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ASYMPTOTIC BEHAVIOR AND OSCILLATION
OF DELAY PARTIAL DIFFERENCE EQUATIONS

WITH POSITIVE AND NEGATIVE COEFFICIENTS

SHU TANG LIU, BING GEN ZHANG and GUANRONG CHEN

ABSTRACT. We obtain sufficient conditions for the oscil-
lation of all solutions of the linear partial difference equations
with positive and negative coefficients of the form

Am−1,n + Am,n−1 − Amn + pAm+k
n+l

− qAm+k′
n+l′

= 0,

and

Am−1,n + Am,n−1 − Amh + pmnAm+k
n+l

− qmnAm+k′
n+l′

= 0,

where m, n = 0, 1, . . . , and k, k′, l′, l are nonnegative integers
p, q ∈ (0,∞), and coefficients {qmn} and {pmn} are sequences
of nonnegative real numbers. In this paper Am

n
= Am,n.

1. Introduction. Partial difference equations arise from various
practical problems and numerical analysis of partial difference equa-
tions [1-2]. In this area, the oscillatory and nonoscillatory behaviors of
delay partial difference equations have been investigated in, for exam-
ple, [3, 4, 6 11].

In this paper we consider the linear partial difference equations with
positive and negative coefficients in the form

Am−1,n +Am,n−1 − Amn + pAm+k
n+l

− qAm+k′

n+l′
= 0,(1.1)

and

Am−1,n +Am,n−1 − Amn + pmnAm+k
n+l

− qmnAm+k′
n+l′

= 0.
(1.2)
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Let Ni = {i, i+ 1, i+ 2, . . . , |i = 0, 1, 2, . . . }, where

(1.3)
k, k′, l′, l ∈ N0, p, q ∈ (0,∞), pmn, qmn ∈ [N2

0 , (0,∞)],
k > k′, l > l′.

Note that in the case of q = qmn = 0, some results for the oscillation of
(1.1) and (1.2) have been obtained in [3, 6 8]. Regarding the definition
of the oscillation as well as initial conditions, the reader is referred to [3,
8]. As can be easily seen, a detailed and specific study of (1.1) and (1.2)
in such a general form is very difficult. Nevertheless, in this paper, we
are able to obtain some sufficient conditions for the oscillatory behavior
of all solutions of (1.1) and (1.2).

2. Preliminary lemmas. Consider the delay partial difference
equation

(2.1) Am−1,n +Am,n−1 − Amn + pmnAm+k
n+l

= 0.

The following results are obtained based on [3, pp. 237 240]:

Lemma 1 [3]. Assume that one of the following two conditions is
satisfied:

(i)

(2.2) lim inf
m,n→∞

1
kl

( m+k∑
i=m+1

n+l∑
j=n+1

pij

)
>

αα

(1 + α)1+α
,

where α = max(k, l).

(ii) For all large enough m and n,

(2.3) pmn ≥ ξ >
(k + l)(k+l)

(k + l + 1)(k+l+1)
.

Then every solution of (2.1) oscillates.
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Lemma 2 [3].

(2.4)
m∑

i=m1

n∑
j=n1

(Ai−1,j +Ai,j−1 − Aij)

=
m∑

i=m1

n−1∑
j=n1

+
m∑

i=m1

Ai,n1−1 +Am1−1,n − Am,n.

Next we consider the following equation:

(2.5) Am−1,n +Am,n−1 − pAmn + pmnAm+k
n+l

= 0.

The following results can be obtained based on [4]:

Lemma 3 [4]. Assume that (2.2) or (2.3) holds. Then the partial
difference inequality

(2.6) Am−1,n +Am,n−1 − Amn + pmnAm+k
n+l

≤ 0

cannot have eventually positive solutions, and

(2.7) Am−1,n +Am,n−1 − Amn + pmnAm+k
n+l

≥ 0

cannot have eventually negative solutions.

Lemma 4 [4]. Assume that for all large enough m and n,

(2.8) pmn > ξ >
p2(k+l)+1(k + l)(k+l)

(k + l + 1)(k+l+1)
.

Then every solution of equation (2.7) oscillates.

Now let s, t be positive integers and c be a positive real number, such
that

(2.9) s ≤ m, t ≤ n, 1 < c ≤ 2
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and
(2.10)

Cst = 2s+t−m−ncAm+k
n+l

+Ast −
(
1
2

)2(s+t−m−n)+1

×
( s∑

i=m−k

qinAi+k′
n+l′

+
t∑

j=n−l

qmjAm+k′
j+l′

)

− 1
2

( s∑
i=m−k

qi−k′+k
n−l′+l

Ai+k
n+l
+

t∑
j=n−l

q m−k′
j−l′+l

Am+k
j+l

+ 2Amn

)
.

Let also

(2.11) αmn
def= pmn − qm−k′+k

n−l′+l

> 0, for m ≥ k − k′, n ≥ l − l′.

Then

(2.12) pmn − 1
2

qm−k′+k
n−l′+l

≥ pmn − qm−k′+k
n−l′+l

> 0.

The following results can be established based on (2.10):

Lemma 5. Assume that (1.3) holds and {Amn} is an eventually
positive solution of (1.2), that is, there exist positive integers M, N
such that Amn > 0 as m ≥ M , n ≥ N . Then

(i) Cmn is increasing in m, n, that is,

(2.13) Cm−1,n < Cmn, Cm,n−1 < Cmn.

(ii) For sufficiently large M, N , when m ≥ M , n ≥ N , we have

(2.14) Cmn ≤ cAmn.
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(iii)

(2.15) Cm−1,n + Cm,n−1 − Cmn = −αmnAm+k
n+l

− βmn(A) < 0,

where

βmn(A) =
7
2
∆1 +

1
2
∆2 + 2qmnAm+k′

n+l′
> 0,

∆1 =
m−1∑

i=m−k

qinAi+k′

n+l′
+

n−1∑
j=n−1

qmjAm+k′

j+l′

∆2 =
m∑

i=m−k

qi−k′+k
n−l′+l

Ai+k
n+l
+

n∑
j=n−l

qm−k′+k
j−l′+l

Am+k
j+l

+ 2Amn.

Proof. (i) From (2.10), we obtain

Cmn = cAm+k
n+l

+Amn − 1
2

( m∑
i=m−k

qinAi+k′
n+l′

+
n∑

j=n−l

qmjAm+k′
j+l′

)(2.16)

− 1
2

( m∑
i=m−k

qi−k′+k
n−l′+l

Ai+k
n+l
+

n∑
j=n−l

qm−k′+k
j−l′+l

Am+k
j+l

+ 2Amn

)

= cAm+k
n+l

+Amn − 1
2

( m−1∑
i=m−k

qinAi+k′
n+l′

+
n−1∑

j=n−l

qmjA m′
k

j+l′

)

− 1
2

( m∑
i=m−k

qi−k′+k
n−l′+l

Ai+k
n+l
+

n∑
j=n−l

qm−k′+k
j−l′+l

Am+k
j+l

+ 2Amn

)

− qmnAm+k′
n+l′

= cAm+k
n+l

+Amn − 1
2
∆1 − 12∆2 − qmnAm+k′

n+l′
,
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Cm−1,n =
1
2

cAm+k
n+l

+ Am−1,n− 2
( m−1∑

i=m−k

qinAi+k′
n+l′

+
n∑

j=n−l

qmjAm+k′
j+l′

)

− 1
2

[ m−1∑
i=m−k

qi−k′+k
n−l′+l

Ai+k
n+l
+

n∑
j=n−l

qm−k′+k
j−l′+l

Am+k
j+l

+ 2Amn

]

=
1
2

cAm+k
n+l

+ Am−1,n− 2
( m−1∑

i=m−k

qinAi+k′
n+l′

+
n−1∑

j=n−l

AmjAm+k′
j+l′

)

− 1
2

[ m∑
i=m−k

qi−k′+k
n−l′+l

Ai+k
n+l
+

n∑
j=n−l

qm−k′+k
j−l′+l

Am+k
j+l

+ 2Amn

]

− 2qmnAm+k′
n+l′

+
1
2
qm−k′+k

n−l′+l

Am+k
n+l

=
1
2

cAm+k
n+l

+ Am−1,n − 2∆1 − 12∆2 − 2qmnAm+k′
n+l′

+
1
2

qm−k′+k
n−l′+l

Am+k
n+l

.

Since Amn > 0, we have

Cm−1,n−Cmn =
1
2

cAm+k
n+l

+Am−1,n − 2∆1 − 12∆2 − 2qmnAm+k′
n+l′

+
1
2

qm−k′+k
n−l′+l

Am+k
n+l

−
[
cAm+k

n+l
+Amn − 1

2
∆1 − 12∆2 − qmnAm+k′n+l′

]

= −1
2

cAm+k
n+l

+Am−1,n − Amn − 3
2
∆1 − qmnAm+k′

n+l′

+
1
2

qm−k′+k
n−l′+l

Am+k
n+l

≤ −1
2

cAm+k
n+l

+Am−1,n +Am,n−1 − Amn

− 3
2
∆1 − qmnAm+k′

n+l′
+
1
2
qm−k′+k

n−l′+l

Am+k
n+l

= −1
2

cAm+k
n+l

− pmnAm+k
n+l

+ qmnAm+k′
n+l′
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− 3
2
∆1 − qmnAm+k′

n+l′
+
1
2
qm−k′+k

n−l′+l

Am+k
n+l

= −
(
pmn − 1

2
qm−k′+k

n−l′+l

)
Am+k

n+l
− 1
2

cAm+k
n+l

− 3
2
∆1

≤ −
(
pmn − 1

2
qm−k′+k

n−l′+l

)
Am+k

n+l
< 0.

That is, Cm−n−1 ≤ Cmn. Similarly we have Cm,n−1 − Cmn < 0.

(ii) From (2.16), we have

Cmn = cAm+k
n+l

+Amn − 1
2
∆1 − 12∆2 − qmnAm+k′

n+l′

= cAm+k
n+l

− 1
2
∆1

− 1
2

( m∑
i=m−k

qi−k′+k
n−l′+l

Ai+k
n+l
+

n∑
j=n−l

qm−k′+k
j−l′+l

Am+k
j+l

)

− qmnAm+k′
n+l′

≤ cAm+k
n+l

.

Thus, for sufficiently large M, N , when m ≥ M , n ≥ N , we have

Cmn ≤ cAmn.

Furthermore, note that

Cm,n−1 =
1
2

cAm+k
n+l

+Am,n−1

− 2
( m∑

i=m−k

qinA i+k′
n+l′

+
n−1∑

j=n−l

qmjAm+k′
j+l′

)

− 1
2

( m∑
i=m−k

qi−k′+k
n−l′+l

Ai+k
n+l
+

n∑
j=n−l

qm−k′+k
j−l′+l

Am+k
j+l

+ 2Amn

)

=
1
2

cAm+k
n+l

+Am,n−1 − 2∆− 1
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− 1
2
∆2 − 2qmnAm+k′

n+l′
+
1
2
qm−k′+k

n−l′+l

Am+k
n+l

.

Thus we have

Cm−1,n + Cm,n−1 − Cmn

= Am−1,n +Am,n−1 + 2
(
1
2

cAm+k
n+l

− 2∆1− 1
2
∆2

− 2qmnAm+k′
n+l′

+
1
2

qm−k′+k
n−l′+l

Am+k
n+l

)

−
(

cAm+k
n+l

+Amn − 1
2
∆1 − 12∆2 − qmnAm+k′

n+l′

)

= Am−1,n +Am,n−1 − Amn − 7
2
∆1 − 12∆2

− 3qmnAm+k′
n+l′

+ qm−k′+k
n−l′+l

Am+k
n+l

= −pmnAm+k
n+l

+ qmnAm+k′
n+l′

− 7
2
∆1 − 12∆2

− 3qmnAm+k′
n+l′

+ qm−k′+k
n−l′+l

Am+k
n+l

= −αmnAm+k
n+l

− 7
2
∆1 − 12∆2 − 2qmnAm+k′

n+l′

= −αmnAm+k
n+l

− βmn(A)

≤ −αmnAm+k
n+l

< 0.

In particular, for the case of constant coefficients, we obtain the
following result:

Corollary 1. Assume that the conditions of Lemma 5 hold. Then

(i) The Cmn is increasing in m, n, that is,

Cm−1,n < Cmn, Cm,n−1 < Cmn.

(ii) For sufficiently large M, N as m ≥ M , n ≥ N , we have

Cmn ≤ cAmn and Cm−1,n + Cm,n−1 − Cmn = −αAm+k
j+l

− β(A),
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where α = p − q > 0 and

β(A) = q

[
2Am+k′

n+l′
+
7
2

( m−1∑
i=m−k

Ai+k′
n+l′

+
n−1∑

j=n−l

qAm+k′
j+l′

)

+
1
2

( m∑
i=m−k

Ai+k
n+l
+

n∑
j=n−l

Am+k
j+l

+ 2Amn

)]
.

Lemma 6. Assume that (1.3), (2.9) (2.11) hold. Further, assume
that for m ≥ k − k′, n ≥ l − l′,

(2.17)
1
2

( m∑
i=m−k

qin +
n∑

j=n−l

qmj

)

+
1
2

( m∑
i=m−k

qi−k′+k
n−l′+l

+
n∑

j=n−l

qm−k′+k
j−l′+l

+ 2
)

< c.

Let {Amn} be an eventually positive solution of equation (1.2). Then
{Cmn} is increasing and eventually positive.

Proof. By Lemma 5, {Cmn} is increasing in m, n. Next we shall show
that the {Cmn} is an eventually positive. Because {Amn} is an even-
tually positive solution of equation (1.2) and the {Cmn} is increasing,
thus the limit of {Cmn} exists. If limm,n→∞ Cmn = −∞, as m, n → ∞,
then {Amn} must be unbounded. There exists {(mk, nk)} such that
limm→∞ mk = ∞, limm→∞ nk = ∞ and limm→∞ Amk+k,nk+l = +∞,
Amk+k,nk+l = maxM≤m≤mk,N≤n≤nk

Am+k,n+l. On the other hand,

Cmknk

= cAmk+k
nl+l

+Amknk

− 1
2

( mk∑
i=mk−k

qinkA i+k′
nk+l′

+
nk∑

j=nk−l

qmkjAmk+k′

j+l′

)

− 1
2

( mk∑
i=mk−k

q i−k′+k
nk−l′+l

A i+k
nk+l

+
nk∑

j=nk−l

qmk−k′+k
j−l′+l

Amk+k
j+l

+ 2Amknl

)
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≥ Amk+k
nl+l

[
c − 1

2

( mk∑
i=mk−k

qink
+

nk∑
j=nk−l

qmkj

)

− 1
2

( mk∑
i=mk−k

q i−k′+k
nk−l′+l

+
nk∑

j=nk−l

qmk−k′+k
j−l′+l

+ 2
)]

≥ 0,

a contradiction. Hence, limm,n→∞ Cmn = β exists. If {Amn} is
unbounded, then β ≥ 0. Now we consider the case that {Amn} is
bounded. Let β̄ = lim supm,n→∞ Amn = limm′→∞,n′→∞ Am′,n′ . Then

cAm′+k
n′+l

− Cm′,n′

≤ cAm′+k
n′+l

+Am′,n′ − Cm′,n′

=
1
2

( m′∑
i=m′−k

qin′A i+k′
n′+l′

+
n∑

j=n−l

qm′jAm′+k′
j+l′

)

+
1
2

( m′∑
i=m′−k

qi−k′+k
n′−l′+l

A i+k
n′+l

+
n′∑

j=n′−l

qm′−k′+k
j−l′+l

Am′+k
j+l

+ 2
)

≤ A(ξm, ηn)
[
1
2

( m′∑
i=m′−k

qin′ +
n′∑

j=n′−l

qm′j

)

+
1
2

( m′∑
i=m′−k

qi−k′+k
n′−l′+l

+
n′∑

j=n′−l

qm′−k′+k
j−l′+l

+ 2
)]

,

where A(ξm, ηn) = max{Ai+k,j+l|i=m′−k,... ,m′
j=n′−l,... ,n′ }. Taking superior limit

on both sides of the above inequality, we have cβ̄ − β ≤ cβ̄, therefore
β ≥ 0. Hence Cmn > 0 for m ≥ M , n ≥ N .

In particular, in the constant coefficient case, we obtain the following
conclusion:

Corollary 2. Assume that (1.3) (1.5) and (2.9) (2.11) hold and
that, for m ≥ k − k′, n ≥ l − l′, we have

q(k + l + 3) < c.
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Let {Amn} be an eventually positive solution of (1.1). Then {Cmn} is
increasing and eventually positive in m, n.

3. Oscillation of equation (1.1).

Theorem 3.1. Assume that

(i) k ≥ k′ ≥ 1, l ≥ l′ ≥ 1, p > q > 0,

(ii) α ≥ ξ > (k + l)(k+l)/(k + l + 1)(k+l+1),

(iii) c − q(k + l + 3) ≥ 0.
Then every solution of (1.1) oscillates.

Proof. (a) If k = k′, l = l′, then (1.1) becomes

(3.1) Am−1,n +Am,n−1 − Amn + (p − q)Am+k
n+l

= 0,

and the oscillatory behavior of (3.1) has been studied in [3, 6, 7 8].

(b) If k > k′, l > l′, then we let {Amn} be an eventually positive
solution of (1.1). This means that m0, n0 exists such that when
m ≥ m0, n ≥ n0, we have

(3.2) Amn > 0.

By Corollary 2 {Cmn} is eventually positive and increasing. However,
by (ii) of Lemma 5, we have cAmn > Cmn. Also by Corollary 1, we
have

(3.3) Cm−1,n + Cm,n−1 − Cmn + (p − q)Am+k
n+l

≤ 0.

Hence

Cm−1,n + Cm,n−1 − Cmn + (p − q)
1
c

Cm+k
n+l

≤ Cm−1,n + Cm,n−1 − Cmn + (p − q)Am+k
n+l

≤ 0.

It follows from condition (ii) of Theorem 3.1 and Lemma 1 that every
solution of

Cm−1,n + Cm,n−1 − Cmn + (p − q)
1
c

Cm+k
n+l

= 0
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oscillates. However, Lemma 3 leads to a contradiction. The proof is
thus completed.

Example 1. Consider the partial difference equation

(3.4) Am−1,n +Am,n−1 − Amn +
53
18

Am+2
n+2

− 1
18

Am+1
n+2

= 0,

where k = 2, k′ = 1, l = l′ = 2, q = (1/18), p = (53/18), k−k′ = 1 > 0,
l−l′ = 0. For 1 < c ≤ 2, we have c−q(k+l+3) = c−(7/18) > 0. Taking
ξ = 1 yields [(k+ l)(k+l)/(k+ l+ 1)(k+l+1)] = (44/55) and α = p− q =
(52/18) > 1 > (256/3125) = 44/55 = [(k + l)(k+l)/(k + l + 1)(k+l+1)].
It can be verified that all the hypotheses of Theorem 3.1 are satisfied.
Therefore, all solutions of (3.4) are oscillatory. In fact (3.4) has a unique
oscillatory solution given by {Amn} = {(−1)m+n}.

4. Stability of equation (1.2).

Theorem 4.1. Assume that (1.3), (2.11) and (2.17) hold and that
one of the following two conditions is satisfied:

(i) There exists a positive integer α0 such that

(4.1) pmn − qm+k−k′
n+l−l′

≥ α0 for m ≥ k − k′, n ≥ l − l′,

or

(ii) There exists a positive constant β0 ∈ (0, 1) such that
(4.2)

1
2

( m∑
i=m−k

qin +
n∑

j=n−1

qmj

)
+
1
2

( m∑
i=m−k

qi−k′+k
n−l′+l

+
n∑

j=n−l

qm−k′+k
j−l′+l

+ 2
)

≤ c − β0 for m ≥ k0, n ≥ l0,

where k0 = k + k′, l0 = l + l′ and

(4.3)
∞∑

i=k+k′

∞∑
j=l+l′+1

(pij − qi+k−k′
j+l−l′

) =∞.
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Then every nonoscillatory solution of (1.2) tends to zero as m, n → ∞.

Proof. It suffices to show that every eventually positive solution
{Amn} of (1.2) tends to zero as m, n → ∞.
It follows from Lemma 5 that {Cmn} is increasing and positive.
Hence,

(4.4) lim
m,n→∞Cmn = ξ ∈ R+,

where R+ = (0,∞). By Lemma 5 it is easy to see that

(4.5) Cm−1,n + Cm,n−1 − Cmn = −αmnAm+k.
j+l

Taking m1, n1 sufficiently large, and summing both sides of (4.5) form
m1 + 1, n1 + 1→ ∞, we get

(4.6)

∞∑
i=m1+1

∞∑
j=n1+1

(Ci−1,j + Ci,j−1 − Cij)

≤ −
∑

i=m1+1

∞∑
j=n1+1

(pij − qi+k−k′
j+l−l′

)Ai+k
j+l

.

Since Cij > 0, we have

−2Cm1,n1 ≤
∞∑

i=m1

Cin1 +
∞∑

j=n1

Cm1j − 2Cm1,n1

=
∞∑

i=m1+1

∞∑
j=n1+1

[(Ci−1,j − Cij) + (Ci,j−1 − Cij)]

=
∞∑

i=m1+1

∞∑
j=n1+1

(Ci−1,j + Ci,j−1 + 2Cij)

≤
∞∑

i=m1+1

∞∑
j=n1+1

(Ci−1,j + Ci,j−1 − Cij)

≤ −
∞∑

i=m1+1

∞∑
j=n1+1

(pij − qi+k−k′
j+l−l′

)Ai+k
j+l

,
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or

(4.8) −2Cm1,n1 ≤ −
∞∑

i=m1+1

∞∑
j=n1+1

(pij − qi+k−k′
j+l−l′

)Ai+k
j+l

.

First assume that (4.1) holds. Then (4.8) implies that

∞∑
i=m1+1

∞∑
j=n1+1

(pij − qi+k−k′
j+l−l′

) < ∞.

Since Ai−k,j−l is a positive solution of (1.2), and from (4.1) and (4.8),
we have

lim
m,n→∞ Am,n = 0.

Thus the proof is completed when (4.1) holds.

Next assume that (4.2) and (4.3) hold. From (4.8), it follows that

lim inf
m,n→∞ Am,n = 0.

Also (2.16) implies Cmn ≤ cAmn and, in view of (4.4), ξ = 0.

Now we claim that {Amn} is bounded. Otherwise, there would exist
a subsequence, {Amr+k,nr+l} of {Amn} such that

Amr+k
nr+l

= max{Am+k
n+l

| m≤mr

n≤nr
for r = 1, 2, . . . }

and
lim

r→∞Amr+k
nr+l

=∞.

Then by (2.10) and (4.2), we have

Cmrnr
= cAmr+k

nr+l
+Amrnr

− 1
2

( mr∑
i=mr−k

qinr
A i+k′

nr+l′
+

nr∑
j=nr−l

qmrjAmr+k′

j+l′

)

− 1
2

( mr∑
i=mr−k

q i−k′+k
nr−l′+l

A i+k
nr+l

+
nr∑

j=nr−l

qmr−k′+k
j−l′+l

Amr+k
j+l

+2Amrnr

)
,
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≥ cAmr+k
n+l

− 1
2

( mr∑
i=mr−k

qinr
A i+k′

nr+l′
+

nr∑
j=nr−l

qmrjAmr+k′

j+l′

)

− 1
2

( mr∑
i=mr−k

q i−k′+k
nr−l′+l

A i+k
nr+l

+
nr∑

j=nr−l

qmr−k′+k
j−l′+l

Amr+k
j+l

+ 2Amrnr

)

≥ Amr+k
nr+l

[
c − 1

2

( mr∑
i=mr−k

qinr
+

nr∑
j=nr−l

qmrj

)

− 1
2

( mr∑
i=mr−k

q i−k′+k
nr−l′+l

+
nr∑

j=nr−l

qmr−k′+k
j−l′+l

+ 2
)]

≥ β0Amr+k
nr+l

→ ∞ as r → ∞,

which contradicts the fact that ξ = 0. Therefore, {Amn} must be
bounded. To this end, set

λ = lim sup
m,n→∞

Am,n

and let {Ams+k,ns+l} be a subsequence of {Amn} such that
lim

s→∞Ams+k
ns+l

= λ.

Then for sufficiently small ε > 0 and for a sufficiently large s, it follows
from (2.10) and (4.2) that

Cmsns
=

[
cAms+k

ns+l
+ Amsns

−
( ms∑

i=ms−k

qins
A i+k′

ns+l′
+

ns∑
i=ns−l

qmsjAms+k′

j+l′

)

− 1
2

( ms∑
i=ms−k

q i−k′+k
ns−l′+l

A i+k
ns+l

+
ns∑

j=ns−l

qms−k′+k
j−l′+l

Ams+k
j+l

+2Amsns

)]

≥
[
cAms+k

ns+l
−

( ms∑
i=ms−k

qins
A i+k′

ns+l′
+

ns∑
i=ns−l

qmsjAms+k′

j+l′

)

− 1
2

( ms∑
i=ms−k

q i−k′+k
ns−l′+l

A i+k
ns+l

+
ns∑

j=ns−l

qms−k′+k
j−l′+l

Ams+k
j+l

+2Amsns

)]

≥cAms+k
ns+l

− (λ+ ε)(c − β0).
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By taking limits as s → ∞ and using the fact that ξ = 0, we finally
obtain

0 ≥ cλ − (λ+ ε)(c − β0).

Since ε > 0 is arbitrary, we conclude that λ = 0 and the proof is thus
completed.

5. Oscillation of equation (1.2).

Theorem 5.1 Assume that (1.3), (2.10) and (2.11) hold, and that one
of the two conditions (2.2) and (2.3) is satisfied. Then, every solution
of (1.2) oscillates.

Proof. Assume, on the contrary, that (1.2) has an eventually positive
solution {Amn}.
By Lemmas 5 and 6, it follows that the sequence {Cst} defined by
(2.10) is eventually positive and that

(5.1) Cm−1,n + Cm,n−1 − Cmn + (pmn − qm+k−k′
n+l−l′

)Am+k
n+l

≤ 0.

Also, eventually,

(5.2) 0 < Cmn ≤ cAmn.

Consequently,

(5.4) Cm−1,n + Cm,n−1 − Cmn + (pmn − qm+k−k′
n+l−l′

)
1
c

Cm+k
n+l

≤ 0

which implies that every solution of the equation

(5.4) Cm−1,n + Cm,n−1 − Cmn + (pmn − qm+k−k′
n+l−l′

)Cm+k
n+l

= 0

oscillates. However, by Lemma 2, inequality (5.4) cannot have an
eventually positive solution. This contradiction proves the theorem.
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Example 2. Consider the partial difference equation

(5.6) Am−1,n +Am,n−1 − Amn +
4(16n+ 1)

8n
Am+2

n+2
− 1
8n

Am+1,n = 0,

where m ≥ 2, n ≥ 2, pmn = (16n+ 1)/(8n), qmn = 1/(8n), k = l = 2,
k′ = 1, l′ = 0. Since k = 2 > 1 = k′, l > l′, and

pmn − qm+k−k′,n+l−l′ =
4(16n+1)
8n

− 1
8(n+2)

> 010.

for m ≥ 2, n ≥ 2,

k∑
i=k′

l∑
j=l′+1

qm−i,n−j =
2∑

i=1

2∑
j=1

1
8(n+ j)

=
2n+ 3

4(n+1)(n+2)
< 120.

for m ≥ 2, n ≥ 2,

30. Taking ξ = 2, then

pmn =
4(16n+1)
8n

> ξ >
256
3125

=
(k + l)k+l

(k + l + 1)k+l+1
.

Since all of the hypotheses of Theorem 5.1 are satisfied, all solutions
of (5.6) are oscillatory. In fact (5.6) has a unique oscillatory solution
given by {Amn} = {(−1)n(1/2n)} for m ≥ 2, n ≥ 2.
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