THE DISCRIMINANT OF A CYCLIC FIELD OF ODD PRIME DEGREE

BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS

Abstract

Let p be an odd prime. Let $f(x) \in \mathbf{Z}[x]$ be a defining polynomial for a cyclic extension field K of the rational number field \mathbf{Q} with $[K: \mathbf{Q}]=p$. An explicit formula for the discriminant $d(K)$ of K is given in terms of the coefficients of $f(x)$.

1. Introduction. Throughout this paper p denotes an odd prime. Let K be a cyclic extension field of the rational field \mathbf{Q} with $[K: \mathbf{Q}]=p$. In this paper we give an explicit formula for the discriminant $d(K)$ of K in terms of the coefficients of a defining polynomial for K. We prove

Theorem 1. Let $f(X)=X^{p}+a_{p-2} X^{p-2}+\cdots+a_{1} X+a_{0} \in \mathbf{Z}[X]$ be such that

$$
\begin{equation*}
\operatorname{Gal}(f) \simeq \mathbf{Z} / p \mathbf{Z} \tag{1}
\end{equation*}
$$

and
(2) there does not exist a prime q such that

$$
q^{p-i} \mid a_{i}, \quad i=0,1, \ldots, p-2
$$

Let $\theta \in \mathbf{C}$ be a root of $f(X)$ and set $K=\mathbf{Q}(\theta)$ so that K is a cyclic extension of \mathbf{Q} with $[K: \mathbf{Q}]=p$. Then

$$
\begin{equation*}
d(K)=f(K)^{p-1} \tag{3}
\end{equation*}
$$

where the conductor $f(K)$ of K is given by

$$
\begin{equation*}
f(K)=p^{\alpha} \prod_{\substack{q \equiv 1(\bmod p) \\ q \mid a_{i}, i=0,1, \ldots, p-2}} q \tag{4}
\end{equation*}
$$

Received by the editors on December 7, 2000.
2000 AMS Mathematics Subject Classification. 11R09, 11R16, 11R20, 11R29.
Research of the first author supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

Research of the second author supported by a grant from the Natural Sciences and Engineering Research Council of Canada, grant A-7233.
where q runs through primes, and

$$
\alpha=\left\{\begin{aligned}
& 0, \quad \text { if } p^{p(p-1)} \nmid \operatorname{disc}(f) \text { and } p \mid a_{i}, i=1, \ldots, p-2 \\
& \text { does not hold, } \\
& \text { or } \\
& p^{p(p-1)} \mid \operatorname{disc}(f) \quad \\
& \text { and } p^{p-1} \| a_{0}, p^{p-1}\left|a_{1}, p^{p+1-i}\right| a_{i}, \\
& i=2, \ldots, p-2, \\
& \text { does not hold, } \\
& 2, \quad \text { if } p^{p(p-1)} \nmid \operatorname{disc}(f) \text { and } p \mid a_{i}, i=1, \ldots, p-2 \text { holds } \\
& \text { or } \\
& p^{p(p-1)} \mid \operatorname{disc}(f) \quad \\
& \text { and } p^{p-1} \| a_{0}, p^{p-1}\left|a_{i}, p^{p+1-i}\right| a_{i} \\
& i=2, \ldots, p-2 \text { holds }
\end{aligned}\right.
$$

This theorem will follow from a number of lemmas proved in Section 2. In Section 3 Theorem 1 is applied to some quintic polynomials introduced by Lehmer [5] in 1988. In Section 4 some numerical examples illustrating Theorem 1 are given.
2. Results on the ramification of a prime in a cyclic field of odd prime degree. We begin with the following result.

Lemma 1. Let $g(X) \in \mathbf{Z}[X]$ be a monic polynomial of degree p having $\operatorname{Gal}(g) \simeq \mathbf{Z} / p \mathbf{Z}$. Let $\theta \in \mathbf{C}$ be a root of $g(X)$ and set $K=\mathbf{Q}(\theta)$. Let q be a prime. If q ramifies in K, then there exists an integer r such that

$$
g(X) \equiv(X-r)^{p} \quad(\bmod q)
$$

Proof. Suppose that the prime q ramifies in K. As K is a cyclic extension of \mathbf{Q}, it is a normal extension, and so

$$
q=Q^{p}
$$

for some prime ideal Q of K. Thus,

$$
\left|O_{K} / Q\right|=N(Q)=q
$$

and so, as $\theta \in O_{K}$, there exists $r \in \mathbf{Z}$ such that

$$
\begin{equation*}
\theta \equiv r \quad(\bmod Q) \tag{5}
\end{equation*}
$$

Let $\theta=\theta_{1}, \ldots, \theta_{p} \in \mathbf{C}$ be the roots of $g(X)$. Taking conjugates of (5), we obtain

$$
\theta_{i} \equiv r \quad(\bmod Q), \quad i=1,2, \ldots, p
$$

Hence,

$$
g(X)=\prod_{i=1}^{p}\left(X-\theta_{i}\right) \equiv \prod_{i=1}^{p}(X-r) \equiv(X-r)^{p} \quad(\bmod Q)
$$

Since $g(X) \in \mathbf{Z}[X],(X-r)^{p} \in \mathbf{Z}[X]$ and $q=Q^{p}$, we deduce that

$$
g(X) \equiv(X-r)^{p} \quad(\bmod q)
$$

as asserted. \quad.

From this point on, we assume that $f(X)=X^{p}+a_{p-2} X^{p-2}+$ $\cdots+a_{1} X+a_{0} \in \mathbf{Z}[X]$ is such that (1) and (2) hold. We let $\theta=\theta_{1}, \ldots, \theta_{p} \in \mathbf{C}$ be the roots of $f(X)$ and we set $K=\mathbf{Q}(\theta)$ so that K is a cyclic extension of degree p.

Lemma 2. Let q be a prime $\neq p$. Then q ramifies in $K \Leftrightarrow q \mid a_{i}$, $i=0,1, \ldots, p-2$.

Proof. (a) Suppose that q ramifies in K. Then, by Lemma 1, there exists an integer r such that

$$
f(X) \equiv(X-r)^{p} \quad(\bmod q)
$$

that is,

$$
\begin{gathered}
X^{p}+a_{p-2} X^{p-2}+\cdots+a_{1} X+a_{0} \\
\equiv X^{p}-p r X^{p-1}+\binom{p}{2} r^{2} X^{p-2} \\
-\cdots-r^{p}(\bmod q)
\end{gathered}
$$

Equating the coefficients of $X^{p-1}(\bmod q)$, we see that $0 \equiv-p r$ $(\bmod q)$. As $p \neq q$ we must have $q \mid r$. From the coefficients of X^{i}, $i=0,1, \ldots, p-2$, we deduce that

$$
a_{i} \equiv(-1)^{i+1}\binom{p}{i} r^{p-i} \quad(\bmod q)
$$

so that

$$
q \mid a_{i}, \quad i=0,1, \ldots, p-2
$$

(b) Now suppose that

$$
q \mid a_{i}, \quad i=0,1, \ldots, p-2
$$

but that q does not ramify in K. Then

$$
q=Q_{1} \cdots Q_{t}, \quad t=1 \text { or } p
$$

where the Q_{i} are distinct prime ideals in K. We have

$$
0=f(\theta)=\theta^{p}+a_{p-2} \theta^{p-2}+\cdots+a_{1} \theta+a_{0} \equiv \theta^{p} \quad(\bmod q)
$$

so that $Q_{i} \mid \theta^{p}$ for $i=1, \ldots, t$. As Q_{i} is a prime ideal, we deduce that $Q_{i} \mid \theta$ for $i=1, \ldots, t$, and so $q \mid \theta$. This shows that $\theta / q \in O_{K}$. The minimal polynomial of θ / q over \mathbf{Q} is

$$
X^{p}+\frac{a_{p-2}}{q^{2}} X^{p-2}+\cdots+\frac{a_{1}}{q^{p-1}} X+\frac{a_{0}}{q^{p}}
$$

which must belong in $\mathbf{Z}[X]$. Hence we have

$$
q^{p-i} \mid a_{i}, \quad i=0,1, \ldots, p-2
$$

contradicting (2). Hence q ramifies in K.

Lemma 3. If

$$
p \mid a_{i}, \quad i=1,2, \ldots, p-2 \text { does not hold }
$$

then p does not ramify in K.

Proof. Suppose on the contrary that p ramifies in K. By Lemma 1 there exists an integer r such that

$$
f(X) \equiv(X-r)^{p} \quad(\bmod p)
$$

so that

$$
X^{p}+a_{p-2} X^{p-2}+\cdots+a_{1} X+a_{0} \equiv X^{p}-r \quad(\bmod p)
$$

and thus

$$
p \mid a_{i}, \quad i=1,2, \ldots, p-2
$$

which is a contradiction. Hence p does not ramify in $K . \quad \square$

Lemma 4. If

$$
p^{p(p-1)} \nmid \operatorname{disc}(f)
$$

and

$$
p \mid a_{i}, \quad i=1,2, \ldots, p-2
$$

then p ramifies in K.

Proof. Suppose p does not ramify in K. Then

$$
p=Q_{1} \cdots Q_{t}, \quad t=1 \text { or } p
$$

for distinct prime ideals $Q_{i}, i=1, \ldots, t$, of K. Now

$$
\begin{aligned}
0 & =f(\theta)=\theta^{p}+a_{p-2} \theta^{p-2}+\cdots+a_{0} \equiv \theta^{p}+a_{0} \\
& \equiv \theta^{p}+a_{0}^{p} \equiv\left(\theta+a_{0}\right)^{p}(\bmod p)
\end{aligned}
$$

so that $Q_{i} \mid\left(\theta+a_{0}\right)^{p}$ and thus $Q_{i} \mid \theta+a_{0}$ for $i=1, \ldots, t$. Hence $Q_{1} Q_{2} \cdots Q_{t} \mid \theta+a_{0}$ and so $p \mid \theta+a_{0}$. By conjugation, as K is a normal extension of \mathbf{Q}, we deduce that

$$
p \mid \theta_{i}+a_{0}, \quad i=1,2, \ldots, p
$$

Hence

$$
p \mid \theta_{i}-\theta_{j}, \quad 1 \leq i<j \leq p
$$

and so

$$
p^{p(p-1)} \mid \prod_{1 \leq i<j \leq p}\left(\theta_{i}-\theta_{j}\right)^{2}
$$

that is,

$$
p^{p(p-1)} \mid \operatorname{disc}(f)
$$

contradicting $p^{p(p-1)} \nmid \operatorname{disc}(f)$. This proves that p ramifies in K.

Lemma 5. If

$$
p^{p-1} \| a_{0}, p^{p-1}\left|a_{1}, p^{p+1-i}\right| a_{i}, \quad i=2, \ldots, p-2
$$

then
(a) p ramifies in K
and
(b) $p^{p(p-1)} \mid \operatorname{disc}(f)$.

Proof. We define $b_{0}, \ldots, b_{p-2} \in \mathbf{Z}$ by

$$
b_{0}=a_{0} / p^{p-1}, b_{1}=a_{1} / p^{p-1}, b_{i}=a_{i} / p^{p+1-i}, \quad i=2, \ldots, p-2
$$

Clearly $p \nmid b_{0}$. We set

$$
h(X)=X^{p}+p b_{1} X^{p-1}+\sum_{i=2}^{p-2} p^{2} b_{0}^{i-1} b_{i} X^{p-i}+p b_{0}^{p-1} \in \mathbf{Z}[X]
$$

Then

$$
\begin{aligned}
& h\left(b_{0} p X\right) \\
& \quad=b_{0}^{p} p^{p} X^{p}+b_{0}^{p-1} b_{1} p^{p} X^{p-1}+\sum_{i=2}^{p-2} b_{0}^{p-1} b_{i} p^{p+2-i} X^{p-i}+p b_{0}^{p-1} \\
& \quad=b_{0}^{p-1} p X^{p}\left(b_{0} p^{p-1}+b_{1} \frac{p^{p-1}}{X}+\sum_{i=2}^{p-2} b_{i} \frac{p^{p+1-i}}{X^{i}}+\frac{1}{X^{p}}\right) \\
& \quad=b_{0}^{p-1} p X^{p}\left(a_{0}+\frac{a_{1}}{X}+\sum_{i=2}^{p-2} \frac{a_{i}}{X^{i}}+\frac{1}{X^{p}}\right) \\
& \quad=b_{0}^{p-1} p X^{p} f\left(\frac{1}{X}\right) .
\end{aligned}
$$

Hence $h(X)$ can be taken as the defining polynomial for the field K. Since $h(X)$ is p-Eisenstein we have $p=\wp^{p}$ for some prime ideal \wp of K, see, for example, [7, Proposition 4.18, p. 181]. Thus p ramifies in K.

Next we define the nonnegative integer k by $\wp^{k} \| \theta$. Then by conjugation we have $\wp^{k} \| \theta_{i}, i=1,2, \ldots, p$. Hence,

$$
\wp^{p k} \| \theta_{1} \cdots \theta_{p}=-a_{0}
$$

But $p^{p-1} \| a_{0}$ so that $\wp^{p(p-1)} \| a_{0}$. Hence $p k=p(p-1)$, that is, $k=p-1$ and $\wp^{p-1} \| \theta$.

Further,

$$
f^{\prime}(\theta)=p \theta^{p-1}+\sum_{i=2}^{p-2} i a_{i} \theta^{i-1}+a_{1}
$$

We have

$$
\begin{aligned}
& \wp^{p+(p-1)^{2}} \| p \theta^{p-1}, \\
& \wp^{p(p+1-i)+(p-1)(i-1)} \mid i a_{i} \theta^{i-1}, \quad i=2, \ldots, p-2, \\
& \wp^{p(p-1)} \mid a_{1} .
\end{aligned}
$$

As

$$
p+(p-1)^{2}=p^{2}-p+1>p(p-1)
$$

and

$$
\begin{aligned}
p(p+1-i)+(p-1)(i-1) & =p^{2}-i+1 \geq p^{2}-(p-2)+1 \\
& =p^{2}-p+3>p(p-1)
\end{aligned}
$$

we see that

$$
\wp^{p(p-1)} \mid f^{\prime}(\theta)
$$

By conjugation we deduce that

$$
\wp^{p(p-1)} \mid f^{\prime}\left(\theta_{i}\right), \quad i=1, \ldots, p
$$

so that

$$
\wp^{p^{2}(p-1)} \mid \prod_{i=1}^{p} f^{\prime}\left(\theta_{i}\right)
$$

that is,

$$
p^{p(p-1)} \mid \operatorname{disc}(f)
$$

This completes the proof of Lemma 5.

Lemma 6. If

$$
p^{p(p-1)} \mid \operatorname{disc}(f)
$$

and

$$
p^{p-1}| | a_{0}, p^{p-1}\left|a_{1}, p^{p+1-i}\right| a_{i}, \quad i=2, \ldots, p-2, \text { does not hold, }
$$

then p does not ramify in K.

Proof. Suppose p ramifies in K. Then $p=\wp^{p}$ for some prime ideal \wp in K. As $N(\wp)=p$ there exists $r \in \mathbf{Z}$ with $0 \leq r \leq p-1$ such that

$$
\theta \equiv r \quad(\bmod \wp)
$$

We consider two cases.

Case (i): $r=0$. In this case $\wp \mid \theta$ so that $\wp^{k} \| \theta$ for some positive integer k. Suppose that $k \geq p$. Then $p \mid \theta$ and thus $\theta / p \in O_{K}$. The minimal polynomial of θ / p over \mathbf{Q} is

$$
X^{p}+\frac{a_{p-2}}{p^{2}} X^{p-2}+\cdots+\frac{a_{1}}{p^{p-1}} X+\frac{a_{0}}{p^{p}}
$$

which must belong in $\mathbf{Z}[X]$. Hence we have

$$
p^{p-i} \mid a_{i}, \quad i=0,1, \ldots, p-2
$$

contradicting (2). Thus $1 \leq k \leq p-1$.
Next we define the nonnegative integer l by $\wp^{l} \| f^{\prime}(\theta)$. By conjugation we have $\wp^{l} \| f^{\prime}\left(\theta_{i}\right), i=1,2, \ldots, p$. Hence

$$
\wp^{p l} \| \prod_{i=1}^{p} f^{\prime}\left(\theta_{i}\right)= \pm \operatorname{disc}(f)
$$

But $\wp^{p^{2}(p-1)}=p^{p(p-1)} \mid \operatorname{disc}(f)$, so we must have $p l \geq p^{2}(p-1)$, that is, $l \geq p(p-1)$. Hence

$$
\begin{equation*}
\wp^{p(p-1)} \mid f^{\prime}(\theta) . \tag{6}
\end{equation*}
$$

Now

$$
\begin{equation*}
f^{\prime}(\theta)=p \theta^{p-1}+\sum_{i=2}^{p-1}(p-i) a_{p-i} \theta^{p-i-1} \tag{7}
\end{equation*}
$$

where

$$
v_{\wp}\left(p \theta^{p-1}\right)=p+(p-1) k
$$

and

$$
v_{\wp}\left((p-i) a_{p-i} \theta^{p-i-1}\right)=v_{\wp}\left(a_{p-i}\right)+(p-i-1) k, \quad i=2, \ldots, p-1
$$

Clearly,

$$
v_{\wp}\left(p \theta^{p-1}\right) \equiv-k \quad(\bmod p)
$$

and

$$
v_{\wp}\left((p-i) a_{p-i} \theta^{p-i-1}\right) \equiv-i k-k \quad(\bmod p), \quad i=2, \ldots, p-1
$$

Since $\{-i k-k \mid i=0,1, \ldots, p-1\}$ is a complete residue system modulo $p, v_{\wp}\left(p \theta^{p-1}\right)$ and $v_{\wp}\left((p-i) a_{p-i} \theta^{p-i-1}\right), i=2, \ldots, p-1$, are all distinct. Hence, by (6) and (7), we have

$$
v_{\wp}\left(p \theta^{p-1}\right) \geq p(p-1)
$$

and

$$
v_{\wp}\left((p-i) a_{p-i} \theta^{p-i-1}\right) \geq p(p-1), \quad i=2, \ldots, p-1
$$

Thus

$$
\begin{equation*}
p+(p-1) k \geq p(p-1) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{\wp}\left(a_{p-i}\right)+(p-i-1) k \geq p(p-1), \quad i=2, \ldots, p-1 \tag{9}
\end{equation*}
$$

From (8) we deduce that $k \geq p-1$. As $1 \leq k \leq p-1$, we must have $k=p-1$ so $\wp^{p-1} \| \theta$. From (9), we obtain

$$
v_{\wp}\left(a_{p-i}\right) \geq(i+1)(p-i),
$$

so that

$$
v_{p}\left(a_{p-i}\right) \geq \frac{(i+1)(p-1)}{p}, \quad i=2, \ldots, p-1
$$

Hence

$$
v_{p}\left(a_{p-i}\right) \geq i+1, \quad \text { if } i=2, \ldots, p-2
$$

and

$$
v_{p}\left(a_{1}\right) \geq p-1
$$

Thus

$$
\begin{aligned}
\wp^{p(p-1)} \mid \theta^{p} \\
\wp^{p(i+1)+(p-i)(p-1)} \mid a_{p-i} \theta^{p-i}, \quad i=2, \ldots, p-2, \\
\wp^{p(p-1)+(p-1)} \mid a_{1} \theta,
\end{aligned}
$$

so that

$$
\wp^{p^{2}-p} \mid \theta^{p}+\sum_{i=2}^{p-1} a_{p-i} \theta^{p-i}=-a_{0}
$$

Hence,

$$
p^{p-1} \mid a_{0}
$$

Since $p^{p-1}\left|a_{1}, p^{p-2}\right| a_{2}, \ldots, p^{2} \mid a_{p-2}$, we must have by (2) that $p^{p} \nmid a_{0}$. This proves that $p^{p-1} \| a_{0}$, contradicting the second assumption of the lemma.

Case (ii): $r=1,2, \ldots, p-1$. We set

$$
g(X)=f(X+r)=\sum_{j=0}^{p} b_{j} X^{j} \in \mathbf{Z}[X]
$$

so that, with $a_{p-1}=0, a_{p}=1$,

$$
b_{j}=\sum_{i=j}^{p} a_{i}\binom{i}{j} r^{i-j}, \quad j=0,1, \ldots, p
$$

In particular, we have $b_{p-1}=r p, b_{p}=1$. Further, we set $\alpha=\theta-r$ so that $\alpha \equiv 0(\bmod \wp)$. Moreover, $g(\alpha)=f(\alpha+r)=f(\theta)=0$ so that α is a root of $g(X)$. Define the positive integer k by $\wp^{k} \| \alpha$. If $k \geq p$ then $\alpha / p \in O_{K}$ and, as the minimal polynomial of α / p is

$$
g^{*}(X)=\sum_{j=0}^{p} \frac{b_{j}}{p^{p-j}} X^{j}
$$

we must have

$$
\frac{b_{j}}{p^{p-j}} \in \mathbf{Z}, \quad j=0,1, \ldots, p
$$

By Lemma 1 there exists an integer s such that

$$
g^{*}(X) \equiv(X-s)^{p} \quad(\bmod p)
$$

Thus

$$
r=b_{p-1} / p=\text { coefficient of } X^{p-1} \text { in } g^{*}(X) \equiv-p s \equiv 0 \quad(\bmod p)
$$

contradicting $1 \leq r \leq p-1$. Hence, $k=1,2, \ldots, p-1$.
Now let $\alpha=\alpha_{1}, \ldots, \alpha_{p} \in \mathbf{C}$ be the roots of $g(X)$, so that

$$
\wp^{p^{2}(p-1)}=p^{p(p-1)} \mid \operatorname{disc}(f)=\operatorname{disc}(g)= \pm \prod_{i=1}^{p} g^{\prime}\left(\alpha_{i}\right)
$$

Suppose that $\wp^{t} \| g^{\prime}(\alpha)$. By conjugation we have $\wp^{t} \| g^{\prime}\left(\alpha_{i}\right), i=$ $1,2, \ldots, p$. Hence,

$$
\begin{equation*}
\wp^{p t} \| \prod_{i=1}^{p} g^{\prime}\left(\alpha_{i}\right) \tag{10}
\end{equation*}
$$

Further

$$
\begin{equation*}
g^{\prime}(\alpha)=p \alpha^{p-1}+r p(p-1) \alpha^{p-2}+\sum_{i=1}^{p-2} i b_{i} \alpha^{i-1} \tag{11}
\end{equation*}
$$

and

$$
\begin{aligned}
v_{\wp}\left(p \alpha^{p-1}\right) & =p+(p-1) k, \\
v_{\wp}\left(r p(p-1) \alpha^{p-2}\right) & =p+(p-2) k, \\
v_{\wp}\left(i b_{i} \alpha^{i-1}\right) & =v_{\wp}\left(b_{i}\right)+(i-1) k, \quad i=1, \ldots, p-2 .
\end{aligned}
$$

Since

$$
v_{\wp}\left(p \alpha^{p-1}\right), v_{\wp}\left(r p(p-1) \alpha^{p-2}\right), v_{\wp}\left(i b_{i} \alpha^{i-1}\right), \quad i=1, \ldots, p-2,
$$

are all distinct modulo p, they must all be different. From (10) and (11), we deduce

$$
\left\{\begin{array}{l}
\wp^{p(p-1)}\left|p \alpha^{p-1}, \quad \wp^{p(p-1)}\right| r p(p-1) \alpha^{p-2} \tag{12}\\
\wp^{p(p-1)} \mid i b_{i} \alpha^{i-1}, \quad i=1, \ldots, p-2 .
\end{array}\right.
$$

From the first of these, we have

$$
p(p-1) \leq p+(p-1) k
$$

so that

$$
k \geq \frac{p^{2}-2 p}{p-1}
$$

As $k \in \mathbf{Z}$ we must have $k \geq p-1$. Since $k \in\{1,2, \ldots, p-1\}$, we deduce that $k=p-1$. Then, from the second divisibility condition in (12), we deduce that

$$
p(p-1) \leq p+(p-2) k=p+(p-2)(p-1)=p^{2}-2 p+2
$$

which is impossible.
In both cases we have been led to a contradiction. Thus p does not ramify in K.
3. Proof of Theorem 1. It is well known, see, for example, $[\mathbf{6}$, p. 831], that

$$
d(K)=f(K)^{p-1}
$$

and

$$
f(K)=p^{\alpha} \prod_{\substack{q \equiv 1(\bmod p) \\ q \text { ramifies in } K}} q
$$

where q runs through primes and

$$
\alpha= \begin{cases}0 & \text { if } p \text { does not ramify in } K \\ 2 & \text { if } p \text { ramifies in } K\end{cases}
$$

Clearly, by Lemma 2, we have

$$
\prod_{\substack{q \equiv 1(\bmod p) \\ q \text { ramifies in } K}}=\prod_{\substack{q \equiv 1(\bmod p) \\ q \mid a_{i}, i=0,1, \ldots, p-2}} q
$$

Finally we treat the prime p. We consider four cases.
(I) $p^{p(p-1)} \nmid \operatorname{disc}(f), p \mid a_{i}, i=1, \ldots, p-2$, does not hold,
(II) $p^{p(p-1)} \nmid \operatorname{disc}(f), p \mid a_{i}, i=1, \ldots, p-2$, holds,
(III) $p^{p(p-1)}\left|\operatorname{disc}(f), p^{p-1} \| a_{0}, p^{p-1}\right| a_{1}, p^{p+1-i} \mid a_{i}, i=2, \ldots, p-2$, holds,
(IV) $p^{p(p-1)}\left|\operatorname{disc}(f), p^{p-1} \| a_{0}, p^{p-1}\right| a_{1}, p^{p+1-i} \mid a_{i}, i=2, \ldots, p-2$, does not hold.

In Case (I), by Lemma 3, p does not ramify in K, and so $\alpha=0$. In Case (II), by Lemma $4, p$ ramifies in K, and so $\alpha=2$. In Case (III), by Lemma $5, p$ ramifies in K, and so $\alpha=2$. In Case (IV), by Lemma 6 , p does not ramify in K, and so $\alpha=0$.

This completes the proof of Theorem 1.

We conclude this section by looking at the case $p=3$ in some detail. Let $f(X)=X^{3}+a X+b \in \mathbf{Z}[X]$ be such that $\operatorname{Gal}(f) \simeq \mathbf{Z} / 3 \mathbf{Z}$ and suppose that there does not exist a prime q such that $q^{2} \mid a$ and $q^{3} \mid b$. Here disc $(f)=-4 a^{3}-27 b^{2}$. As $\operatorname{Gal}(f) \simeq \mathbf{Z} / 3 \mathbf{Z}$, we have

$$
-4 a^{3}-27 b^{2}=c^{2}
$$

for some positive integer c. Since $3^{2}\left|a, 3^{3}\right| b$ cannot occur, we deduce as in $[\mathbf{4}, \mathrm{p} .4]$ that exactly one of the following four possibilities occurs:
(i) $3 \nmid a, 3 \nmid c$,
(ii) $3\left\|a, 3 \nmid b, 3^{2}\right\| c$,
(iii) $3 \| a, 3 \nmid b, 3^{3} \mid c$,
(iv) $3^{2}\left\|a, 3^{2}\right\| b, 3^{3} \| c$.

Clearly (i) is equivalent to
(i) $3^{6} \nmid \operatorname{disc}(f), 3 \nmid a$;
(ii) is equivalent to

$$
(\text { ii })^{\prime} 3^{6} \nmid \operatorname{disc}(f), 3 \mid a ;
$$

(iii) is equivalent to
(iii) $3^{6} \mid \operatorname{disc}(f), 3 \| a$;
(iv) is equivalent to
$(\text { iv })^{\prime} 3^{6}\left|\operatorname{disc}(f), 3^{2}\right| a, 3^{2} \| b$.
By Theorem 1, we have

$$
f(K)=3^{\alpha} \prod_{\substack{q \equiv 1(\bmod 3) \\ q|a, q| b}} q
$$

where q runs through primes, and

$$
\alpha= \begin{cases}0 & \text { in cases }(\mathrm{i})^{\prime},(\mathrm{iii})^{\prime}, \\ 2 & \text { in cases }(\mathrm{ii})^{\prime},(\mathrm{iv})^{\prime},\end{cases}
$$

that is,

$$
\alpha=\left\{\begin{array}{l}
0 \text { in cases (i), (iii) } \\
2 \text { in cases (ii), (iv) }
\end{array}\right.
$$

in agreement with [4].
3. Emma Lehmer's quintics. Let $t \in \mathbf{Q}$ and set
(13) $f_{t}(X)=X^{5}+a_{4}(t) X^{4}+a_{3}(t) X^{3}+a_{2}(t) X^{2}+a_{1}(t) X+a_{0}(t)$,
where

$$
\begin{align*}
& a_{4}(t)=t^{2} \\
& a_{3}(t)=-\left(2 t^{3}+6 t^{2}+10 t+10\right) \\
& a_{2}(t)=t^{4}+5 t^{3}+11 t^{2}+15 t+5 \tag{14}\\
& a_{1}(t)=t^{3}+4 t^{2}+10 t+10 \\
& a_{0}(t)=1
\end{align*}
$$

These polynomials were introduced by Lehmer [5] in 1988 and have been discussed by Schoof and Washington [8], Darmon [2] and Gaál and Pohst [3]. We set

$$
\begin{equation*}
t=u / v, u \in \mathbf{Z}, v \in \mathbf{Z}, \quad(u, v)=1, v>0 \tag{15}
\end{equation*}
$$

It is convenient to define

$$
\begin{align*}
& E= E(u, v)= \\
& F= u^{4}+5 u^{3} v+15 u^{2} v^{2}+25 u v^{3}+25 v^{4} \\
& G= G(u, v)= \\
& H=3 u^{2}+10 u v+5 v^{2}+15 u^{3} v+20 u^{2} v^{2}-50 v^{4} \\
& H= H(u, v)= \tag{16}\\
& 4 u^{6}+30 u^{5} v+65 u^{4} v^{2}-200 u^{2} v^{4} \\
&-125 u v^{5}+125 v^{6} \\
& I= I(u, v)= \\
& J= u^{3}+5 u^{2} v+10 u v^{2}+7 v^{3} \\
& J(u, v)= \\
&-12 u^{5}+58 u^{4} v+15 u^{3} v^{2}-130 u^{2} v^{3}+200 v^{5} \\
& L=L(u, v)= 3 u^{3}+7 u^{2} v+20 u v^{2}+15 v^{3}
\end{align*}
$$

Let θ be a root of $f_{t}(x)$ and set $K=\mathbf{Q}(\theta)$. As an application of Theorem 1, we prove the following result.

Theorem 2. With the above notation, if K is a cyclic quintic field, then its conductor $f(K)$ is given by

$$
\begin{array}{r}
f(K)=5^{\alpha} \prod_{\substack{q \equiv 1(\bmod 5)}} q \\
v_{q}(E) \not \equiv 0(\bmod 5)
\end{array}
$$

where q runs through primes, and

$$
\alpha= \begin{cases}0 & \text { if } 5 \nmid u \\ 2 & \text { if } 5 \mid u\end{cases}
$$

We remark that when $t \in \mathbf{Z}$, equivalently $v=1$, it is known that K is a cyclic quintic field [8]. The special case of Theorem 2 when $E(u, 1)$ is squarefree is given in [3].

Proof. We have

$$
\begin{equation*}
g_{t}(X)=5^{5} f_{t}\left(\left(X-t^{2}\right) / 5\right)=X^{5}+g_{3} X^{3}+g_{2} X^{2}+g_{1} X+g_{0} \tag{17}
\end{equation*}
$$

where

$$
\begin{align*}
g_{3}= & -10 t^{4}-50 t^{3}-150 t^{2}-250 t-250, \\
g_{2}= & 20 t^{6}+150 t^{5}+575 t^{4}+1375 t^{3}+2125 t^{2} \\
& +1875 t+625, \\
g_{1}= & -15 t^{8}-150 t^{7}-700 t^{6}-2000 t^{5}-3500 t^{4} \tag{18}\\
& -3125 t^{3}+1250 t^{2}+6250 t+6250, \\
g_{0}= & 4 t^{10}+50 t^{9}+275 t^{8}+875 t^{7}+1625 t^{6}+1250 t^{5} \\
& -1875 t^{4}-6250 t^{3}-6250 t^{2}+3125 .
\end{align*}
$$

Next we set
(19) $h_{u, v}(X)=v^{10} g_{u / v}\left(X / v^{2}\right)=X^{5}+h_{3} X^{3}+h_{2} X^{2}+h_{1} X+h_{0}$,
where

$$
\begin{aligned}
h_{3}= & -10 u^{4}-50 u^{3} v-150 u^{2} v^{2}-250 u v^{3}-250 v^{4} \\
= & -10\left(u^{4}+5 u^{3} v+15 u^{2} v^{2}+25 u v^{3}+25 v^{4}\right) ; \\
h_{2}= & 20 u^{6}+150 u^{5} v+575 u^{4} v^{2}+1375 u^{3} v^{3}+2125 u^{2} v^{4} \\
& +1875 u v^{5}+625 v^{6} \\
= & 5\left(u^{4}+5 u^{3} v+15 u^{2} v^{2}+25 u v^{3}+25 v^{4}\right)\left(4 u^{2}+10 u v+5 v^{2}\right) ; \\
h_{1}= & -15 u^{8}-150 u^{7} v-700 u^{6} v^{2}-2000 u^{5} v^{3}-3500 u^{4} v^{4} \\
& -3125 u^{3} v^{5}+1250 u^{2} v^{6}+6250 u v^{7}+6250 v^{8} \\
= & -5\left(u^{4}+5 u^{3} v+15 u^{2} v^{2}+25 u v^{3}+25 v^{4}\right) \\
& \times\left(3 u^{4}+15 u^{3} v+20 u^{2} v^{2}-50 v^{4}\right) ; \\
h_{0}= & 4 u^{10}+50 u^{9} v+275 u^{8} v^{2}+875 u^{7} v^{3}+1625 u^{6} v^{4} \\
& +1250 u^{5} v^{5}-1875 u^{4} v^{6}-6250 u^{3} v^{7}-6250 u^{2} v^{8}+3125 v^{10} \\
= & \left(u^{4}+5 u^{3} v+15 u^{2} v^{2}+25 u v^{3}+25 v^{4}\right) \\
& \times\left(4 u^{6}+30 u^{5} v+65 u^{4} v^{2}-200 u^{2} v^{4}-125 u v^{5}+125 v^{6}\right) ;
\end{aligned}
$$

so that by (16) we have

$$
\begin{equation*}
h_{3}=-10 E, h_{2}=5 E F, h_{1}=-5 E G, h_{0}=E H \tag{20}
\end{equation*}
$$

Next let m denote the largest positive integer such that

$$
\begin{equation*}
m^{2}\left|h_{3}, m^{3}\right| h_{2}, m^{4}\left|h_{1}, m^{5}\right| h_{0} \tag{21}
\end{equation*}
$$

and set

$$
\begin{equation*}
k_{u, v}(X)=h_{u, v}(m X) / m^{5}=X^{5}+k_{3} X^{3}+k_{2} X^{2}+k_{1} X+k_{0} \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
k_{3}=h_{3} / m^{2}, k_{2}=h_{2} / m^{3}, k_{1}=h_{1} / m^{4}, k_{0}=h_{0} / m^{5} \tag{23}
\end{equation*}
$$

Appealing to MAPLE, we find

$$
\begin{equation*}
\operatorname{disc}\left(k_{u, v}\right)=5^{20} E^{4} I^{2} v^{18} / m^{20} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
E J-H L=5^{5} v^{9} \tag{25}
\end{equation*}
$$

Clearly $k_{u, v}(X)$ is a defining polynomial for the cyclic quintic field K. Hence, by Theorem 1, we have

$$
\begin{equation*}
f(K)=5^{\alpha} \prod_{\substack{q \equiv 1(\bmod 5) \\ q\left|k_{0}, q\right| k_{1}, q\left|k_{2}, q\right| k_{3}}} q \tag{26}
\end{equation*}
$$

where q runs through primes, and

$$
\begin{cases}0 & \text { if } 5^{20} \nmid \operatorname{disc}\left(k_{u, v}\right) \text { and } 5\left|k_{1}, 5\right| k_{2}, 5 \mid k_{3} \tag{27}\\ & \text { does not hold, or } \\ & 5^{20} \mid \operatorname{disc}\left(k_{u, v}\right) \text { and } 5^{4} \| k_{0}, 5^{4}\left|k_{1}, 5^{4}\right| k_{2}, 5^{3} \mid k^{3} \\ & \text { does not hold, } \\ 2 & \text { if } 5^{20} \nmid \operatorname{disc}\left(k_{u, v}\right) \text { and } 5\left|k_{1}, 5\right| k_{2}, 5 \mid k_{3}, \\ & \text { or } 5^{20} \mid \operatorname{disc}\left(k_{u, v}\right) \text { and } 5^{4} \| k_{0}, 5^{4}\left|k_{1}, 5^{4}\right| k_{2}, 5^{3} \mid k_{3}\end{cases}
$$

Let q be a prime with

$$
q \equiv 1 \quad(\bmod 5), \quad q\left|k_{3}, q\right| k_{2}, q\left|k_{1}, q\right| k_{0}
$$

We show that

$$
q \mid E, v_{q}(E) \not \equiv 0 \quad(\bmod 5)
$$

By (23) we have

$$
q\left|h_{3}, q\right| h_{2}, q\left|h_{1}, q\right| h_{0}
$$

As $q \equiv 1(\bmod 5)$, we have $q \neq 2,5$. Thus, from (20), we deduce that $q \mid E$. Suppose next that $q \mid v$. Then, from the definition of E in (16) we see that $q \mid u$, contradicting $(u, v)=1$. Hence $q \nmid v$. Then, from (25), we deduce that $q \nmid H$. If $v_{q}(E) \equiv 0(\bmod 5)$, say $v_{q}(E)=5 w$, $w \geq 1$, then by (20) we have

$$
q^{5 w}\left\|h_{3}, q^{5 w}\left|h_{2}, q^{5 w}\right| h_{1}, q^{5 w}\right\| h_{0}
$$

so that by (21) we have

$$
q^{w} \| m
$$

Thus by (23),

$$
q \nmid h_{0} / m^{5}=k_{0}
$$

a contradiction. Hence $v_{q}(E) \not \equiv 0(\bmod 5)$.
Conversely, let q be a prime with

$$
q \equiv 1 \quad(\bmod 5), \quad q \mid E, \quad v_{q}(E) \not \equiv 0 \quad(\bmod 5)
$$

We show that

$$
q\left|k_{3}, q\right| k_{2}, q\left|k_{1}, q\right| k_{0}
$$

Suppose that $q \mid v$. Then, by the definition of E in (16), we have $q \mid u$, contradicting $(u, v)=1$. Hence $q \nmid v$. Thus, by (25), we see that $q \nmid H$. As $v_{q}(E) \not \equiv 0(\bmod 5)$, we have $q^{5 z+r} \| E$, where z is a nonnegative integer and $r=1,2,3,4$. Thus by (20) we have

$$
q^{5 z+r}\left\|h_{3}, q^{5 z+r}\left|h_{2}, q^{5 z+r}\right| h_{1}, q^{5 z+r}\right\| h_{0}
$$

This shows by (21) that

$$
q^{z} \| m
$$

so that by (23)

$$
q^{3 z+r}\left\|k_{3}, q^{2 z+r}\left|k_{2}, q^{z+r}\right| k_{1}, q^{r}\right\| k_{0}
$$

proving

$$
q\left|k_{3}, q\right| k_{2}, q\left|k_{1}, q\right| k_{0}
$$

We have shown that

$$
\begin{equation*}
\prod_{\substack{q \equiv 1(\bmod 5)}} q=\prod_{\substack{q \equiv 1(\bmod 5) \\ q\left|k_{0}, q\right| k_{1}, q\left|k_{2}, q\right| k_{3}}} q \tag{28}
\end{equation*}
$$

Finally, to complete the proof of Theorem 2, we show that

$$
\alpha= \begin{cases}0 & \text { if } 5 \nmid u, \tag{29}\\ 2 & \text { if } 5 \mid u .\end{cases}
$$

If $5 \mid u$, then by (15), $5 \nmid v$ and, by (16),

$$
5^{2}\|E, 5\| F, 5^{2}\left\|G, 5^{3}\right\| H, 5 \nmid I .
$$

Hence, by (20),

$$
5^{3}\left\|h_{3}, 5^{4}\right\| h_{2}, 5^{5}\left\|h_{1}, 5^{5}\right\| h_{0}
$$

so that, by (21),

$$
5 \| m
$$

This shows by (23) that

$$
5\left\|k_{3}, 5\right\| k_{2}, 5 \| k_{1}, 5 \nmid k_{0}
$$

and by (24) that

$$
5^{8} \| \operatorname{disc}\left(k_{u, v}\right)
$$

Thus by (27) $\alpha=2$.
If $5 \nmid u$, then by (16)

$$
5 \nmid E, 5 \nmid F, 5 \nmid G, 5 \nmid H .
$$

Hence by (20)

$$
5\left\|h_{3}, 5\right\| h_{2}, 5 \| h_{1}, 5 \nmid h_{0},
$$

so that by (21)

$$
5 \nmid m .
$$

This shows by (23) that

$$
5\left\|k_{3}, 5\right\| k_{2}, 5 \| k_{1}, 5 \nmid k_{0}
$$

and, by (24), that

$$
5^{20} \mid \operatorname{disc}\left(k_{u, v}\right) .
$$

Thus, by (27), $\alpha=0$.
Theorem 2 now follows from (26), (27), (28) and (29).

We conclude this section with a numerical example to illustrate Theorem 2. We choose $u=5, v=6$, so that $t=5 / 6$ and

$$
f_{5 / 6}(X)=X^{5}+\frac{25}{36} X^{4}-\frac{2555}{108} X^{3}+\frac{36955}{1296} X^{2}+\frac{4685}{216} X+1
$$

MAPLE confirms that

$$
\operatorname{Gal}\left(f_{5 / 6}\right) \simeq \mathbf{Z} / 5 \mathbf{Z}
$$

Now $E=5^{2} \times 11 \times 281$, so that by Theorem 2,

$$
f(K)=5^{2} \times 11 \times 281, \quad d(K)=5^{8} \times 11^{4} \times 281^{4}
$$

in agreement with PARI.
4. Numerical examples. We conclude with six numerical examples.

Example 1. $f(X)=X^{5}-110 X^{3}-55 X^{2}+2310 X+979 . a_{0}=11 \times 89$, $a_{1}=2 \times 3 \times 5 \times 7 \times 11, a_{2}=-5 \times 11, a_{3}=-2 \times 5 \times 11$. Gal $(f) \simeq \mathbf{Z} / 5 \mathbf{Z}$, $\operatorname{disc}(f)=5^{20} \times 11^{4}$. [MAPLE, PARI] $5^{20} \mid \operatorname{disc}(f), 5 \nmid a_{0}$, so that $\alpha=0$. Theorem 1 gives $f(K)=11, d(K)=11^{4}$, in agreement with PARI.

Example 2. $f(X)=X^{5}-25 X^{3}+50 X^{2}-25 . a_{0}=-5^{2}, a_{1}=0$, $a_{2}=2 \times 5^{2}, a_{3}=-5^{2} . \operatorname{Gal}(f) \simeq \mathbf{Z} / 5 \mathbf{Z}, \operatorname{disc}(f)=5^{12} \times 7^{2}$. [MAPLE, PARI $] 5^{20} \nmid \operatorname{disc}(f), 5\left|a_{1}, 5\right| a_{2}, 5 \mid a_{3}$, so that $\alpha=2$. Theorem 1 gives $f(K)=5^{2}, d(K)=5^{8}$, in agreement with PARI.

Example 3. $f(X)=X^{5}-375 X^{3}-3750 X^{2}-10000 X-625$. $a_{0}=-5^{4}$, $a_{1}=-2^{4} \times 5^{4}, a_{2}=-2 \times 3 \times 5^{4}, a_{3}=-3 \times 5^{3} . \operatorname{Gal}(f) \simeq \mathbf{Z} / 5 \mathbf{Z}$, $\operatorname{disc}(f)=5^{20} \times 7^{6}[$ MAPLE, PARI $] 5^{20}\left|\operatorname{disc}(f), 5^{4} \| a_{0}, 5^{4}\right| a_{1}$,
$5^{4}\left|a_{2}, 5^{3}\right| a_{3}$, so that $\alpha=2$. Theorem 1 gives $f(K)=5^{2}, d(K)=5^{8}$, in agreement with PARI.

Example 4. $f(X)=X^{5}-2483 X^{3}-7449 X^{2}+3247 X-$ 191. $a_{0}=191$, $a_{1}=17 \times 191, a_{2}=-3 \times 13 \times 191, a_{3}=-13 \times 191 . \operatorname{Gal}(f) \simeq \mathbf{Z} / 5 \mathbf{Z}$, $\operatorname{disc}(f)=5^{10} \times 41^{2} \times 191^{4} \times 1039^{2}\left[\right.$ MAPLE, PARI] $5^{20} \nmid \operatorname{disc}(f)$, $5 \nmid a_{1}$, so that $\alpha=0$. Theorem 1 gives $f(K)=191, d(K)=191^{4}$, in agreement with PARI.

Example 5. $f(X)=X^{7}-609 X^{5}+609 X^{4}+70847 X^{3}+25172 X^{2}-$ $1321124 X+2048647$. $a_{0}=29 \times 41 \times 1723, a_{1}=-2^{2} \times 7 \times 29 \times 1627$, $a_{2}=2^{2} \times 7 \times 29 \times 31, a_{3}=7 \times 29 \times 349, a_{4}=3 \times 7 \times 29, a_{5}=-3 \times 7 \times 29$. $\operatorname{Gal}(f) \simeq \mathbf{Z} / 7 \mathbf{Z}, \operatorname{disc}(f)=7^{42} \times 17^{2} \times 29^{6}[$ MAPLE $] 7^{42} \mid \operatorname{disc}(f)$, $7 \nmid a_{0}$, so that $\alpha=0$. Theorem 1 now gives $f(K)=29, d(K)=29^{6}$, in agreement with PARI.

Example 6. $f(X)=X^{13}-78 X^{11}-65 X^{10}+2080 X^{9}+2457 X^{8}-$ $24128 X^{7}-27027 X^{6}+137683 X^{5}+110214 X^{4}-376064 X^{3}-128206 X^{2}+$ $363883 X-12167$. $a_{0}=-23^{3}, a_{1}=13 \times 23 \times 2717, a_{2}=-2 \times 13 \times 4931$, $a_{3}=-2^{8} \times 13 \times 113, a_{4}=2 \times 3^{3} \times 13 \times 157, a_{5}=7 \times 13 \times 17 \times 89$, $a_{6}=-3^{3} \times 7 \times 11 \times 13, a_{7}=-2^{6} \times 13 \times 29, a_{8}=3^{3} \times 7 \times 13$, $a_{9}=2^{5} \times 5 \times 13, a_{10}=-5 \times 13, a_{11}=-2 \times 3 \times 13$. $\operatorname{disc}(f)=$ $13^{24} \times 19^{6} \times 23^{10} \times 337^{2} \times 823^{2} \times 7121^{2} \times 21317^{2}$ [MAPLE] $13^{156} \nmid \operatorname{disc}(f)$, $13 \mid a_{i}, i=1,2, \ldots, 11$, so that $\alpha=2$. Theorem 1 gives $f(K)=13^{2}$, $d(K)=13^{24}$ in agreement with $[\mathbf{1}]$.

REFERENCES

1. Vincenzo Acciaro, Local global methods in number theory, Ph.D. Thesis, Carleton University, Ottawa, Canada, 1995.
2. H. Darmon, Note on a polynomial of Emma Lehmer, Math. Comp. 56 (1991), 795-800.
3. István Gaál and Michael Pohst, Power integral bases in a parametric family of totally real cyclic quintics, Math. Comp. 66 (1997), 1689-1696.
4. James G. Huard, Blair K. Spearman and Kenneth S. Williams, A short proof of the formula for the conductor of an abelian cubic field, Norske Vid. Selsk. Skr. 2 (1994), 3-7.
5. Emma Lehmer, Connection between Gaussian periods and cyclic units, Math. Comp. 50 (1988), 535-541.
6. Daniel C. Mayer, Multiplicities of dihedral discriminants, Math. Comp. 58 (1992), 831-847.
7. Wladyslaw Narkiewicz, Elementary and analytic theory of algebraic numbers, 2nd ed., Springer-Verlag, New York; PWN-Polish Scientific Publishers, Warsaw, 1990.
8. René Schoof and Lawrence C. Washington, Quintic polynomials and real cyclotomic fields with large class numbers, Math. Comp. 50 (1988), 543-556.

Department of Mathematics and Statistics, Okanagan University College, Kelowna, BC, Canada V1V 1V7
E-mail address: bkspearm@okuc02.okanagan.bc.ca
Centre for Research in Algebra and Number Theory, School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6
E-mail address: williams@math.carleton.ca

