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ON THE COMMUTANT OF MULTIPLICATION
OPERATORS WITH ANALYTIC SYMBOLS

B. KHANI ROBATI AND S.M. VAEZPOUR

ABSTRACT. Let B be a certain Banach space consisting
of analytic functions defined on a bounded domain G in the
complex plane. Let φ ∈ B be a function which is analytic on G
and continuous on G. Assume that Mφ denotes the operator
of multiplication by φ. We characterize the commutant of
Mφ that is the set of all bounded operators T such that
MφT = TMφ. Under certain conditions on φ, we show that
T = Mϕ for some function ϕ in B.

1. Introduction. Let B be a Banach space consisting of analytic
functions defined on a bounded domain G in the complex plane such
that B satisfies conditions a, b, c, d as follows:

(a) 1 ∈ B, zB ⊂ B.

(b) For every λ ∈ G the evaluation functional at λ, eλ : B → C, given
by f �→ f(λ), is bounded.

(c) ran (Mz − λ) = ker eλ for every λ ∈ G.
(d) If f ∈ B and |f(λ)| > c > 0 for every λ ∈ G, then 1/f is a

multiplier of B.
Throughout this article by a Banach space of analytic functions B on

G we mean one satisfying the above conditions.

Some examples of such spaces are as follows:

1) The algebra A(G) which is the algebra of all continuous functions
on the closure of G that are analytic on G.

2) The Bergman space of analytic functions defined on G, Lp
a(G) for

1 ≤ p ≤ ∞.
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3) The spaces Dα of all functions f(z) =
∑
f̂(n)zn, holomorphic in

D, for which
‖f‖2

α =
∑

(n+ 1)α|f̂(n)|2 <∞
for every α ≥ 1 or α ≤ 0.

4) The analytic Lipschitz spaces Lip (α,G) for 0 < α < 1, i.e., the
space of all analytic functions defined on G that satisfy a Lipschitz
condition of order α.

5) The subspce lip (α,G) of Lip (α,G) consisting of functions f in
Lip (α,G) for which

lim
z→w

|f(z)− f(w)|
|z − w|α = 0.

6) The classical Hardy spaces Hp for 1 ≤ p ≤ ∞.

A complex-valued function φ defined on G is called a multiplier of B if
φB ⊂ B, i.e., φf is in B for every f ∈ B, and the set of all multipliers of
B is denoted by M(B). As is shown in [6], each multiplier φ is bounded
on G. Given a multiplier φ, let Mφ be defined by Mφ(f) = φf denotes
the operator of multiplication by φ. By the closed graph theorem Mφ

is bounded. The algebra of all bounded operators on B is denoted
by L(B). Let X ∈ L(B) and XMz = MzX, it is easy to see that
X = Mφ for some function φ ∈ M(B). A good source on this topic
is [6]. We denote by {Mφ}′ the set of operators X ∈ L(B) such that
MφX = XMφ, i.e., the commutant of Mφ. Let f ∈ A(G) and z0 ∈ G.
If f(z) has a zero of order one at z0 and f(z) �= 0 for all z �= z0 in G
we say that f has only a simple zero in G.

Shields and Wallen [8] studied the commutant of the operator of
multiplication by z on the Hilbert spaces of analytic functions and
introduced interesting function theoretic methods. The commutant of
Toeplitz operator on certain Hilbert spaces of functions was studied
by many mathematicians. See, for example, [1, 9, 10], Cuckovic
in [3] investigates the commutant of Mzn on the Bergman space
L2

a(D). Seddighi and Vaezpour [7] studied the commutants of certain
multiplication operators on Hilbert space of analytic functions with
special reproducing kernels. Also the commutant of Mz2 on Banach
space of analytic functions and the commutant of Mzn on certain
Hilbert spaces of functions were studied in [4]. In [2] Axler, Cuckovic
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and Rao have shown that if two Toeplitz operators on Bergman space
commute, and the symbol of one of them is analytic and nonconstant,
then the other one is analytic. Also in [5] Khani and Vaezpour
characterize the commutant ofMφ for a univalent function φ ∈ M(B)∩
A(D) on a Banach space of continuous functions and investigate the
commutant ofMφ2 under certain conditions. In Section 2 of this article
we investigate the commutant of the operator Mφ for some function
φ ∈ M(B) ∩ A(G) which is not necessarily univalent but we show
that {Mφ}′ = {MΨ : Ψ ∈ M(B)}. In particular we investigate the
commutant of Mφ when φ is a certain polynomial.

2. The main results. First we state a theorem which will be used
in the proof of other theorems that we state in this section.

Theorem 2.1. Let B be a Banach space of analytic functions and let
φ ∈ M(B)∩A(G). If for some λ ∈ G, φ−φ(λ) has only a simple zero in
G, then T (f)(λ) = T (1)(λ)f(λ) for each f ∈ B and every T ∈ {Mφ}′.

Proof. First we will show that ran (Mφ − φ(λ)) = ker eλ. It is clear
that ran (Mφ − φ(λ)) ⊂ ker eλ.

To show the converse, since ran (Mz − λ) = ker eλ we have φ(z) −
φ(λ) = (z − λ)g(z) for some g ∈ B. By assumption, g(z) �= 0 on

G. Therefore 1/g is in M(B) and we have z − λ =
φ(z)− φ(λ)

g(z)
. Now

assume that h ∈ ker eλ so h = (z−λ)u for some function u ∈ B. Hence

h =
φ− φ(λ)

g
u = (φ− φ(λ))

u

g
.

Since u/g ∈ B, we conclude that ker eλ ⊂ ran (Mφ−φ(λ)). Now let T ∈
{Mφ}′, an easy calculation shows thatM∗

φT
∗(eλ) = φ(λ)T ∗(eλ). Hence

(Mφ − φ(λ))∗(eλ) = (Mφ − φ(λ))∗T ∗(eλ) = 0. Since
dimker (Mφ − φ(λ))∗ = 1, we conclude that T ∗(eλ) = ψ(λ)eλ for some
constant ψ(λ). Therefore we have

T (f)(λ) = 〈T (f), eλ〉 = 〈f, T ∗(eλ)〉
= ψ(λ)〈f, eλ〉 = ψ(λ)f(λ)

for every f ∈ B, in particular if we set f = 1 in the above relation we
have ψ(λ) = T (1)(λ).
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Let U be a subset of the complex plane and let a be a constant. We
define U− − a = {−z − a : z ∈ U}.

Theorem 2.2. Let B be a Banach space of analytic functions on G
and let, for a, b ∈ C, φ(z) = z2 + az + b. If G − {G− − a} �= ∅, then
{Mφ}′ = {MΨ : Ψ ∈ M(B)}.

Proof. It is easy to see that W = (G − {G− − a}) − {−a/2} is a
nonempty open subset of G. Assume λ ∈ W we have φ(z) − φ(λ) =
(z − λ)(z + a + λ), since G− − a = G− − a, φ − φ(λ) has only a
simple zero in G. Now let T ∈ {Mφ}′ and f ∈ B. By Theorem 2.1,
T (f)(λ) = T (1)(λ)f(λ) for every λ ∈ W . Since T (f) is analytic on G
and G is connected, we conclude that T (f) = T (1)f and the proof is
complete.

Remark. Let φ and G be as in Theorem 2.2. By this theorem
it is easy to see that for each G there is at most one a such that
{Mφ}′ �= {MΨ : Ψ ∈ M(B)}. In fact by Theorem 2.6 of [4], we can
see that for some Banach spaces of analytic functions defined on D we
have {Mz2}′ �= {MΨ : Ψ ∈ M(B)} and G − {G− − a} = ∅. Also for
M(z+1)2 on H2(D− 1) we have G− (G− − a) = ∅ and it is known that
{M(z+1)2}′ �= {MΨ : Ψ ∈ M(B)}.

Theorem 2.3. Let B be a Banach space of analytic functions on D.
Let p(z) = anz

n+an−1z
n−1+ · · ·+a1z+a0 be a polynomial of degree n

for some positive integer n ≥ 2, and let |an|+ |an−1|+ · · ·+ |a2| < |a1|.
Then {Mp}′ = {MΨ : Ψ ∈ M(B)}.

Proof. Let λ ∈ D be such that

|λ| < |a1| − |an| − |an−1| − · · · − |a2|
|a1|+ |an|+ |an−1|+ · · ·+ |a2| .

It is easy to see that |p(z) − p(λ) − a1z| < |a1z| on the circle |z| = 1.
Hence by Rouche’s theorem p−p(λ) has only a simple zero on D. Now
by Theorem 2.1 and a similar argument as in the proof of Theorem 2.2,
we have {Mp}′ = {MΨ : Ψ ∈ M(B)}.



COMMUTANT OF MULTIPLICATION OPERATORS 1053

Let B be a Banach space of analytic functions on D and let n be a
positive integer. If a is a constant with |a| > 1, then by Theorem 2.3
we have {Mzn+az}′ = {MΨ : Ψ ∈ M(B)}. In the next theorem we
investigate the commutant of Mz3+az.

Theorem 2.4. Let B be a Banach space of analytic functions on
D. If a is a constant such that |Re (a)| > 1/8 or |Im (a)| > 1/8, then
{Mz3+az}′ = {MΨ : Ψ ∈ M( B)}.

Proof. Let φ(z) = z3+az, then φ(z)−φ(λ) = (z−λ)(z2+λz+λ2+a).
Now suppose that Re (−a) < −1/8 and λ is a positive number. Let
z = x+ iy. We have

Re (z2 + λz + λ2) = x2 − y2 + λx+ λ2

≥ 2x2 + λx+ λ2 − 1
= 2(x+ λ/4)2 + (7/8)λ2 − 1
≥ (7/8)λ2 − 1.

Since (7/8)λ2 − 1 → −1/8 whenever λ → 1 and Re (−a) < −1/8. We
can choose a sequence of distinct real numbers {λn} which converges
to a real number λ0 in (0, 1) such that Re (z2 +λnz+λ2

n) > c for some
constant c, with Re (−a) < c < −1/8 and for all positive integers n.
Now let T ∈ {Mφ}

′
and f ∈ B. By assumption φ(z)− φ(λn) has only

a simple zero in D, therefore by Theorem 2.1 T (f)(λn) = T (1)f(λn)
for each positive integer n. Since T (f)− T (1)f is an analytic function
on D whose zero set has a limit point in D, it is the zero function on
D and we conclude that T (f) = T (1)f .

If Re (−a) > 1/8, by a similar argument as before and substituting λ
with iλ we obtain the result.

Now assume that Im (−a) < −1/8 if we set λ = α+ iα, then

Im (z2 + λz + λ2) = 2xy + α(x+ y) + 2α2.

By a rotation with measure −π/4 and substitution x =
X+Y√

2
and
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y =
Y −X√

2
, we have

2xy + α(x+ y) + 2α2 = Y 2 −X2 +
√
2αY + 2α2

≥ 2Y 2 − 1 +
√
2αY + 2α2

= 2
(
Y +

α

2(
√
2)

)2

− α2

4
+ 2α2 − 1

≥ −1 + (7/4)α2.

We see that (7/4)α2 − 1 → −1/8 whenever α → √
2/2. Now by a

similar argument as we used in the first stage of the theorem we can
prove the theorem in this case.

Finally assume that Im (−a) > 1/8 if we set λ = α− iα for some real
number α in the former stage and, using a similar argument, we obtain
the result.

In the next theorem we improve the result obtained in Theorem 2.3.

Theorem 2.5. Let B be a Banach space of functions defined on
G, and let G be the interior of G. Suppose h and g ∈ M(B) ∩ A(G)
and assume that g has only a simple zero in G at a point z0 in G and
h(z0) = 0. If |h(z)| < |g(z)| at each point of G−G, then

{Mh+g}′ = {MΨ : Ψ ∈ M(B)}.

Proof. Since |g(z)| − |h(z)| > 0 at each point of G − G there is a
constant a > 0 such that |g(z)| − |h(z)| > a for each z ∈ G−G. Since
g(z0) = h(z0) = 0 there is a δ > 0 such that |g(λ)| < a/2 and |h(λ)| <
a/2 whenever λ ∈ B(z0; δ) where B(z0; δ) = {z ∈ G : |z − z0| < δ}.
Now we set φ = h+ g and we have

|φ(z)− φ(λ)− g(z)| = |h(z)− h(λ)− g(λ)| < |h(z)|+ a < |g(z)|

for each λ ∈ B(z0; δ) and z ∈ G − G. Hence by the general form
of Rouche’s theorem φ(z) − φ(λ) has only a simple zero for each
λ ∈ B(z0; δ); therefore, by Theorem 2.1, for each T ∈ {Mφ}′, f ∈ B,
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and every λ ∈ B(z0; δ) we have T (f)(λ) = T (1)(λ)f(λ). Since T (f) is
analytic, the proof is complete.

Theorem 2.6. Let B be a Banach space of functions defined on G
and let G be the interior of G. Suppose h and g ∈ M(B) ∩ A(G) and
assume that g has only a simple zero in G at a point z0 in G. If there
is a constant c such that |h(z)| < c < (1/2)|g(z)| for each z ∈ G − G,
then

{Mh+g}′ = {MΨ : Ψ ∈ M(B)}.

Proof. Since |g(z)|−2c > 0 at each point of G−G there is a constant
a > 0 such that |g(z)| − 2c > a for each z ∈ G − G. Since g(z0) = 0
there is a δ > 0 such that |g(λ)| < a whenever λ ∈ B(z0; δ). Now we
set φ = h+ g and we have

|φ(z)− φ(λ)− g(z)| = |h(z)− h(λ)− g(λ)| < 2c+ a < |g(z)|

for each λ ∈ B(z0; δ) and z ∈ G − G. Hence by the general form
of Rouche’s theorem φ(z) − φ(λ) has only a simple zero for each
λ ∈ B(z0; δ); therefore, by Theorem 2.1, for each T ∈ {Mφ}′, f ∈ B,
and every λ ∈ B(z0; δ) we have T (f)(λ) = T (1)(λ)f(λ). Since T (f) is
analytic the proof is complete.

Example 2.7. Let B = Lp
a(D) be the Bergman space of analytic

functions, and let h(z) = znez for some nonnegative integer n and
g(z) = az where a is a constant. We set φ(z) = h(z) + g(z). If n > 1
and |a| > e then, by Theorem 2.5, {Mφ}′ = {MΨ : Ψ ∈ M(B)}. Also
if n = 0 and |a| > 2e, by Theorem 2.6 we have {Mφ}′ = {MΨ : Ψ ∈
M(B)}.

Example 2.8. Let B be a Banach space of analytic function on D.
Let φ =

∑∞
n=1 anz

n belong to M(B) ∩A(G).
a) If a1 = 1 and

∑∞
n=2 n|an| < 1, then φ is a univalent function.

Hence by Theorem 2.1, {Mφ}′ = {MΨ : Ψ ∈ M(B)}.
b) If a1 = 1 and

∑∞
n=2 |an| < 1 then, by Theorem 2.5, we have

{Mφ}′ = {MΨ : Ψ ∈ M(B)}.
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