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ABSTRACT. By using averaging functions and an inequal-
ity due to Hardy, Littlewood and Polya, several new oscillation
criteria are established for the half-linear damped differential
equation

[r(t)|y′(t)|α−1y′(t)]′ + p(t)|y′(t)|α−1y′(t)

+ q(t)|y(t)|α−1y(t) = 0,

where r ∈ C1([t0,∞); (0,∞)), α > 0 and p, q ∈ C[t0,∞).
Our results extend and improve the oscillation criteria of
Kamenev, Li and Philos for linear equations. Several examples
are inserted in the text to illustrate our results.

1. Introduction. In this paper we consider the problem of
oscillation of the second-order half-linear damped differential equation

(1.1) [r(t)|y′(t)|α−1y′(t)]′ + p(t)|y′(t)|α−1y′(t) + q(t)|y(t)|α−1y(t) = 0,

on the half-line [t0,∞). In equation (1.1) we assume that r ∈
C1([t0,∞); (0,∞)), p, q ∈ C[t0,∞) and α > 0 is a constant.

We recall that a function y : [t0, t1) → (−∞,∞), t1 > t0 is
called a solution of equation (1.1) if y(t) satisfies equation (1.1) for
all t ∈ [t0, t1). In the sequel it will always be assumed that solutions
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of equation (1.1) exist for any t0 ≥ 0. A solution y(t) of equation (1.1)
is called oscillatory if it has arbitrary large zeros, otherwise it is called
nonoscillatory.

In the last two decades there has been an increasing interest in
obtaining sufficient conditions for the oscillation and/or nonoscillation
of solutions for different classes of second order differential equations
[1 15, 17 45]. In the absence of damping, there is a great number
of papers (see for example, [17 32, 34 38, 40, 44] and the references
quoted therein) devoted to the particular cases of equation (1.1) such
as the linear differential equations

y′′(t) + q(t)y(t) = 0(1.2)
[r(t)y′(t)]′ + q(t)y(t) = 0(1.3)

and the half-linear differential equation

(1.4) [r(t)|y′(t)|α−1y′(t)]′ + q(t)|y(t)|α−1y(t) = 0.

An important tool in the study of oscillatory behavior of solutions for
the equations (1.2) (1.4) is the averaging technique. This goes back as
far as to the classical results of Wintner [40] giving a sufficient condition
for oscillation of equation (1.2), namely,

lim
1
t

∫ t

t0

∫ s

t0

q(τ ) dτ ds = ∞

and Hartman [18] who showed that the above limit cannot be replaced
by the super limit and proved that the condition

−∞ < lim inf
t→∞

1
t

∫ t

t0

∫ s

t0

q(τ ) dτ ds

< lim sup
t→∞

1
t

∫ t

t0

∫ s

t0

q(τ ) dτ ds ≤ ∞

implies that equation (1.2) is oscillatory.

The results of Wintner were improved by Kamenev [21] who proved
that the condition

lim sup
t→∞

1
tn−1

∫ t

t0

(t− s)n−1q(s) ds = ∞,
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for some n > 2 is sufficient for the oscillation of equation (1.2).

In 1989, Philos [37] presented a new oscillation criterion for equation
(1.2) involving the Kamenev’s type condition.

Theorem A. Let H : D = {(t, s) | t ≥ s ≥ t0} → R be a continuous
function, which is such that

H(t, t) = 0, for t ≥ t0, H(t, s) > 0 for all (t, s) ∈ D,

and has a continuous and nonpositive partial derivative on D with
respect to the second variable. Moreover, let h : D → R be a continuous
function with

−∂H
∂s

= h(t, s)
√
H(t, s), (t, s) ∈ D.

Then equation (1.2) is oscillatory if

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
q(s)H(t, s) − 1

4
h2(t, s)

]
ds = ∞.

Theorem B. Let the functions H and h be defined as in Theorem
A, and moreover, suppose that

0 < inf
s≥t0

[
lim inf
t→∞

H(t, s)
H(t, t0)

]
≤ ∞

and

lim sup
t→∞

1
H(t, t0)

∫ t

t0

h2(t, s) ds <∞.

Then equation (1.2) is oscillation if there exists a continuous function
A on [t0,∞) with ∫ ∞

t0

A2
+(s) ds = ∞

and such that

lim sup
t→∞

1
H(t, T )

∫ t

T

[
q(s)H(t, s) − 1

4
h2(t, s)

]
ds ≥ A(T ),

for every T ≥ t0.
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The above results of Philos were extended further to equation (1.3)
by Li [25], to equation (1.4) by Manojlovic [35] and to the nonlinear
differential equation

(1.5) [r(t)y′(t)]′ + q(t)f(y(t)) = 0,

by Li [28], where f ′(y) ≥ µ > 0. Other related oscillation results can
be found in Pino et al. [4], Dos̆lý [5], Elbert [6, 7], Hong et al. [19],
Hsu and Yeh [20], Kandelaki et al. [22], Kong [23, 24], Li and Yeh [26,
27], Li and Agarwal [30 32], Lian et al. [34], Mirzov [36], and Wong
and Agarwal [44].

In the presence of damping, a number of oscillation criteria were
obtained for differential classes of nonlinear equations by Baker [1],
Bobisud [2], Butler [3], Grace [8 11], Grace and Lalli [12, 13], Grace
et al. [14, 15], Li et al. [33], Rogovchenko [39], Yan [41, 42] and
Yeh [43]. For the half-linear equation (1.1), however, to the best of
our knowledge, Wong and Agarwal [45] only obtained several existence
theorems for nonoscillatory solutions, but for the oscillation of equation
(1.1) it has not been considered.

Motivated by the idea of Li [28, 33] and Manojlovic [35], in this
paper, by using averaging functions and in inequality due to Hardy et
al. [16], we obtain several new criteria for oscillation criteria of equation
(1.1). Our results improve and extend the results of Kamenev [21],
Manojlovic [35] and Philos [37] and others. Finally, several examples
are inserted in the text to illustrate our results.

In order to prove our theorems we use the following well-known
inequality due to Hardy et al. [16].

Lemma A. If A,B are nonnegative, then

Aλ + (λ− 1)Bλ ≥ λABλ−1, λ > 1,

where equality holds if and only if A = B.

2. Oscillation results. In the sequel we say that a function
H = H(t, s) belongs to a function class X, denoted by H ∈ X, if
H ∈ C(D,R) where D = {(t, s) : −∞ < s ≤ t <∞}, which satisfies

(2.1) H(t, t) = 0, H(t, s) > 0 for t > s,
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and has partial derivative ∂H/∂s on D such that

(2.2)
∂H

∂s
= −h(t, s)H(t, s)1/2,

where h is a nonnegative and continuous function on D.

Theorem 2.1. If there exists H ∈ X such that

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
H(t, s)q(s)

−
r(s)|h(t, s) + p(s)

r(s)

√
H(t, s)|α+1

(α+ 1)α+1H
α−1

2 (t, s)

]
ds = ∞,

then every solution of equation (1.1) is oscillatory.

Proof. Let y(t) be a nonoscillatory solution of equation (1.1). Assume
that y(t) 
= 0 for t ≥ t0. We define

(2.4) u(t) =
r(t)|y′(t)|α−1y′(t)

|y(t)|α−1y(t)
, t ≥ t0.

Then, for every t ≥ t0, we have

(2.5) u′(t) = −q(t) − p(t)
r(t)

u(t) − α
|u(t)|α+1

α

r
1
α (t)

,

and, consequently,

∫ t

t0

H(t, s)q(s) ds = −
∫ t

t0

H(t, s)u′(s) ds−
∫ t

t0

H(t, s)
p(s)
r(s)

u(s) ds

− α

∫ t

t0

H(t, s)
|u(s)|α+1

α

r
1
α (s)

ds.

Since

(2.6)
∫ t

t0

H(t, s)u′(s) ds = −H(t, t0)u(t0) −
∫ t

t0

∂H(t, s)
∂s

u(s) ds,
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the previous equality becomes∫ t

t0

H(t, s)q(s) ds ≤ H(t, t0)u(t0)

+
∫ t

t0

∣∣∣h(t, s)
√
H(t, s) +

p(s)
r(s)

H(t, s)
∣∣∣|u(s)| ds(2.7)

− α

∫ t

t0

H(t, s)
|u(s)|α+1

α

r
1
α (s)

ds.

Taking

A = (αH(t, s))
α

α+1
|u(s)|
r

1
α+1 (s)

, λ =
α+ 1
α

,

B =
α

α
α+1

(α+ 1)α+1

(
r

α
α+1 (s)|h(t, s)

√
H(t, s)

H
α2

α+1 (t, s)
+

p(s)
r(s)H(t, s)|α

H
α2

α+1 (t, s)

)
.

In view of Lemma A, we obtain for t > s ≥ t0,∣∣∣h(t, s)
√
H(t, s) +

p(s)
r(s)

H(t, s)
∣∣∣|u(s)| − αH(t, s)

|u(s)|α+1
α

r
1
α (s)

≤
r(s)

∣∣h(t, s)
√
H(t, s) + p(s)

r(s)H(t, s)
∣∣α+1

(α+ 1)α+1Hα(t, s)

=
r(s)

∣∣h(t, s) + p(s)
r(s)

√
H(t, s)

∣∣α+1

(α+ 1)α+1H
α−1

2 (t, s)
.

Hence, equation (2.7) implies

(2.8)

1
H(t, t0)

∫ t

t0

H(t, s)q(s) ds ≤ u(t0) +
1

(α+ 1)α+1H(t, t0)

·
∫ t

t0

r(s)
∣∣h(t, s) + p(s)

r(s)

√
H(t, s)

∣∣α+1

[H(t, s)]
α−1

2

ds,

for t ≥ t0. Consequently,
1

H(t, t0)

∫ t

t0

[
H(t, s)q(s)

− 1
(α+ 1)α+1

r(s)
∣∣h(t, s) + p(s)

r(s)

√
H(t, s)

∣∣α+1

[H(t, s)]
α−1

2

]
ds ≤ u(t0),
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for t ≥ t0. Taking the super limit as t → ∞ in the above, we obtain a
contradiction, which completes the proof.

As immediate consequences of Theorem 2.1 we obtain the following
corollaries.

Corollary 2.1. If there exists H ∈ X such that

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[r(s)∣∣h(t, s) + p(s)
r(s)

√
H(t, s)

∣∣α+1

(α+ 1)α+1H
α−1

2 (t, s)

]
ds <∞,

and

lim sup
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)q(s) ds = ∞,

then every solution of equation (1.1) is oscillatory.

Corollary 2.2 (cf. [19], Theorem 2.1). Let α = 1 and p(t) ≡ 0, and
let the functions h and H be as in Theorem 2.1. If

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
H(t, s)q(s) − r(s)

4
h2(t, s)

]
ds = ∞,

then every solution of equation (1.3) is oscillatory.

In the same way as was done in [21], with an appropriate choice
of the functions H and h, we can derive from Theorem 2.1 a number
of oscillation criteria for equations (1.2) (1.4). Let us consider, for
example, the function H(t, s) defined by

H(t, s) = (t− s)λ, (t, s) ∈ D,

where λ > α is a constant. Clearly, H belongs to the class X.
Furthermore, the function

h(t, s) = λ(t− s)
λ−2

2 , (t, s) ∈ D

is continuous on [t0,∞) and satisfies condition equation (2.2). Then by
Theorem 2.1, we obtain the following oscillation criteria.



934 W.-T. LI, C.-K. ZHONG AND X.-L. FAN

Corollary 2.3. If

lim sup
t→∞

1
tλ

∫ t

t0

[
(t− s)λq(s) − λα+1r(s)

(α+ 1)α+1
(t− s)λ−α−1

]
ds = ∞,

then every solution of equation (1.4) is oscillatory.

Corollary 2.4 (cf. [10], Corollary 3). Suppose that there exists a
function b ∈ C([t0,∞), (0,∞)) such that, for some λ > 1,

lim sup
t→∞

1
B(t)λ

∫ t

t0

[
(B(t) −B(s))λq(s)

− (b(s)λ)α+1r(s)(B(t) −B(s))λ−α−1

(α+ 1)α+1

]
ds = ∞

where B(t) =
∫ t

t0
b(s) ds. Then every solution of (1.4) is oscillatory.

Proof. Let us put

H(t, s) = [B(t) −B(s)]λ, (t, s) ∈ D;

then with the choice

h(t, s) = λb(t)[B(t) −B(s)]
λ−2

2 , (t, s) ∈ D,

the conclusion follows directly from Theorem 2.1.

Theorem 2.2. Suppose that there exists H ∈ X such that

(2.9) 0 < inf
s≥t0

[
lim inf
t→∞

H(t, s)
H(t, t0)

]
≤ ∞,

and

(2.10) lim sup
t→∞

1
H(t, t0)

∫ t

t0

[r(s)∣∣h(t, s) + p(s)
r(s)

√
H(t, s)

∣∣α+1

(α+ 1)α+1H
α−1

2 (t, s)

]
ds <∞.
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If there exists a function φ ∈ C[t0,∞) such that, for every T ≥ t0,

(2.11)

lim sup
t→∞

1
H(t, T )

∫ t

T

[
H(t, s)q(s)

−
r(s)

∣∣h(t, s) + p(s)
r(s)

√
H(t, s)

∣∣α+1

(α+ 1)α+1H
α−1

2 (t, s)

]
ds ≥ φ(T ),

and

(2.12)
∫ ∞

t0

φ
(α+1)/α
+ (s)
r1/α(s)

ds = ∞,

where φ+(t) = max{φ(t), 0}, then every solution of equation (1.1) is
oscillatory.

Proof. Suppose that there exists a solution y(t) of equation (1.1)
such that y(t) 
= 0 for t ≥ t0. Define u(t) as in equation (2.4). As
in the proof of Theorem 2.1, we can obtain equation (2.7). Then for
t > T ≥ t0, we have

lim sup
t→∞

1
H(t, T )

∫ t

T

[
H(t, s)q(s)

−
r(s)

∣∣h(t, s) + p(s)
r(s)

√
H(t, s)

∣∣α+1

(α+ 1)α+1H
α−1

2 (t, s)

]
ds ≤ u(T ).

Therefore, by equation (2.11) we have

(2.13) φ(T ) ≤ u(T ), T ≥ t0,

and

(2.14) lim sup
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)q(s) ds ≥ φ(t0).

Define

P (t) =
1

H(t, t0)

∫ t

t0

∣∣∣h(t, s)
√
H(t, s) +

p(s)
r(s)

H(t, s)
∣∣∣|u(s)| ds,

Q(t) =
α

H(t, t0)

∫ t

t0

H(t, s)
|u(s)|α+1

α

r
1
α (s)

ds.
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Then by equations (2.7) and (2.14), we see that

(2.15)

lim inf
t→∞ [Q(t) − P (t)] ≤ u(t0) − lim sup

t→∞
1

H(t, t0)

∫ t

t0

H(t, s)q(s) ds

≤ u(t0) − φ(t0) <∞.

Now we claim that

(2.16)
∫ ∞

t0

|u(s)|α+1
α

r
1
α (s)

ds <∞.

Suppose, to the contrary,

(2.17)
∫ ∞

t0

|u(s)|α+1
α

r
1
α (s)

ds = ∞.

By equation (2.9), there exists a positive constant k1 such that

(2.18) inf
s≥t0

[
lim inf
t→∞

H(t, s)
H(t, t0)

]
> k1.

Let k2 be an arbitrary positive number. Then it follows from equation
(2.17) that there exists t1 ≥ t0 such that

(2.19)
∫ t

t0

|u(s)|α+1
α

r
1
α (s)

ds ≥ k2

αk1
, t ≥ t1.

Therefore,

Q(t) =
α

H(t, t0)

∫ t

t0

H(t, s)
d

ds

( ∫ s

t0

|u(τ )|α+1
α

r
1
α (τ )

dτ

)

=
α

H(t, t0)

∫ t

t0

(
− ∂H

∂s
(t, s)

)
d

ds

( ∫ s

t0

|u(τ )|α+1
α

r
1
α (τ )

dτ

)

≥ α

H(t, t0)

∫ t

t1

(
− ∂H

∂s
(t, s)

)
d

ds

( ∫ s

t0

|u(τ )|α+1
α

r
1
/

α(τ )
dτ

)

≥ k2

k1H(t, t0)

∫ t

t1

(
− ∂H

∂s
(t, s)

)
ds =

k2

k1

H(t, t1)
H(t, t0)

.
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By equation (2.18), there exists t2 ≥ t1 such that

H(t, t1)
H(t, t0)

≥ k1, t ≥ t2,

which implies that Q(t) ≥ k2. Since k2 is arbitrary,

(2.20) lim
t→∞Q(t) = ∞.

Next, consider a sequence {Tn}∞n=1 in (t0,∞) with limn→∞ Tn = ∞
satisfying

lim
n→∞[Q(Tn) − P (Tn)] = lim inf

t→∞ [Q(t) − P (t)] <∞.

Then, there exists a constant M such that

(2.21) Q(Tn) − P (Tn) ≤M,

for all sufficiently large n. Since equation (2.20) ensures that

(2.22) lim
n→∞Q(Tn) = ∞,

and thus equation (2.21) implies that

(2.23) lim
n→∞P (Tn) = ∞.

Furthermore, equations (2.22) and (2.23) lead to the inequality

P (Tn)
Q(Tn)

− 1 ≥ − M

Q(Tn)
> − 1

2

for n large enough. Thus,

P (Tn)
Q(Tn)

>
1
2

for n large enough, which together with equation (2.23) implies

(2.24) lim
n→∞

Pα+1(Tn)
Qα(Tn)

= ∞.
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On the other hand, by Holder’s inequality, we have for every n ∈ N

P (Tn)

=
1

H(Tn, t0)

∫ Tn

t0

∣∣∣h(Tn, s)
√
H(Tn, s) +

p(s)
r(s)

H(Tn, s)
∣∣∣|u(s)| ds

=
∫ Tn

t0

(
α

α
α+1

H
α

α+1 (Tn, t0)
|u(s)|H α

α+1 (Tn, t0)

r
1

α+1 (s)

)

·
(

α
−α
α+1

H
1

α+1 (Tn, t0)

r
1

α+1 (s)
[
h(Tn, s)

√
H(Tn, s) + p(s)

r(s)H(Tn, s)
]

H
α

(α+1) (Tn, t0)

)
ds

≤
(

α

H(Tn, t0)

∫ Tn

t0

|u(s)|α+1
α H(Tn, t0)
r

1
α (s)

ds

) α
α+1

·
(

1
ααH(Tn, t0)

∫ Tn

t0

r(s)
∣∣h(Tn, s)

√
H(Tn, s) + p(s)

r(s)H(Tn, s)|α+1

Hα(Tn, t0)
ds

) 1
α+1

and, accordingly,

Pα+1(Tn)
Qα(Tn)

≤ 1
ααH(Tn, t0)

∫ Tn

t0

r(s)
∣∣h(Tn, s)

√
H(Tn, s) + p(s)

r(s)H(Tn, s)
∣∣α+1

Hα(Tn, t0)
ds

=
1

ααH(Tn, t0)

∫ Tn

t0

r(s)
∣∣h(Tn, s) + p(s)

r(s)

√
H(Tn, s)

∣∣α+1

H
α−1

2 (Tn, t0)
ds.

So, because of equation (2.24), we have

lim
n→∞

1
H(Tn, t0)

∫ Tn

t0

r(s)
∣∣h(Tn, s) + p(s)

r(s)

√
H(Tn, s)

∣∣α+1

H
α−1

2 (Tn, t0)
ds = ∞,

which gives

lim sup
t→∞

1
H(t, t0)

∫ t

t0

r(s)
∣∣h(t, s) + p(s)

r(s)

√
H(t, s)

∣∣α+1

H
α−1

2 (t, t0)
ds = ∞,
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contradicting condition equation (2.10). Therefore, equation (2.16)
holds. Now, from equation (2.13) we obtain

∫ ∞

t0

φ
α+1

α
+ (s)

r
1
α (s)

ds ≤
∫ ∞

t0

|u(s)|α+1
α

r
1
α (s)

ds <∞,

which contradicts equation (2.12). This completes the proof.

The following result is the direct consequence of Theorem 2.2 and uses
the same choice of the functions H and h as in Corollary 2.3 above.

Corollary 2.5. Suppose that there exists a function φ ∈ C[t0,∞)
such that equation (2.12) holds along with

lim sup
t→∞

1
tλ

∫ t

t0

r(s)(t− s)λ−α−1
∣∣∣λ+

p(s)
r(s)

(t− s)
∣∣∣α+1

ds <∞

and

lim sup
t→∞

1
tλ

∫ t

T

[
(t− s)λq(s)

−
r(s)(t− s)λ−α−1

∣∣λ+ p(s)
r(s) (t− s)

∣∣α+1

(α+ 1)α+1

]
ds ≥ φ(T )

for all T ≥ t0 and for some λ > α. Then every solution of equation
(1.1) is oscillatory.

Proof. The only thing to be checked is condition equation (2.9). With
the above choice of the functions H and h, this is fulfilled automatically
since

lim
t→∞

H(t, s)
H(t, t0)

= lim
t→∞

(t− s)λ

(t− t0)λ
= 1

for any s ≥ t0.

Theorem 2.3. Suppose that there exists a function H ∈ X such that
equation (2.9) holds and

(2.25) lim sup
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)q(s) ds <∞.
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If there exists φ ∈ C[t0,∞) such that for every T ≥ t0,

(2.26) lim inf
t→∞

1
H(t, T )

∫ t

T

[
H(t, s)q(s)

−
r(s)

∣∣h(t, s) + p(s)
r(s)

√
H(t, s)

∣∣α+1

(α+ 1)α+1H
α−1

2 (t, s)

]
ds ≥ φ(T ),

and equation (2.12) hold, then every solution of equation (1.1) is
oscillatory.

Proof. For the nonoscillatory solution y(t) of equation (1.1), as in the
proof of Theorem 2.1, (2.7) and (2.8) are satisfied. As in the proof of
Theorem 2.2, (2.13) holds for t ≥ T ≥ t0. Using equation (2.25), we
conclude that

lim sup
t→∞

[Q(t)−P (t)] ≤ u(t0) − lim inf
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)q(s) ds <∞.

It follows from equation (2.26) that

φ(t0) ≤ lim inf
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)q(s) ds

− lim inf
t→∞

1
H(t, t0)

∫ t

t0

r(s)
∣∣h(t, s) + p(s)

r(s)

√
H(t, s)

∣∣α+1

(α+ 1)α+1H
α−1

2 (t, s)

]
ds,

so that equation (2.25) implies

lim inf
t→∞

1
H(t, t0)

∫ t

t0

r(s)
∣∣h(t, s) + p(s)

r(s)

√
H(t, s)

∣∣α+1

(α+ 1)α+1H
α−1

2 (t, s)
ds <∞.

Considering a sequence {Tn}∞n=1 in (t0,∞) with limn→∞ Tn = ∞ such
that

lim
n→∞ |Q(Tn) − P (Tn)] = lim sup

t→∞
[Q(t) − P (t)].

Then, using the procedure of the proof of Theorem 2.2, we conclude
that equation (2.16) holds. The remainder of the proof proceeds as in
the proof of Theorem 2.2. The proof is complete.
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In the following we will establish several more general interval oscilla-
tion theorems. The main method is to introduce a new transformation
for equation (1.1).

Theorem 2.4. Suppose that the functions H and h are defined as
in Theorem 2.1. If there exists ρ ∈ C1[t0,∞) such that

(2.27)

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
H(t, s)ρ(s)q(s)

−
r(s)

∣∣h(t, s)+
(p(s)

r(s)− ρ′(s)
ρ(s)

)√
H(t, s)

∣∣α+1

(α+ 1)α+1H
α−1

2 (t, s)

]
ds = ∞,

then every solution of equation (1.1) is oscillatory.

Proof. Let y(t) be a nonoscillatory solution of equation (1.1). Assume
that y(t) 
= 0 for t ≥ t0. Define

u(t) = ρ(t)
r(t)|y′(t)|α−1y′(t)

|y(t)|α−1y(t)
, t ≥ t0,

then for every t ≥ t0, we have

(2.28) u′(t) = −ρ(t)q(t) +
ρ′(t)
ρ(t)

u(t) − p(t)
r(t)

u(t) − α
|u(t)|α+1

α

(r(t)ρ(t))
1
α

,

and, consequently,

∫ t

t0

H(t, s)ρ(s)q(s) ds = −
∫ t

t0

H(t, s)u′(s) ds

−
∫ t

t0

H(t, s)
(
p(s)
r(s)

− ρ′(s)
ρ(s)

)
u(s) ds

− α

∫ t

t0

H(t, s)
|u(s)|α+1

α

(r(s)ρ(s))
1
α

ds.
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By equation (2.6), we have

(2.29)∫ t

t0

H(t, s)ρ(s)q(s) ds

≤ H(t, t0)u(t0) − α

∫ t

t0

H(t, s)
|u(s)|α+1

α

(r(s)ρ(s))
1
/

α
ds

+
∫ t

t0

∣∣∣h(t, s)
√
H(t, s) +

(p(s)
r(s)

− ρ′(s)
ρ(s)

)
H(t, s)

∣∣∣|u(s)| ds.

Therefore, in view of Lemma A, with

A = (αH(t, s))
α

α+1
|u(s)|

(ρ(s)r(s))
1
α

, λ =
α+ 1
α

,

B =
(

α

α+1

)α(
r(s)ρ(s)

(αH(t, s))α

) α
α+1 ∣∣∣h(t, s)+

(p(s)
r(s)

− ρ′(s)
ρ(s)

)√
H(t, s)

∣∣∣α+1

,

we obtain for t > s ≥ t0,

(2.30)

∣∣∣h(t, s)
√
H(t, s)+

(p(s)
r(s)

− ρ′(s)
ρ(s)

)
H(t, s)

∣∣∣|u(s)|

− αH(t, s)
|u(s)|α+1

α

(r(s)ρ(s))
1
α

≤
ρ(s)r(s)

∣∣h(t, s)
√
H(t, s)+

( p(s)
r(s)− ρ′(s)

ρ(s)

)
H(t, s)

∣∣α+1

(α+ 1)α+1[H(t, s)]
α−1

2

.

From equation (2.29) and equation (2.30), we obtain

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
H(t, s)ρ(s)q(s)

−
ρ(s)r(s)

∣∣h(t, s)+
(p(s)

r(s)− ρ′(s)
ρ(s)

)√
H(t, s)

∣∣α+1

(α+ 1)α+1H
α−1

2 (t, s)

]
ds

≤ u(t0),

which contradicts equation (2.27). The proof is complete.
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Corollary 2.6. Let equation (2.27) in Theorem 2.4 be replaced by

(2.31)

lim sup
t→∞

1
H(t, t0)

∫ t

t0

ρ(s)r(s)
∣∣h(t, s)+

( (p(s)
r(s) − ρ′(s)

ρ(s)

)√
H(t, s)

∣∣α+1

(α+ 1)α+1H
α−1

2 (t, s)
ds

<∞,

(2.32) lim sup
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)ρ(s)q(s) ds = ∞,

then every solution of equation (1.1) is oscillatory.

Following the procedure of the proof of Theorems 2.2 and 2.3, we can
also prove the following two theorems.

Theorem 2.5. Let the functions H and h be defined as in Theorem
2.1 such that equation (2.9) holds. If there exist two functions ρ ∈
C1[t0,∞) and φ ∈ C[t0,∞) such that

lim sup
t→∞

1
H(t, t0)

·
∫ t

t0

ρ(s)r(s)
∣∣h(t, s)+

(p(s)
r(s)− ρ′(s)

ρ(s)

)√
H(t, s)

∣∣α+1

(α+ 1)α+1H
α−1

2 (t, s)
ds <∞,

and that for every T > t0,

lim inf
t→∞

1
H(t, T )

[
H(t, s)ρ(s)q(s)

(2.33)

−
ρ(s)r(s)

∣∣h(t, s)+
(p(s)

r(s)− ρ′(s)
ρ(s)

)√
H(t, s)

∣∣α+1

(α+ 1)α+1H
α−1

2 (t, s)

]
ds

≥ φ(T ),

and (2.12) holds, then every solution of (1.1) is oscillatory.
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Theorem 2.6. Let the functions H and h be defined as in Theorem
2.1 such that (2.9) holds. If there exist two functions ρ ∈ C1[t0,∞) and
φ ∈ C[t0,∞) such that

lim inf
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)ρ(s)|q(s)| ds <∞,

and that (2.12) and (2.33) hold, then every solution of equation (1.1) is
oscillatory.

3. Asymptotics of the forced equation. In this section we study
the asymptotic behavior of solutions of the forced half-linear differential
equation with damping
(3.1)

[r(t)|y′(t)|α−1y′(t)]′ + p(t)|y′(t)|α−1y′(t) + q(t)|y(t)|α−1y(t) = e(t),

where α > 0 is a constant.

The main result of this section is the following.

Theorem 3.1. Let the assumptions of Theorem 2.1 hold, and
suppose that the function e ∈ C[t0,∞) satisfies

(3.2)
∫ ∞

|e(t)| dt <∞.

Then every solution of (3.1) satisfies

lim inf
t→∞ |y(t)| = 0.

Proof. Let y(t) be a solution of equation (3.1), and suppose that

lim inf
t→∞ |y(t)| = c > 0,

so y(t) is nonoscillatory. Without loss of generality, we may assume
that y(t) > c > 0 on [T0,∞) for some T0 ≥ t0. Differentiating the
function u(t) defined by (2.4), we obtain

u′(t) = −q(t) − p(t)
r(t)

u(t) − α
|u(t)|α+1

α

r
1
α (t)

+
e(t)

|y(t)|α−1y(t)
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for all t ≥ T0, and thus

u′(t) ≤ −q(t) − p(t)
r(t)

u(t) − α
|u(t)|α+1

α

r
1α
( t)

+
|e(t)|
cα

.

Hence, for t ≥ T ≥ T0, we have
∫ t

T

H(t, s)q(s) ds ≤ −
∫ t

T

H(t, s)u′(s) ds−
∫ t

T

H(t, s)
p(s)
r(s)

u(s) ds

− α

∫ t

T

H(t, s)
|u(s)| a+1

α

r
1
α (s)

ds+
1
cα

∫ t

T

H(t, s)|e(s)| ds,

and, consequently,

(3.3)

∫ t

T

H(t, s)q(s) ds

≤ H(t, T )u(T ) +
∫ t

T

∣∣∣h(t, s)
√
H(t, s) +

p(s)
r(s)

H(t, s)
∣∣∣|u(s)| ds

−
∫ t

T

H(t, s)
|u(s)|α+1

α

r
1
/

α(s)
ds+

1
cα

∫ t

T

H(t, s)|e(s)| ds.

Let A and B be as in the proof of Theorem 2.1. In view of Lemma A,
(3.3) implies that

∫ t

T

H(t, s)q(s) ds ≤ H(t, T )u(T ) +
1
cα

∫ t

T

H(t, s)|e(s)| ds+
1

(α+ 1)α+1

·
∫ t

T

r(s)
∣∣h(t, s)+ p(s)

r(s)

√
H(t, s)

∣∣α+1

[H(t, s)]
α−1

2

ds,

for t ≥ t0. Consequently,

∫ t

T

[
H(t, s)q(s) ds− 1

(α+1)α+1

r(s)
∣∣h(t, s) + p(s)

r(s)

√
H(t, s)

∣∣α+1

[H(t, s)]
α−1

2

]
ds

≤ H(t, T )u(T ) +
H(t, T )
cα

∫ t

T

|e(s)| ds.

Now the proof proceeds in the same way as in Theorem 2.1.
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Following the procedure of the proof, Theorems 2.4 and 3.1, we can
also prove the following more general result.

Theorem 3.2. Let the assumptions of Theorem 2.4 hold, and
suppose that the function e ∈ C[t0,∞) satisfies∫ ∞

|e(t)| dt <∞.

Then every solution of equation (3.1) satisfies

lim inf
t→∞ |y(t)| = 0.

4. Examples. In this section we will show the applications of our
oscillation criteria by three examples. We will see that the equations in
the examples are oscillatory based on the results in Section 2, though
the oscillation cannot be demonstrated by most other known criteria.

Example 4.1. Consider the nonlinear differential equation

(4.1) [t−β |y′(t)|α−1y′(t)]′ − t−β |y′(t)|α−1y′(t)

+ tγ
(
γ

2 − cos t
t

+ sin t
)
|y(t)|α−1y(t) = 0,

for t ≥ 1, where α, β, γ are arbitrary positive constants and α 
= 2.
Then, for any t ≥ 1, we have∫ t

1

q(s) ds =
∫ t

1

d(sγ(2 − cos s))

= tγ(2 − cos t) − (2 − cos 1) ≥ tγ − k0,

where k0 = 2 − cos 1. Taking H(t, s) = (t− s)2 for t ≥ s ≥ 1, we have

1
t2

∫ t

1

[
(t−!s)2q(s) − 1

(α+1)α+1

|2 − (t−s)|α+1

sβ(t− s)α−1

]
ds

=
1
t2

∫ t

1

[
2(t−s)

(∫ s

1

q(τ ) dτ
)
− 1

(α+1)α+1

|2 − (t−s)|α+1

sβ(t− s)α−1

]
ds

≥ 2
t2

∫ t

1

(t−s)(sγ−k0) ds− 2α+1

(α+1)α+1t2

∫ t

1

(t−s)1−α ds

=
2tγ

(γ + 1)(γ + 2)
+
k1

t2
+
k2

t
− k0 − k3

tα

(
1 − 1

t

)2−α

,
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where

k1 =
2

γ + 2
− k0, k2 = 2k0 − 2

γ + 1
, k3 =

2α+1

(α+ 1)α+1(2 − α)
.

Consequently, (2.3) holds. Hence equation (4.1) is oscillatory by
Theorem 2.1.

We observe that Theorem 2.2 can be applied in some cases in which
Theorem 2.1 is not applicable. Such a case is described in the following
example.

Example 4.2. Consider the differential equation

(4.2)

[tβ |y′(t)|α−1y′(t)]′ + tβ|y′(t)|α−1y′(t) + tγ cos t|y(t)|α−1y(t) = 0,
t ≥ 1,

where α, β, γ are constants such that −1 < γ ≤ 1, 0 < α 
= 2, α > β
and γ(α + 1) ≥ β − α. For example, α = 1, β = 1, γ = 1 satisfy the
above assumption. Taking H(t, s) = (t− s)2 for t ≥ s ≥ 1,

1
t2

∫ t

1

sβ |2 − (t−s)|α+1

(t− s)α−1
ds ≤ 2α+1

t2

∫ t

1

sβ

(t−s)α−1
ds

=




2α+1tβ−2 t− 12−α

2 − α
, β > 0

2α+1

t2
t− 12−α

2 − α
, β < 0

=




2α+1tβ−α

2 − α

(
1 − 1

t

)2−α

, β > 0

2α+1

(2 − α)tα
(

1 − 1
t

)2−α

, β < 0.

Therefore, (2.10) holds and for arbitrary small constant ε > 0, there
exists t1 ≥ 1 such that, for T ≥ t1,

lim sup
t→∞

1
t2

∫ t

1

[
(t−s)2sγ cos s− sβ|2 − (t−s)|α+1

(α+1)α+1(t−s)α−1

]
ds

≥ −T γ cosT − ε.
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Now set φ(T ) = −T γ cosT − ε. Then there exists an integer N such
that (2N + 1)π − (π/4) > t1, and, if n ∈ N ,

(2n+ 1)π − π

4
≤ T ≤ (2n+ 1)π +

π

4
, φ(t) ≥ δT γ ,

where δ is a small constant. Taking into account that γ(α+1) ≤ β−α,
we obtain

∫ ∞

1

φ
α+1

α
+ (s)

r
1
/

α(s)
ds ≥

∞∑
n=N

δ
α+1

α

∫ (2n+1)π+ π
4

(2n+1)π−π
4

s
γ(α+1)−β

α ds

≥
∞∑

n=N

δ
α+1

α

∫ (2n+1)π+ π
4

(2n+1)π−π
4

1
s
ds = ∞.

Accordingly, all conditions of Theorem 2.2 are satisfied, and hence
equation (4.2) is oscillatory.

Example 4.3. Consider the half-linear differential equation

(4.3)
[

1
5t

|y′(t)|y′(t)]
]′

+
1
t2

|y′(t)|y′(t) + 2|y(t)|y(t) =
2
t2
,

where t ≥ 1. Now let H(t, s) = (t− s)3, h(t, s) = 3(t− s)1/2. Then, by
straightforward computation, we obtain

1
t3

∫ t

T

[
2(t−s)3−

∣∣3 + 5s
( t−s)

∣∣3
135s

]
ds

=
1

2t3
(t− T )4 − 1

135t3

∫ t

T

1
s

∣∣∣5t
s

− 2
∣∣∣3 ds

≥ 1
2t3

(t− T )4 − 25
27

∫ t

T

1
s4
ds

=
1

2t3
(t− T )4 +

25
81t3

− 25
81T 3

,

and, hence,

lim
t→∞

1
t3

∫ t

T

[
2(t−s)3 −

∣∣3 + 5
s (t−s)∣∣3
135s

]
ds = ∞,
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so assumption (2.3) holds.

Thus, by Theorem 3.1, we conclude that all solutions of (4.3) satisfy

lim inf
t→∞ |y(t)| = 0.

Observe that y(t) = 1/t is such a solution.

Acknowledgment. The authors thank the referees for their valu-
able comments and for informing us of the references [4], [5], [7], [27]
and [36].
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