a
p

)
= 1,

b

s
(−a) p−3

4

(s+ bi
p

)
4
i (mod p) if

(a
p

)
= −1.

Combining the above we obtain the result.

Corollary 2.1. Let p be an odd prime, a, b ∈ Z, p � a, ( 4a−b2

p ) = 1
and s2 ≡ 4a− b2 (mod p) for s ∈ Z. Then

v
p−( −1

p
)

2

(a, b) ≡




2(−a)
p−(−1

p
)

4

(s+ bi
p

)
4

(mod p) if
(a
p

)
= 1,

0 (mod p) if
(a
p

)
= −1,

and

v
p+( −1

p
)

2

(a, b) ≡




(−1
p

)
(−a)[ p

4 ]b
(s+ bi

p

)
4

(mod p) if
(a
p

)
= 1,

−
(−1
p

)
(−a)[ p

4 ]s
(s+ bi

p

)
4
i (mod p) if

(a
p

)
= −1.

Proof. Let un = un(a, b) and vn = vn(a, b). It follows from (1.3)
and (1.4) that un = (2vn+1 − bvn)/(b2 − 4a) and vn = 2un+1 − bun =
bun − 2aun−1 (n ≥ 1). Thus,

(2.4) v p−1
2

= 2u p+1
2

− bu p−1
2

and v p+1
2

= bu p+1
2

− 2au p−1
2
.

This together with Theorem 2.1 proves the corollary.

3. The case (−a
p ) = 1.
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Lemma 3.1. Let p be an odd prime, a, b ∈ Z and a′ = b2−4a
4 . Then

u p−1
2

(a, b) ≡ −
(2
p

)
u p−1

2
(a′, b) (mod p);(i)

u p+1
2

(a, b) ≡ 1
2

(2
p

)
v p−1

2
(a′, b) (mod p);(ii)

v p−1
2

(a, b) ≡ 2
(2
p

)
u p+1

2
(a′, b) (mod p);(iii)

v p+1
2

(a, b) ≡
(2
p

)
v p+1

2
(a′, b) (mod p).(iv)

Proof. By induction one can easily prove the following known result,
see [6]:

un+1(a, b) =
[n/2]∑
r=0

(
n− r
r

)
(−a)r bn−2r, n ≥ 0.

For r = 0, 1, . . . , [p−1
4 ] it is clear that

(
p−1
2 − r
r

) /(
p−1
2
2r

)
=

(2r)!
p−1
2 · p−3

2 · · · (p−1
2 − r + 1) · r!

≡ (−2)r · (2r)!
1 · 3 · · · (2r − 1) · r! = (−4)r (mod p).

Thus,

u p+1
2

(a, b) =
[(p−1)/4]∑

r=0

(
p−1
2 − r
r

)
(−a)r b

p−1
2 −2r

≡
[(p−1)/4]∑

r=0

(
p−1
2
2r

)
(b2 − 4a′)r b

p−1
2 −2r

=
1
2

{(
b+

√
b2 − 4a′

) p−1
2

+
(
b−

√
b2 − 4a′

) p−1
2

}

= 2
p−1
2 −1v p−1

2
(a′, b) ≡ 1

2

(2
p

)
v p−1

2
(a′, b) (mod p)
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and hence

u p+1
2

(a′, b) ≡ 1
2

(2
p

)
v p−1

2

(b2 − 4a′

4
, b

)
(mod p).

That is,

v p−1
2

(a, b) ≡ 2
(2
p

)
u p+1

2
(a′, b) (mod p).

If p � b, by using (2.4) and the above we derive

u p−1
2

(a, b) =
1
b
(2u p+1

2
(a, b) − v p−1

2
(a, b))

≡ 1
b

(2
p

)
v p−1

2
(a′, b) − 2

b

(2
p

)
u p+1

2
(a′, b)

= −
(2
p

)
u p−1

2
(a′, b) (mod p).

If p | b, by using (1.3) we also have

u p−1
2

(a, b) ≡ 1
2
√−a

{
(
√−a )

p−1
2 − (−√−a )

p−1
2

}

= −
(2
p

)
· 1
2
√
a

{
(
√
a )

p−1
2 − (−√

a )
p−1
2

}

≡ −
(2
p

)
u p−1

2
(a′, b) (mod p).

Hence

v p+1
2

(a, b) = bu p+1
2

(a, b) − 2au p−1
2

(a, b)

≡ b

2

(2
p

)
v p−1

2
(a′, b) + 2a

(2
p

)
u p−1

2
(a′, b)

=
(2
p

)
v p+1

2
(a′, b) (mod p).

The proof is now complete.

We are now ready to give

Theorem 3.1. Let p be an odd prime, a, b ∈ Z, p � a(b2 − 4a),
(−a

p ) = 1 and c2 ≡ −a (mod p) for c ∈ Z.
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(i) If p ≡ 1 (mod 4), then

u p−1
2

(a, b)≡




0 (mod p) if
(b2−4a

p

)
= 1,

−1
c

(b2−4a)
p−1
4

(b−2ci
p

)
4
i (mod p) if

(b2−4a
p

)
=−1,

and

u p+1
2

(a, b)≡




(b2−4a)
p−1
4

(b−2ci
p

)
4

(mod p) if
(b2−4a

p

)
= 1,

0 (mod p) if
(b2−4a

p

)
=−1.

(ii) If p ≡ 3 (mod 4), then

u p−1
2

(a, b)≡




2(b2 − 4a)
p−3
4

(b−2ci
p

)
4

(mod p) if
(b2−4a

p

)
=1,

b

c
(b2−4a)

p−3
4

(b−2ci
p

)
4
i (mod p) if

(b2−4a
p

)
=−1

and

u p+1
2

(a, b)≡



b(b2−4a)

p−3
4

(b−2ci
p

)
4

(mod p) if
(b2−4a

p

)
=1,

−2c(b2−4a)
p−3
4

(b−2ci
p

)
4
i (mod p) if

(b2−4a
p

)
=−1.

Proof. Let a′ ∈ Z be such that a′ ≡ b2−4a
4 (mod p). Then

clearly (2c)2 ≡ −4a ≡ 4a′ − b2 (mod p). Also, un(a′, b) ≡ un((b2 −
4a)/4, b) (mod p) and vn(a′, b) ≡ vn((b2 − 4a)/4, b) (mod p). Now,
using Theorem 2.1 and Corollary 2.1 for the Lucas sequence {un(a′, b)}
and then applying Lemma 3.1 and the fact that

(2c+ bi
p

)
4

=
( i
p

)
4

(b− 2ci
p

)
4

=
(2
p

)(b− 2ci
p

)
4
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we obtain the result.

Remark 3.1. Suppose that p is a prime of the form 4n + 3, b, c ∈ Z,
p � c and ( b2+4c2

p ) = −1. In [11] the author proved that

(u p+1
2

(−c2, b)
p

)
= −

( c
p

) (b+ 2ci
p

)
4
i.

Now it is an easy consequence of Theorem 3.1.

Corollary 3.1. Let p be an odd prime, a, b ∈ Z, p � a(b2 − 4a),
(−a

p ) = 1 and c2 ≡ −a (mod p) for c ∈ Z.

(i) If p ≡ 1 (mod 4), then

v p−1
2

(a, b)≡




2(b2−4a)
p−1
4

(b−2ci
p

)
4

(mod p) if
(b2−4a

p

)
=1,

b

c
(b2−4a)

p−1
4

(b−2ci
p

)
4
i (mod p) if

(b2−4a
p

)
=−1

and

v p+1
2

(a, b)≡



b(b2−4a)

p−1
4

(b−2ci
p

)
4

(mod p) if
(b2−4a

p

)
=1,

−2c(b2−4a)
p−1
4

(b−2ci
p

)
4
i (mod p) if

(b2−4a
p

)
=−1.

(ii) If p ≡ 3 (mod 4), then

v p−1
2

(a, b)

≡




0 (mod p) if
(b2−4a

p

)
= 1,

−1
c
(b2−4a)

p+1
4

(b−2ci
p

)
4
i (mod p) if

(b2−4a
p

)
= −1,

and

v p+1
2

(a, b) ≡




(b2−4a)
p+1
4

(b−2ci
p

)
4

(mod p) if
(b2−4a

p

)
= 1,

0 (mod p) if
(b2−4a

p

)
= −1.
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Proof. This is immediate from (2.4) and Theorem 3.1.

4. The reciprocity law for u p±1
2

(−c2, b) (mod p).

Lemma 4.1. Let p and q be two positive odd numbers, b, c ∈ Z,
gcd (b2 + 4c2, pq) = 1 and p ≡ ±q(mod (3 − (−1)b)(b2 + 4c2)). Then(b+ 2ci

p

)
4

=
(b+ 2ci

q

)
4
.

Proof. If b ≡ 1 (mod 2), then (−1)
b−1
2 +c(b + 2ci) is primary. Using

(2.3), we see that

(b+ 2ci
p

)
4

=
( (−1)

b−1
2 +c(b+ 2ci)

(−1)
p−1
2 p

)
4

=
( (−1)

p−1
2 p

(−1)
b−1
2 +c(b+ 2ci)

)
4

=
( (−1)

q−1
2 q

(−1)
b−1
2 +c(b+ 2ci)

)
4

=
(b+ 2ci

q

)
4
.

If b ≡ 0 (mod 2), then clearly

(3 − (−1)b)(b2 + 4c2) = 2(b2 + 4c2) = 8((b/2)2 + c2).

Thus, according to the proof of Theorem 2.1 of [10] we have
(b+ 2ci

p

)
4

=
(b/2 + ci

p

)
4

=
(b/2 + ci

q

)
4

=
(b+ 2ci

q

)
4
.

This completes the proof.

Now we present the following reciprocity law for u p±1
2

(−c2, b) (mod p).

Theorem 4.1. Let b, c ∈ Z, u0 = 0, u1 = 1, un+1 = bun + c2un−1

(n ≥ 1), and let p be an odd prime such that p � c(b2 +4c2). Then there
is a unique element δp ∈ {1,−1} such that

u
p−( b2+4c2

p
)

2

≡
{ 0 (mod p) if p ≡ 1 (mod 4),

2cp δp(b2 + 4c2)
p−3
4 (mod p) if p ≡ 3 (mod 4)
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and

u
p+( b2+4c2

p
)

2

≡




δp
cp

(b2 + 4c2)
p−1
4 (mod p) if p ≡ 1 (mod 4),

b δp
cp

(b2 + 4c2

p

)
(b2 + 4c2)

p−3
4 (mod p) if p ≡ 3 (mod 4),

where

cp =




1 if
(b2 + 4c2

p

)
= 1,

c if
(b2 + 4c2

p

)
= −1.

Furthermore, if q is also an odd prime satisfying q � c and p ≡
±q(mod (3 − (−1)b)(b2 + 4c2)), then δp = δq. Moreover,

(4.1) δp =




(b+ 2ci
p

)
4

if
(b2 + 4c2

p

)
= 1,

(b+ 2ci
p

)
4
i if

(b2 + 4c2

p

)
= −1.

Proof. Let δp be defined by (4.1). Since ( b+2ci
p )24 = ( b2+4c2

p ) by [10,
Lemma 2.1] we see that δp ∈ {1,−1} and

(b− 2ci
p

)
4

=
(b+ 2ci

p

)
4

=
(b+ 2ci

p

)−1

4
=

(b+ 2ci
p

)3

4

=
(b+ 2ci

p

)
4

(b2 + 4c2

p

)
.

So

δp =




(b− 2ci
p

)
4

if
(b2 + 4c2

p

)
= 1,

−
(

b−2ci
p

)
4
i if

(b2 + 4c2

p

)
= −1.

Now putting a = −c2 in Theorem 3.1, we see that the congruences in
Theorem 4.1 hold.
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If q is also an odd prime satisfying q � c and p ≡ ±q(mod (3 −
(−1)b)(b2 + 4c2)), then ( b+2ci

p )4 = ( b+2ci
q )4 by Lemma 4.1. Since

(b+ 2ci
p

)2

4
=

(b2 + 4c2

p

)
and

(b+ 2ci
q

)2

4
=

(b2 + 4c2

q

)
,

we see that δp = δq. Hence the theorem is proved.

Remark 4.1. (1) We note that the appearance of all the zero-values
modulo p in Theorems 2.1, 3.1 and 4.1 can be inferred from the following
result given in [4, p. 441], which is due to Lehmer. If a, b ∈ Z, (a

p ) = 1
and p � b2 − 4a, then

u
p−( b2−4a

p
)

2

(a, b) ≡ 0 (mod p).

(2) In a similar way one can establish a reciprocity law for the Lucas
sequence {un( b2+c2

4 , b)} where b and c are integers.

(3) Suppose that p > 3 is a prime and that a and b are integers. For
the values of u p−( p

3 )
3

(a, b) (mod p) one may consult [9] and [13].

Let δp and cp be defined as in Theorem 4.1. From Theorem 4.1, we
see that
(4.2)

δp≡



cp(b2+4c2)−

p−1
4 u

p+( b2+4c2
p

)

2

(−c2, b) (mod p) if p≡1 (mod 4),

cp
b

(b2+4c2)
p+1
4 u

p+( b2+4c2
p

)

2

(−c2, b) (mod p) if p≡3 (mod 4).

Thus, putting b = c = 1 we find δ3 = −1, δ7 = 1, δ11 = −1 and δ19 = 1.
Hence

δp =




δ3 = −1 if p ≡ ±3 (mod 20),

δ7 = 1 if p ≡ ±7 (mod 20),

δ11 = −1 if p ≡ ±9 (mod 20),

δ19 = 1 if p ≡ ±1 (mod 20)

= (−1)[
p+5
10 ]

(p
5

)
.
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Applying Theorem 4.1 gives (1.5) and (1.6).

Taking b = 2 and c = 1 in (4.2) we find δ3 = 1, δ5 = −1, δ7 = −1
and δ17 = 1. Hence

δp =




δ3 = 1 if p ≡ ±3 (mod 16),

δ5 = −1 if p ≡ ±5 (mod 16),

δ7 = −1 if p ≡ ±7 (mod 16),

δ17 = 1 if p ≡ ±1 (mod 16)

= (−1)[
p+3
8 ].

Using Theorem 4.1 yields (1.7) and (1.8).

Corollary 4.1. Let u0 = 0, u1 = 1, un+1 = 3un +un−1 (n ≥ 1) and
let p �= 3, 13 be an odd prime. Then

u p−( 13
p

)

2

≡
{ 0 (mod p) if p ≡ 1 (mod 4),

2δp · 13
p−3
4 (mod p) if p ≡ 3 (mod 4)

and

u p+( 13
p

)

2

≡


δp · 13

p−1
4 (mod p) if p ≡ 1 (mod 4),

3δp
(13
p

)
· 13

p−3
4 (mod p) if p ≡ 3 (mod 4),

where

δp =
{

1 if p ≡ ±1,±5,±7,±9,±11,±23 (mod 52),
−1 if p ≡ ±3,±15,±17,±19,±21,±25 (mod 52).

Proof. Putting b = 3 and c = 1 in (4.2), we see that

δ53 = δ5 = δ7 = δ43 = δ11 = δ23 = 1

and

δ101 = δ37 = δ17 = δ19 = δ31 = δ79 = −1.
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Thus, applying Theorem 4.1 we obtain the result.

5. The criteria for k ∈ Qr(p) and p | u p−1
4

(a, b). For positive
integer p, let Sp denote the set of those rational numbers whose
denominator is prime to p. Following [10], define

Qr(p) =
{
k

∣∣∣ (k + i
p

)
4

= i r, k ∈ Sp

}
for r = 0, 1, 2, 3.

Now, using Theorem 3.1 we give the following criteria for k ∈ Q0(p)
and k ∈ Q1(p).

Theorem 5.1. Let p be an odd prime and k ∈ Z with k2 �≡ 0, ±1
(mod p). Then

(i) k ∈ Q0(p) if and only if

u p+1
2

(−1, 2k) ≡
{

(−k2−1)
p−1
4 (mod p) if p ≡ 1 (mod 4),

−k(−k2−1)
p−3
4 (mod p) if p ≡ 3 (mod 4).

(ii) k ∈ Q1(p) if and only if

u p−1
2

(−1, 2k) ≡
{
−(−k2−1)

p−1
4 (mod p) if p ≡ 1 (mod 4),

−k(−k2−1)
p−3
4 (mod p) if p ≡ 3 (mod 4).

Proof. Let a = −1, b = 2k and c = −1. Then clearly

b2− 4a = 4(k2+ 1) and
(b− 2ci

p

)
4

=
(2k + 2i

p

)
4

=
(k + i

p

)
4
.

Note that 2
p−1
2 ≡ ( 2

p ) = (−1)[
p+1
4 ] (mod p) and (k+i

p )24 = (k2+1
p ) by

[10, Lemma 2.1]. Applying the above and Theorem 3.1, we obtain the
desired result.

Let p ≡ 1 (mod 4) be a prime, a, b ∈ Z, p � a(b2 − 4a) and
(a

p ) = ( b2−4a
p ) = 1. It follows from Remark 4.1 that p | u p−1

2
(a, b).
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Since u2n(a, b) = un(a, b)vn(a, b) (see [5]), we see that p|u p−1
4

(a, b) or
p | v p−1

4
(a, b).

Now we give the criteria for p|u p−1
4

(a, b).

Theorem 5.2. Let p ≡ 1 (mod 4) be a prime, a, b ∈ Z, p � a(b2−4a),
(−a

p ) = ( 4a−b2

p ) = 1, c2 ≡ −a (mod p) and s2 ≡ 4a−b2 (mod p). Then
the following statements are equivalent:

p | u p−1
4

(a, b);(i) (s
p

)
=

( c
p

)(b+ 2ci
p

)
4
;(ii)

(b+ si
p

)
4

= (−1)
p−1
4

(s+ bi
p

)
4

= 1.(iii)

Proof. From [9, Lemma 6.1], we know that p | un(a, b) if and only if
v2n(a, b) ≡ 2an (mod p). So we have

p | u p−1
4

(a, b) ⇐⇒ v p−1
2

(a, b) ≡ 2a
p−1
4 (mod p).

Hence, using Corollary 3.1 and the fact that

(4a− b2) p−1
4 ≡ s p−1

2 ≡
(s
p

)
(mod p)

we obtain

p | u p−1
4

(a, b) ⇐⇒ 2(b2 − 4a)
p−1
4

(b−2ci
p

)
4
≡ 2a

p−1
4 (mod p)

⇐⇒ (4a− b2) p−1
4

(b−2ci
p

)
4
≡ (−a) p−1

4 ≡
( c
p

)
(mod p)

⇐⇒
(s
p

)
=

( c
p

)(b−2ci
p

)−1

4
=

( c
p

)(b+ 2ci
p

)
4
.

So (i) is equivalent to (ii).
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Since (a
p ) = (−a

p ) = 1, in view of Corollary 2.1 we find that

p | u p−1
4

(a, b) ⇐⇒ v p−1
2

(a, b) ≡ 2a
p−1
4 (mod p)

⇐⇒ 2(−a) p−1
4

(s+ bi
p

)
4
≡ 2a

p−1
4 (mod p)

⇐⇒
(s+ bi

p

)
4

= (−1)
p−1
4

⇐⇒
(s− bi

p

)
4

=
(s+ bi

p

)−1

4
= (−1)

p−1
4

⇐⇒
(b+ si

p

)
4

=
( i
p

)
4

(s− bi
p

)
4

=
( i
p

)
4
(−1)

p−1
4 = 1.

Thus, (i) is equivalent to (iii). Hence the proof is complete.

Using Theorem 5.2 we can prove

Theorem 5.3. Let p ≡ 1 (mod 4) be a prime, and let b be odd with
b2+4 �= p. If p = x2+(b2+4)y2 for some x, y ∈ Z, then p | u p−1

4
(−1, b)

if and only if 4 | xy.

Proof. Clearly p � b2 + 4 and (x
y )2 ≡ −(b2 + 4) (mod p). Suppose

s2 ≡ −(b2 + 4) (mod p), x = 2αx0(2 � x0) and y = 2βy0(2 � y0). Then
s ≡ ± x

y (mod p) and so ( s
p ) = (x

p )( y
p ). Using the Jacobi symbol, we

see that

(b+ 2i
p

)
4

=
( (−1)

b+1
2 (b+ 2i)
p

)
4

=
( p

(−1)
b+1
2 (b+ 2i)

)
4

=
(x2 + (b2 + 4)y2

b+ 2i

)
4

=
( x2

b+ 2i

)
4

=
( 2
b+ 2i

)2α

4

( x2
0

b+ 2i

)
4

=
( i3(1 + i)2

b+ 2i

)2α

4

(b+ 2i
|x0|

)2

4
=

( i

b+ 2i

)2α

4

(b2 + 4
|x0|

)
(by using [10, Lemma 2.1])

= (−1)α
( x0

b2 + 4

)
(by (2.1)),
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and

(s
p

)
=

(x
p

)(y
p

)
=

(2α+β

p

)(x0

p

)(y0
p

)
=

(2
p

)α+β( p

|x0|
)( p

|y0|
)

=
(2
p

)α+β(x2 + (b2 + 4)y2

|x0|
)(x2 + (b2 + 4)y2

|y0|
)

=
(2
p

)α+β(b2 + 4
|x0|

)
= (−1)

p−1
4 (α+β)

( x0

b2 + 4

)
.

Hence by Theorem 5.2 we have

p | u p−1
4

(−1, b) ⇐⇒
(s
p

)
=

(b+ 2i
p

)
4
⇐⇒ (−1)

p−1
4 (α+β) = (−1)α.

If α = 0, then 2 � x and so 2 | y. Clearly,

p = x2 + (b2 + 4)y2 ≡ 1 + 5y2 ≡ 3 − 2(−1)y/2 (mod 8).

So we have (−1)
p−1
4 β = 1 if and only if 4 | y.

If β = 0, then 2 � y and so 2 | x. Since

p = x2 + (b2 + 4)y2 ≡ x2 + 5y2 ≡ x2 + 5 ≡ 3 + 2(−1)x/2 (mod 8)

we see that (−1)
p−1
4 α = (−1)α if and only if 4 | x.

Observe that x �≡ y (mod 2) and hence α = 0 or β = 0. By the above
we get

p | u p−1
4

(−1, b) ⇐⇒ (−1)
p−1
4 (α+β) = (−1)α

⇐⇒ 4 | x or 4 | y ⇐⇒ 4 | xy.

This proves the theorem.

Remark 5.1. Let {Fn} be the Fibonacci sequence, and let p ≡ 1, 9
(mod 20) be a prime. Then clearly p = x2 + 5y2 for some x, y ∈ Z.
Hence it follows from Theorem 5.3 that p | F p−1

4
if and only if 4 | xy.

This result was given in [14].
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Corollary 5.1. Let p ≡ 1 (mod 4) be a prime, and b be odd with
b2 +4 �= p. If p is represented by x2 +16(b2 +4)y2 or 16x2 +(b2 +4)y2,
then p | u p−1

4
(−1, b).

Corollary 5.2. Let p �= 13 be a prime of the form 4n + 1. Then
p | u p−1

4
(−1, 3) if and only if p can be represented by x2 + 208y2 or

16x2 + 13y2.

Proof. Set un = un(−1, 3). If p | u p−1
4

, then p | u p−1
2

since
u p−1

2
= u p−1

4
v p−1

4
(−1, 3) (see [5]). Thus, applying Theorem 3.1, we

see that ( 13
p ) = 1. If p = x2 + 208y2 or 16x2 + 13y2 (x, y ∈ Z), then

again ( 13
p ) = (−13

p ) = 1.

Now assume ( 13
p ) = 1. Since p ≡ 1 (mod 4), from the theory of

binary quadratic forms we know that p = x2 + 13y2 for some x, y ∈ Z.
Hence, applying Theorem 5.3, we get

p | u p−1
4

⇐⇒ p = x2 + 13y2 with 4 | xy
⇐⇒ p = x2 + 16 · 13y2 or 16x2 + 13y2.

This is the result.

Remark 5.2. Let p ≡ 1 (mod 4) be a prime and b ∈ Z with
( b2+4

p ) = 1. Then p | u p−1
4

(−1, b) if and only if p can be represented by
one of the primitive (integral) binary quadratic forms Ax2+2Bxy+Cy2

of discriminant −4(3 − (−1)b)2(b2 + 4) with the condition that 2 � A

and ( (3−(−1)b)b+Bi
A )4 = 1. This result will be published in [12].

In the end we pose the following two conjectures. The two conjectures
have been checked for all primes less than 3000.

Conjecture 5.1 (see [8]). Let p ≡ 3 (mod 8) be a prime, and hence
p = x2+2y2 for some integers x and y. If Pn is the Pell sequence given
by P0 = 0, P1 = 1 and Pn+1 = 2Pn + Pn−1 (n ≥ 1), then

P p+1
4

≡ p− (−1)
y2−1

8

2
(mod p).
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Conjecture 5.2. Let p ≡ 3, 7 (mod 20) be a prime, and hence
2p = x2+5y2 for some integers x and y. If Fn is the Fibonacci sequence
given by F0 = 0, F1 = 1 and Fn+1 = Fn + Fn−1 (n ≥ 1), then

F p+1
4

≡




2(−1)[
p−5
10 ] · 10

p−3
4 (mod p) if y ≡ ± p− 1

2
(mod 8),

−2(−1)[
p−5
10 ] · 10

p−3
4 (mod p) if y �≡ ± p− 1

2
(mod 8).
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