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THE DISCRIMINANT OF A CYCLIC FIELD
OF ODD PRIME DEGREE

BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS

ABSTRACT. Let p be an odd prime. Let f(z) € Z[z]
be a defining polynomial for a cyclic extension field K of
the rational number field Q with [K : Q] = p. An explicit
formula for the discriminant d(K) of K is given in terms of
the coefficients of f(x).

1. Introduction. Throughout this paper p denotes an odd prime.
Let K be a cyclic extension field of the rational field Q with [K : Q] = p.
In this paper we give an explicit formula for the discriminant d(K) of
K in terms of the coefficients of a defining polynomial for K. We prove

Theorem 1. Let f(X)=X? +a, o XP 2+ -+ a1 X +ag € Z[X]
be such that

(1) Gal (f) ~ Z/pZ
and

(2) there does not exist a prime q such that
¢ Ya;, i=0,1,...,p—2.

Let 0 € C be a root of f(X) and set K = Q(0) so that K is a cyclic
extension of Q with [K : Q] =p. Then

(3) d(K) = f(K)"~",
where the conductor f(K) of K is given by

(4) fEK) =p® I1 a,

g=1 (mod p)
qla;,i=0,1,... ,p—2
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1102 B.K. SPEARMAN AND K.S. WILLIAMS

where q runs through primes, and

0, if pre=D tdisc (f) andpla; i=1,...,p—2
does not hold,
or
P dise () and plao, P | ar, p 1 as,
1=2,...,p—2,
does not hold,
2, ifpp(pfl) tdisc(f) and p|a;, i=1,...,p—2 holds
or
pP®P=1) | disc (f)  and p?~'||ag, pP~ as, PP a;
i=2,...,p—2 holds.

This theorem will follow from a number of lemmas proved in Sec-
tion 2. In Section 3 Theorem 1 is applied to some quintic polynomials
introduced by Lehmer [5] in 1988. In Section 4 some numerical exam-
ples illustrating Theorem 1 are given.

2. Results on the ramification of a prime in a cyclic field of
odd prime degree. We begin with the following result.

Lemma 1. Let g(X) € Z[X] be a monic polynomial of degree p
having Gal (g) ~ Z/pZ. Let 6 € C be a root of g(X) and set K = Q(6).
Let q be a prime. If g ramifies in K, then there exists an integer r such
that

g(X)=(X —r)? (mod q).

Proof. Suppose that the prime ¢ ramifies in K. As K is a cyclic
extension of Q, it is a normal extension, and so

q=0Q"
for some prime ideal ) of K. Thus,

0k /Ql = N(Q) =4,
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and so, as 0 € Og, there exists r € Z such that
(5) =r (mod Q).

Let 8 = 01,...,60, € C be the roots of g(X). Taking conjugates of (5),
we obtain

;=r (modQ), i=1,2,...,p.
Hence,
gX) =[x -60)=[[(X-r)=(X =P (modQ).

i=1 i=1

Since ¢(X) € Z[X], (X —r)? € Z[X] and ¢ = QP, we deduce that

9(X)

Il
—~
>
|
-
N~—
=

(mod q),

as asserted. O

From this point on, we assume that f(X) = X? + a, o XP7? +
oo+ a1 X + ap € Z[X] is such that (1) and (2) hold. We let
6 = 61,...,0, € C be the roots of f(X) and we set K = Q(f) so
that K is a cyclic extension of degree p.

Lemma 2. Let q be a prime # p. Then q ramifies in K < q | a;,
1=0,1,...,p—2.

Proof. (a) Suppose that ¢ ramifies in K. Then, by Lemma 1, there
exists an integer r such that

f(X)=(X -7’ (mod q),

that is,
XP ta, o XP 24+ a1 X +ap

=XP —prxrt4 <12)) r2Xr=2

— - —7rP (mod q).
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Equating the coefficients of XP~! (mod q), we see that 0 = —pr
(mod ¢q). As p # q we must have ¢ | 7. From the coefficients of X,
1=0,1,... ,p— 2, we deduce that

ai:(—1y+1<P>r”% (mod g),

?

so that
qla;, 1=0,1,...,p—2.

(b) Now suppose that
qlai, i=0,1,...,p—2,
but that ¢ does not ramify in K. Then
q=Q1--Q, t=1orp,
where the @; are distinct prime ideals in K. We have
0=f(0)=0"+ap 20"+ - +a10+ap=6" (mod q),
so that Q; | 6P for i =1,... t. As Q; is a prime ideal, we deduce that

Q; |0 fori=1,...,t, and so ¢ | . This shows that 6/¢ € Ok. The
minimal polynomial of §/q over Q is

aj aop
qr~t qP

ap—2

XP 4 EEXPP 4t
q

which must belong in Z[X]. Hence we have
@ " ai, i=01,...,p—2,
contradicting (2). Hence ¢ ramifies in K. O
Lemma 3. If
pla;, it=1,2,...,p—2 does not hold

then p does not ramify in K.
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Proof. Suppose on the contrary that p ramifies in K. By Lemma 1
there exists an integer r such that

f(X)= (X —r)" (mod p)
so that

XPt+ap, 2 XP 2+ +a1X +ag=XP —r (mod p)

and thus
p|a’i, i:132a"'7p_27
which is a contradiction. Hence p does not ramify in K. o
Lemma 4. If
p Y g disc (f)
and

pla, 1=1,2,...,p—2,

then p ramifies in K.

Proof. Suppose p does not ramify in K. Then
p=Q1-Qt t=1lorp
for distinct prime ideals Q;, i = 1,... ,t, of K. Now

0:f(9):9p+ap_20p72+---+a059”—1—(10
=60P +af = (0 + ap)? (mod p)

so that Q; | (0 + ao)? and thus Q; | @ + ap for ¢ = 1,...,¢. Hence
Q1Q2--- Q1| 0+ag and so p | 4 ag. By conjugation, as K is a normal
extension of Q, we deduce that

p‘9i+a07 Z:132aap

Hence
plb—0;, 1<i<j<np,
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and so

Pp(p_l)‘ 1T ©:—9)

1<i<j<p

that is,
pp(p—l) | disc (f),

contradicting pP(P~Y) f disc (f). This proves that p ramifies in K.

Lemma 5. If
P’ Hlao, " fax, p T e, =2, p =2,
then
(a) p ramifies in K
and
(b) pP®= 1 | disc (f).

Proof. We define by, ... ,b,—2 € Z by
bO = aO/pp_l>b1 = al/pp_1>bi - ai/pp-‘rl_iu 1= 27 Y 2 2.
Clearly p t by. We set

p—2
h(X) = XP+pbi XP71+ 3 " p?bh b XP + phh ! € Z]X].
=2
Then
h(bopX)
p—2
= BhpPXP 4 bE oy pP X Y b ipP T X 4 pbf

=2

-1 P2 +1—i
_p—1 —1 o PP 1
=o' pxP (bopp +hi + z;b’ <+ ﬁ)
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Hence h(X) can be taken as the defining polynomial for the field K.
Since h(X) is p-Eisenstein we have p = P for some prime ideal p of
K, see, for example, [7, Proposition 4.18, p. 181]. Thus p ramifies in
K.

Next we define the nonnegative integer k by ©*||6. Then by conjuga-
tion we have ©*||0;, i =1,2,... ,p. Hence,

o610, = —ao.

But pP~!|ag so that PP~ Y|jag. Hence pk = p(p—1), that is, k = p—1
and pP~1||6.

Further,
p—2
F1O) =por" +) iai0' " +ay.
i=2
We have
pr e | pprt,
PP HI=OFP=D0=1 | q. 0071 =2 . p—2,
pp(p—l) | a;.
As
p+-1)>=p"—p+1>pp-1)
and

pp+1-i)+(p-Di-1)=p*—i+1>p*~(p—2)+1
=p°—p+3>pp-1),

we see that
D | £10)
By conjugation we deduce that

pp(p_l) ‘ f/(91)7 i: 17"‘ 7p7

so that ,
p]ﬂ(p—l)‘ H f/(91)7
i=1



1108 B.K. SPEARMAN AND K.S. WILLIAMS

that is,
pP(P—1) | disc (f).

This completes the proof of Lemma 5. ]

Lemma 6. If
pPPY | disc (f)

and
pP " Y|ao, PP Hag, PP " ay, i=2,...,p—2, does not hold,

then p does not ramify in K.

Proof. Suppose p ramifies in K. Then p = pP for some prime ideal p
in K. As N(p) = p there exists r € Z with 0 < r < p — 1 such that

0=r (mod p).

We consider two cases.

Case (i): 7 = 0. In this case p |  so that p¥||6 for some positive
integer k. Suppose that £ > p. Then p | 6 and thus /p € Ok. The
minimal polynomial of §/p over Q is

al an
i

Xp+ap_;2XP—2_|_..._|_
p

which must belong in Z[X]. Hence we have
pp7i|a”ia i20517"'ap_2a

contradicting (2). Thus 1 <k <p—1.

Next we define the nonnegative integer I by ©!||f/(6). By conjugation
we have ©!||f/(0;), i =1,2,... ,p. Hence

ple ﬁf’(@i) = +disc (f).
i=1
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But P’ @1 = pp(e=1) | disc (f), so we must have pl > p*(p — 1), that

is, I > p(p — 1). Hence

(6) PP | £(6).

Now
p—1

(7) F0)=p0~" + ) (p— Dap—i6" ",
i=2

where

ve(p0” ) =p+ (p— 1)k
and
ve((p — i)ap—iep_i_l) = vp(ap—i) + (p—i— 1)k,

Clearly,
v (pfP~') = -k (mod p)

and

i=2,...,p—1

vo((p—i)ap—i0P~" 1) = —ik —k (modp), i=2,...,p—1.

Since {—ik—k |i=0,1,... ,p—1} is a complete residue system modulo
P, v (pOP~1) and v, ((p—i)a,—i0P =" 1), i = 2,... ,p—1, are all distinct.

Hence, by (6) and (7), we have

vo(p0”~1) = p(p — 1)

and 4
vo((p—i)ap—i? 1) = p(p—1), i=2,...
Thus
(8) pt+(p—-1k>plp-1)
and

,p— 1.

.,p— 1.
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From (8) we deduce that k > p—1. As 1 <k <p— 1, we must have
k=p—1so gl 0. From (9), we obtain

vp(ap—i) > (i+1)(p —1),

so that o )
vp(ap_i) > w7 i=2,...,p— 1
p
Hence
vplap—;) >i+1, fi=2,...,p—2,
and
vp(ar) > p—1.
Thus
EPP=1) | o7
P D+P=0=1) | ap_ 0P =2, ,p—2,
EPP=D+=1) | a6,
so that
p—1
2 .
10 a7 = —an
i=2
Hence,
P’ | ao.
Since pP~! | a1, pP7% | ag,...,p* | ap—2, we must have by (2) that

pP t ag. This proves that pP~1||ag, contradicting the second assumption
of the lemma.

Case (ii): r=1,2,... ,p— 1. We set
p .
9(X) = F(X +7)= D 0,%9 € Z[X]
3=0

so that, with a,_1 =0, ap = 1,

p .
bj:zai (;)rij, Jj=0,1,...,p.

i=j
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In particular, we have b,_; = rp, b, = 1. Further, we set o = 6 — r so
that & =0 (mod p). Moreover, g(a) = f(a+r) = f(f) = 0 so that «
is a root of g(X). Define the positive integer k by ©*||a. If k > p then
a/p € Ok and, as the minimal polynomial of «/p is

p
gX) =) ==X,
=P

we must have

b,
ppij €Z, j=0,1,...,p.

By Lemma 1 there exists an integer s such that
g"(X)= (X —s)" (mod p).
Thus
r=by_1/p= coefficient of X?~! in g*(X)=-ps=0 (mod p),
contradicting 1 <r <p—1. Hence, k =1,2,... ,p— 1.
Now let @ = a1, ... ,a, € C be the roots of g(X), so that

p

=) = pp®=) | disc (f) = disc (9) = + [ [ /().

i=1

Suppose that '|¢'(a). By conjugation we have @'|¢'(a;), i =
1,2,...,p. Hence,

p
(10) o[ T o ()
i=1
Further
p—2
(11) g'(a) :papfl +rp(p — 1)041072 +Zibiai—1
i=1
and

vo(pa?~ ) =p+ (p— 1)k,
v (rp(p — 1) ~%) = p+ (p — 2)k,
vo(ibia ™) = v, (b)) + (i — )k, i=1,...,p—2.
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Since
vp(pap_l), ve(rp(p — 1)0[”‘2), vp(ibiai_l), i=1,...,p—2,

are all distinct modulo p, they must all be different. From (10) and
(11), we deduce

(12) EP(P—1) | paP~1, EP(P—1) | rp(p — 1)aP~2,
PP~ | ibatt i=1,...,p—2.

From the first of these, we have

plp—1)<p+ (- Dk

so that )

)

R

As k € Z we must have k¥ > p — 1. Since k € {1,2,... ,p — 1}, we
deduce that k = p — 1. Then, from the second divisibility condition in
(12), we deduce that

k

plp—1) <p+(p-2k=p+(p-2)(p-1)=p*—2p+2,

which is impossible.

In both cases we have been led to a contradiction. Thus p does not
ramify in K. ni

3. Proof of Theorem 1. It is well known, see, for example, [6,
p. 831], that

and

g=1 (mod p)
q ramifies in K
where ¢ runs through primes and
0 if p does not ramify in K,
o =
2 if p ramifies in K.
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Clearly, by Lemma 2, we have

n - I

g=1 (mod p) g=1 (mod p)
q ramifies in K qla;,i=0,1,... ,p—2
Finally we treat the prime p. We consider four cases.
(1) pP®=1 ydisc (f), p | as, i = 1,... ,p — 2, does not hold,
(IT) p?®=Y ydisc (f), p| as, i = 1,... ,p— 2, holds,

(III) pp(pfl) | disc (f)ap;Dil”aO;ppil | alapp+1ii | A, 1= 25 s ap_27
holds,

(IV) pp(p—l) | disc (f)7pp_l‘|a/07pp_l ‘ a1>pp+1_i ‘ g, 1= 27 e 7p_2>
does not hold.

In Case (I), by Lemma 3, p does not ramify in K, and so « = 0. In
Case (II), by Lemma 4, p ramifies in K, and so a = 2. In Case (III), by
Lemma 5, p ramifies in K, and so a = 2. In Case (IV), by Lemma 6,
p does not ramify in K, and so a = 0.

This completes the proof of Theorem 1. |

We conclude this section by looking at the case p = 3 in some detail.
Let f(X) = X3+ aX +b € Z[X] be such that Gal(f) ~ Z/3Z and
suppose that there does not exist a prime ¢ such that ¢ | @ and ¢* | b.
Here disc (f) = —4a® — 27b%. As Gal(f) ~ Z/3Z, we have

—4a® =27 = 2

for some positive integer c. Since 32 | a, 3% | b cannot occur, we deduce
as in [4, p. 4] that exactly one of the following four possibilities occurs:

(i) 3ta, 31c,
(i) 3lla, 3 15, 37|,

(iii) 3||a, 310, 3% | ¢,
(iv) 32|a, 32|, 33||c.
Clearly (i) is equivalent to
(i 3° t dise (f), 3t a:
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(ii

) is equivalent to
(ii)" 3% t disc (f), 3 | a;
(iii) is equivalent to
(iii)’ 36 | disc (f), 3||a;
(iv) is equivalent to
(iv)’ 3¢ | disc (f), 32 | a, 32%|b.
By Theorem 1, we have
f=3 I o

g=1 (mod 3)
qla, qlb

where ¢ runs through primes, and
0 in cases (1)’, (iii)’,
a = . .. .
2 in cases (i), (iv)’,
that is,

{0 in cases (i), (iii),
o =

2 in cases (ii), (iv),

in agreement with [4].

3. Emma Lehmer’s quintics. Let ¢t € Q and set

(13) fu(X) = X® 4+ as(t) X* + az () X3 + az(t) X2 + a1 (1) X + ao(t),

where
as(t) = 2
az(t) = (2t3 + 6t% 4 10t + 10),
(14) az(t) = t* + 53 + 11¢% 4 15t + 5,
ay(t) =t 4+ 4% + 10t + 10,
ap(t) = 1.

These polynomials were introduced by Lehmer [5] in 1988 and have
been discussed by Schoof and Washington [8], Darmon [2] and Gaél
and Pohst [3]. We set

(15) t=u/v,u€Z, veZ, (uv)=1, v>0.
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It is convenient to define

E = E(u,v) = u* + 5u’v + 15u%0v? + 25uv® 4 250%,
F = F(u,v) = 4u® + 10uv + 50,

G = G(u,v) = 3u® + 15u3v + 20uv? — 500,

H = H(u,v) = 4u® + 30u’v + 65u*v? — 200u?v*

(16) — 125uv° + 12505,
I = I(u,v) = v+ 5uv + 10uv? + 703,
J = J(u,v) = 12u® + 58u'v + 15u3v? — 130u*v?
— 175uv* + 2000°,
L = L(u,v) = 3u® + Tu*v + 20uv? + 150°,

Let 6 be a root of f;(z) and set K = Q(#). As an application of
Theorem 1, we prove the following result.

Theorem 2. With the above notation, if K is a cyclic quintic field,
then its conductor f(K) is given by

fK) = 5" 11 4,
g=1 (mod 5)
q|E
vq(E)Z0 (mod 5)

where q Tuns through primes, and

[0 if51u,
_{2 if 5| u.

We remark that when ¢ € Z, equivalently v = 1, it is known that K
is a cyclic quintic field [8]. The special case of Theorem 2 when E(u, 1)
is squarefree is given in [3].

Proof. We have

(17)  ge(X) =57 fi((X —1)/5) = X° + g3 X° + g2 X° + 1 X + go,



1116 B.K. SPEARMAN AND K.S. WILLIAMS

where

g3 = —10t* — 50¢% — 150t? — 250t — 250,
g2 = 20t° + 150> + 575t + 1375t 4 2125t
+ 1875t + 625,
(18) g1 = —15t% — 1507 — 700t° — 2000¢> — 3500t
— 3125¢3 4+ 12502 + 6250t + 6250,
go = 4t1% 4+ 50t + 275¢% 4+ 8757 4 1625t5 + 1250t°
— 1875t* — 6250t — 6250t% + 3125.

Next we set
(19)  huo(X) =0"0g,/0(X/0*) = X° + h3 X® + ho X? 4+ h1 X + hy,
where

hs = —10u* — 50uv — 150u%v? — 250uv® — 2500%
= —10(u* + 5u3v + 15uv? + 25uv® + 250);
ho = 20u8 + 150u’v 4+ 575u*v? + 1375u3v® + 2125u%0*
+ 1875uv® + 6250°
= 5(u* 4 5uv + 15uv? + 25uv® + 250%) (4u® + 10uw + 50%);
hy = —15u8 — 150u”v — 700u5v? — 2000u°v> — 3500uv?
— 3125uv° 4 1250u%0° + 6250uv” + 625008
= —5(u* 4 5uv + 15uv? + 25uv® + 250%)
x (3u® + 15uv + 20u*v? — 500%);
4u® 4 500”0 + 275uBv? + 875u"v? + 1625uSv*
+1250u°v® — 1875u*v® — 6250u3v” — 6250u%0® + 312501°
= (u* + 5uPv 4 15u*v? + 25uv® + 250%)
x (4u8 + 30u’v + 65utv? — 200uv? — 125uv® + 12509);

ho

so that by (16) we have
(20) hs = —10E, hy = 5EF, hy = —5EG, ho = EH.
Next let m denote the largest positive integer such that

(21) m2|h3, m3|h2, m4|h1, m5‘h0,
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and set

(22)  kyo(X) = hyo(mX)/m® = X° + ks X3 + ko X2 + k1 X + ko,
where

(23) k3 = ha/m?, ky = hy/m?3, ki = hy/m?, ko = ho/m°.

Appealing to MAPLE, we find

(24) dise (ky ) = 50 B4 12018 /0
and
(25) EJ — HL = 55°.

Clearly k, ,(X) is a defining polynomial for the cyclic quintic field
K. Hence, by Theorem 1, we have

(26) f(K) =5 11 q,
g=1 (mod 5)
qlko, qlk1, qlkz2, qlks

where ¢ runs through primes, and

0 if 52 disc (ky) and 5 | k1, 5| k2, 5| k3
does not hold, or
520 | disc (ky,) and 5%||ko, 5% | k1, 5% | k2,53 | k3
does not hold,
2 if 520 f disc (ky») and 5 | k1,5 | ko, 5 | ks,
or 520 | disc (ky ) and 5%| ko, 5% | k1,5 | ko, 53 | k.

Let ¢ be a prime with
q=1 (mod5), qlks, qlkz, ql|ki, q]ko.

We show that
4| E, v,(B)#£0 (mod 5).
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By (23) we have
Q|h37 Q|h27 Q|h17 Q|h0

As ¢ =1 (mod 5), we have g # 2,5. Thus, from (20), we deduce that
q | E. Suppose next that ¢ | v. Then, from the definition of E in (16)
we see that ¢ | u, contradicting (u,v) = 1. Hence ¢ f v. Then, from
(25), we deduce that ¢ t H. If v,(E) = 0 (mod 5), say v,(E) = bw,
w > 1, then by (20) we have

¢*"(|hs, ¢° | ha, ¢°* | h1, ¢**|lho,
so that by (21) we have
q"|m.

Thus by (23),
q1ho/m® = ko,

a contradiction. Hence v4(E) # 0 (mod 5).

Conversely, let ¢ be a prime with
g=1 (mod5), q|E, v,(E)Z0 (mod?5).
We show that

q| ks, q|ke, q|ki, q]ko.

Suppose that ¢ | v. Then, by the definition of F in (16), we have ¢ | u,
contradicting (u,v) = 1. Hence ¢t v. Thus, by (25), we see that g1 H.
As v,(E) # 0 (mod 5), we have ¢°**7||E, where z is a nonnegative
integer and r = 1,2,3,4. Thus by (20) we have

q52+th3, q52+r | hg, q52+r | hl; q5z+r||h0.

This shows by (21) that
q*[|m

so that by (23)

q3z+THk3, q2z+r | k?a qz+7‘ ‘ kla qT”kOa

proving
q| ks, ql ke, qlki, qko.
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We have shown that

(28) 11 q= I «

g=1 (mod 5) g=1 (mod 5)
qlko, alki, qlk2, qlks q|E
vq(E)#0 (mod 5)

Finally, to complete the proof of Theorem 2, we show that

0 ifb
a—{ if 51 u,

(29) 2 if 5| u

If 5 | u, then by (15), 5t v and, by (16),
5|\ E, 5|IF, 5%G, 5%(|H, 511
Hence, by (20),
5%||ha, 5%[[h2, 5°(lh1, 5°|lho,

so that, by (21),
5||m.

This shows by (23) that
5||ks, 5||k2, 5||k1, 51 ko,

and by (24) that
58| disc (ky.o)-

Thus by (27) o = 2.
If 5 { u, then by (16)
5{E, 51F, 5/G, 5{H.
Hence by (20)
5||hs, 5|lhe, 5]lh1, 51 ho,

so that by (21)
54 m.

This shows by (23) that

5|k, 5l[k2, 5llk1, 51 ko,

1119
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and, by (24), that
520|disc (K o )-
Thus, by (27), « = 0.
Theorem 2 now follows from (26), (27), (28) and (29). o

We conclude this section with a numerical example to illustrate
Theorem 2. We choose u = 5, v = 6, so that t = 5/6 and

25 92555 36955 4685
X)=X°4+ x4 =208 X2 X +1.
Fs/6(X) * 36 108 1206 © "ot T

MAPLE confirms that
Gal (fs5/6) ~ Z/5Z.
Now E =52 x 11 x 281, so that by Theorem 2,
fK)=5% x 11 x 281, d(K)=>5%x11* x 281*

in agreement with PARI.

4. Numerical examples. We conclude with six numerical exam-
ples.

Example 1. f(X) = X°—110X3-55X2+2310X +979. ag = 11 x 89,
a1 =2%x3x5x7x11, a9 = =5x11,a3 = —2x5x11. Gal(f) ~ Z/5Z,
disc (f) = 5%° x 11%. [MAPLE, PARI] 5% | disc (f), 5 { ao, so that
a = 0. Theorem 1 gives f(K) = 11, d(K) = 11%, in agreement with
PARIL

Ezample 2. f(X) = X® — 25X3 +50X% — 25. a9 = —52, a; = 0,
az =2 x 52, a3 = =52 Gal(f) ~ Z/5Z, disc (f) = 5'2 x 72. [MAPLE,
PARI] 5% ¢ disc (f), 5 | a1, 5 | a2, 5 | as, so that o = 2. Theorem 1
gives f(K) = 5%, d(K) = 5%, in agreement with PARL

Ezample 3. f(X) = X°—375X>-3750X2—10000X —625. ag = —5%,
a; = =24 x 5% ay = -2 x 3 x 5% a3 = -3 x 53. Gal(f) ~ Z/5Z,
disc (f) = 52° x 7% [MAPLE, PARI] 5%° | disc(f), 5*||lao, 5* | a1,
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5% | ag, 5 | as, so that a = 2. Theorem 1 gives f(K) = 52, d(K) = 58,
in agreement with PARI.

Example 4. f(X) = X°—2483X3 —7449X?+3247X —191. ap = 191,
a3 =17 %191, ag = =3 x 13 x 191, a3 = —13 x 191. Gal(f) ~ Z/5Z,
disc (f) = 519 x 412 x 191* x 1039? [MAPLE, PARI] 5% { disc (f),
51 ay, so that a = 0. Theorem 1 gives f(K) = 191, d(K) = 1914, in
agreement with PARI.

Ezample 5. f(X) = X7 —609X° + 609X* + 70847X3 + 25172X? —
1321124X + 2048647. ag = 29 x 41 x 1723, a; = —22 x 7 x 29 x 1627,
g = 22%xTx29%x31, a3 = Tx29%x349, ay = 3x7x29, a5 = —3 X 7x29.
Gal (f) ~ Z/TZ, disc (f) = 72 x 172 x 296 [MAPLE] 74 | disc (f),
71 ap, so that @ = 0. Theorem 1 now gives f(K) = 29, d(K) = 29°, in
agreement with PARI

Ezample 6. f(X) = X1 — 78X — 65X 10 + 2080X° + 2457X8 —
24128 X7 —27027X % +137683X5+110214X* —376064X 3 — 128206 X 2 +
363883X —12167. ag = —233, a1 = 13x 23 x 2717, ay = —2 x 13 x 4931,
az = —28 x 13 x 113, a4 = 2 x 33 x 13 x 157, a5 = 7 x 13 x 17 x 89,
ag = =3 x Tx 11 x 13, a7 = —2% x 13 x 29, ag = 3% x 7 x 13,
ag = 2° x5 x 13, ajgp = =5 x 13, a;; = —2 x 3 x 13. disc(f) =
1324 x 195 x 2310 x 3372 x 8232 x 71212 x 213172 [MAPLE] 1356 } disc (f),
13 | a;, i = 1,2,...,11, so that a = 2. Theorem 1 gives f(K) = 132,
d(K) = 13* in agreement with [1].
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