INTERPOLATION PROBLEMS IN CSL-ALGEBRA ALG \mathcal{L}

YOUNG SOO JO AND JOO HO KANG

Abstract

Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that $T x=y$. In this paper we obtained a necessary and sufficient condition for the existence of a solution A which is in CSLalgebra $\operatorname{Alg} \mathcal{L}$.

1. Introduction. Let \mathcal{C} be a collection of operators acting on a Hilbert space \mathcal{H}, and let x and y be vectors in \mathcal{H}. An interpolation question for \mathcal{C} asks for which x and y is there a bounded operator $T \in \mathcal{C}$ such that $T x=y$. A variation, the ' n-vector interpolation problem', asks for an operator T such that $T x_{i}=y_{i}$ for fixed finite collections $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$. The n-vector interpolation problem was considered for a C^{*}-algebra \mathcal{U} by Kadison [6]. In case \mathcal{U} is a nest algebra, the interpolation problem was solved by Lance [7]; his result was extended by Hopenwasser [2] to the case that \mathcal{U} is a CSL-algebra. More recently, Munch [8] obtained conditions for interpolation in case T is required to lie in the ideal of Hilbert-Schmidt operators in a nest algebra. Hopenwasser [3] once again extended the interpolation condition to the ideal of Hilbert-Schmidt operators in a CSL-algebra. Hopenwasser's paper also contain a sufficient condition for interpolation of n-vectors, although necessity was not proved in that paper.

First, we establish some notations and conventions. A commutative subspace lattice \mathcal{L}, or $\operatorname{CSL} \mathcal{L}$ is a strongly closed lattice of (self-adjoint) pairwise-commuting projections acting on a separable Hilbert space \mathcal{H}. We assume that the projections 0 and I lie in \mathcal{L}. We usually identify projections and their ranges so that it makes sense to speak of an operator as leaving a projection invariant. If \mathcal{L} is $\mathrm{CSL}, \operatorname{Alg} \mathcal{L}$ is called a CSL-algebra. The algebra $\operatorname{Alg} \mathcal{L}$ is the algebra of all bounded linear operators on \mathcal{H} that leave invariant all projections in \mathcal{L}. Let x and y

[^0]be vectors in a Hilbert space. Then $\langle x, y\rangle$ means the inner product of vectors x and y. In this paper, we use the convention $\frac{0}{0}=0$, when necessary.
2. Interpolation problems in CSL-algebra $\operatorname{Alg} \mathcal{L}$. Let \mathcal{H} be a Hilbert space and \mathcal{L} a commutative subspace lattice of orthogonal projections acting on \mathcal{H} containing 0 and 1 . Let \mathcal{M} be a subset of a Hilbert space \mathcal{H}. Then $\overline{\mathcal{M}}$ means the closure of \mathcal{M} and \mathcal{M}^{\perp} the orthogonal complement of \mathcal{M}. Let f be a vector in a Hilbert space \mathcal{H} and $\left\{f_{n}\right\}$ a sequence of vectors in \mathcal{H}. Then $f_{n} \rightarrow f$ or $\lim _{n \rightarrow \infty} f_{n}=f$ means that the sequence $\left\{f_{n}\right\}$ converges to f on the norm topology on \mathcal{H}. Let N be the set of all natural numbers, and let \mathbf{C} be the set of all complex numbers.

Theorem 1. Let \mathcal{H} be a Hilbert space and \mathcal{L} a commutative subspace lattice on \mathcal{H}. Let x and y be vectors in \mathcal{H}. Then the following statements are equivalent.
(1) There is an operator A in $\operatorname{Alg} \mathcal{L}$ such that $A x=y$ and every E in \mathcal{L} reduces A.

$$
\text { (2) } \sup \left\{\frac{\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} y\right\|}{\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} x\right\|}: l \in N, \alpha_{i} \in \mathbf{C} \text { and } E_{i} \in \mathcal{L}\right\}<\infty
$$

Proof. Suppose that there is an operator A in $\operatorname{Alg} \mathcal{L}$ such that $A x=y$ and every E in \mathcal{L} reduces A. Then $\alpha E A x=A \alpha E x=\alpha E y$ for every E in \mathcal{L} and for every α in \mathbf{C}. So $A\left(\sum_{i=1}^{l} \alpha_{i} E_{i} x\right)=\sum_{i=1}^{l} \alpha_{i} E_{i} y$ for $l \in N$, $\alpha_{i} \in \mathbf{C}$ and $E_{i} \in \mathcal{L}$. Thus $\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} y\right\|=\left\|A\left(\sum_{i=1}^{l} \alpha_{i} E_{i} x\right)\right\| \leq$ $\|A\|\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} x\right\|$.
If $\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} x\right\| \neq 0$, then $\frac{\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} y\right\|}{\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} x\right\|} \leq\|A\|$.
Hence, $\sup \left\{\frac{\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} y\right\|}{\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} x\right\|}: l \in N, \alpha_{i} \in \mathbf{C}\right.$ and $\left.E_{i} \in \mathcal{L}\right\} \leq\|A\|$.
If $\sup \left\{\frac{\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} y\right\|}{\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} x\right\|}: l \in N, \alpha_{i} \in \mathbf{C}\right.$ and $\left.E_{i} \in \mathcal{L}\right\}<\infty$, then,
without loss of generality, we may assume that

$$
\sup \left\{\frac{\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} y\right\|}{\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} x\right\|}: l \in N, \alpha_{i} \in \mathbf{C} \text { and } E_{i} \in \mathcal{L}\right\}=1
$$

So $\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} y\right\| \leq\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} x\right\|, l \in N, \alpha_{i} \in \mathbf{C}$ and $E_{i} \in \mathcal{L} \ldots(*)$. Let $\mathcal{M}=\left\{\sum_{i=1}^{l} \alpha_{i} E_{i} x: l \in N, \alpha_{i} \in \mathbf{C}\right.$ and $\left.E_{i} \in \mathcal{L}\right\}$. Then \mathcal{M} is a linear manifold. Define $A: \mathcal{M} \rightarrow \mathcal{H}$ by $A\left(\sum_{i=1}^{l} \alpha_{i} E_{i} x\right)$ $=\sum_{i=1}^{l} \alpha_{i} E_{i} y$. Then A is well defined. For, if $\sum_{i=1}^{l} \alpha_{i} E_{i} x=$ $\sum_{j=1}^{m} \beta_{j} E_{j} x$, then $\sum_{i=1}^{l} \alpha_{i} E_{i} x+\sum_{j=1}^{m}\left(-\beta_{j}\right) E_{j} x=0$. So $\| \sum_{i=1}^{l} \alpha_{i} E_{i} x+$ $\sum_{j=1}^{m}\left(-\beta_{j}\right) E_{j} x \|=0$ and hence $\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} y+\sum_{j=1}^{m}\left(-\beta_{j}\right) E_{j} y\right\|=0$ by $(*)$. Thus $\sum_{i=1}^{l} \alpha_{i} E_{i} y=\sum_{j=1}^{m} \beta_{j} E_{j} y$, i.e., $A\left(\sum_{i=1}^{l} \alpha_{i} E_{i} x\right)=$ $A\left(\sum_{j=1}^{m} \beta_{j} E_{j} x\right)$. Extend A to $\overline{\mathcal{M}}$ by continuity, and define $\left.A\right|_{\overline{\mathcal{M}}^{\perp}}=0$. Clearly, $A x=y$ and $\|A\| \leq 1$.
Now we must show that E reduces A or $A E=E A$ for every E in \mathcal{L}. Let f be in \mathcal{H}, and let $f=\sum_{i=1}^{l} \alpha_{i} E_{i} x \oplus g$, where $g \in \overline{\mathcal{M}}^{\perp}$. Then, for every E in \mathcal{L},

$$
\begin{aligned}
A E f & =A E\left(\sum_{i=1}^{l} \alpha_{i} E_{i} x+g\right) \\
& =A\left(\sum_{i=1}^{l} \alpha_{i} E E_{i} x\right)+A E g \\
& =\sum_{i=1}^{l} \alpha_{i} E E_{i} y \quad \text { because } E g \in \overline{\mathcal{M}}^{\perp} \\
& =E\left(\sum_{i=1}^{l} \alpha_{i} E_{i} y\right) \\
& =E A\left(\sum_{i=1}^{l} \alpha_{i} E_{i} x+g\right) \quad \text { because } A g=0
\end{aligned}
$$

So $A E=E A$ for every $E \in \mathcal{L}$.
If we modify the proof of Theorem 1 a little, we can prove the following theorem.

Theorem 2. Let \mathcal{H} be a Hilbert space and \mathcal{L} a commutative subspace lattice on \mathcal{H}. Let $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ be two sequences of vectors in \mathcal{H}. Then the following statements are equivalent.
(1) There is an operator A in $\operatorname{Alg} \mathcal{L}$ such that $A x_{i}=y_{i}, i=1, \ldots, n$, and every E in \mathcal{L} reduces A.
$\sup \left\{\frac{\left\|\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} y_{i}\right\|}{\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} x_{i} \|}: m_{i} \in N, l \leq n, E_{k, i} \in \mathcal{L}\right.$ and $\left.\alpha_{k, i} \in \mathbf{C}\right\}$

$$
<\infty
$$

Proof. Suppose that there is an operator A in $\operatorname{Alg} \mathcal{L}$ such that $A x_{i}=y_{i}, i=1,2, \ldots, n$, and every E in \mathcal{L} reduces A. Then $\alpha E A x_{i}=$ $A \alpha E x_{i}=\alpha E y_{i}$ for every E in \mathcal{L} and for every α in $\mathbf{C}, i=1,2, \ldots, n$. So $A\left(\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} x_{i}\right)=\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} y_{i}, m_{i} \in N, l \leq$ $n, E_{k, i} \in \mathcal{L}$ and $\alpha_{k, i} \in \mathbf{C}$. Thus $\left\|\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} y_{i}\right\| \leq$ $\|A\|\left\|\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} x_{i}\right\|$. If $\left\|\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} x_{i}\right\| \neq 0$, then

$$
\frac{\left\|\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} y_{i}\right\|}{\left\|\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} x_{i}\right\|} \leq\|A\|
$$

Hence

$$
\begin{aligned}
\sup \left\{\begin{aligned}
\frac{\left\|\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} y_{i}\right\|}{\left\|\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} x_{i}\right\|}: & \left.m_{i} \in N, l \leq n, E_{k, i} \in \mathcal{L} \text { and } \alpha_{k, i} \in \mathbf{C}\right\} \\
& <\infty
\end{aligned}\right.
\end{aligned}
$$

> If $\begin{aligned} \sup \left\{\begin{aligned} \frac{\left\|\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} y_{i}\right\|}{\left\|\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} x_{i}\right\|} & \left.m_{i} \in N, l \leq n, E_{k, i} \in \mathcal{L} \text { and } \alpha_{k, i} \in \mathbf{C}\right\} \\ & <\infty\end{aligned}\right.\end{aligned}$.
then, without loss of generality, we may assume that

$$
\begin{aligned}
\sup \left\{\frac{\left\|\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} y_{i}\right\|}{\left\|\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} x_{i}\right\|}:\right. & \left.m_{i} \in N, l \leq n, E_{k, i} \in \mathcal{L} \text { and } \alpha_{k, i} \in \mathbf{C}\right\} \\
& =1
\end{aligned}
$$

So

$$
\left\|\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} y_{i}\right\| \leq\left\|\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} x_{i}\right\|, m_{i} \in N, l \leq n, E_{k, i} \in \mathcal{L}
$$

and $\alpha_{k, i} \in \mathbf{C} \cdots(*)$. Let $\mathcal{M}=\left\{\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} x_{i}: m_{i} \in N, l \leq\right.$ $n, \alpha_{k, i} \in \mathbf{C}$ and $\left.E_{k, i} \in \mathcal{L}\right\}$. Then \mathcal{M} is a linear manifold. Define $A: \mathcal{M} \rightarrow \mathcal{H}$ by $A\left(\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} x_{i}\right)=\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} y_{i}$. Then A is well defined.
For, if $\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} x_{i}=\sum_{k=1}^{m_{j}} \sum_{j=1}^{t} \beta_{k, j} E_{k, j} x_{j}$, then $\left\|\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} x_{i}+\sum_{k=1}^{m_{j}} \sum_{j=1}^{t}\left(-\beta_{k, j}\right) E_{k, j} x_{j}\right\|=0$ and hence $\left\|\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} y_{i}+\sum_{k=1}^{m_{j}} \sum_{j=1}^{t}\left(-\beta_{k, j}\right) E_{k, j} y_{j}\right\|=0$ by (*). Thus, $\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} y_{i}=\sum_{k=1}^{m_{j}} \sum_{j=1}^{t} \beta_{k, j} E_{k, j} y_{j}$.
Extend A to $\overline{\mathcal{M}}$ by continuity and define $\left.A\right|_{\overline{\mathcal{M}}^{\perp}}=0$. Clearly, $A x_{i}=y_{i}, i=1,2, \ldots, n$, and $\|A\| \leq 1$.
Now we must show that E reduces A or $A E=E A$ for every E in \mathcal{L}. Let f be in \mathcal{H}, and let $f=\left(\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} x_{i}\right) \oplus g$, where $g \in \overline{\mathcal{M}}^{\perp}$. Then, for every E in \mathcal{L},

$$
\begin{aligned}
A E f & =A E\left(\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} x_{i}+g\right) \\
& =A\left(\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E E_{k, i} x_{i}\right)+A E g \\
& =\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E E_{k, i} y_{i} \quad \text { because } E g \in \overline{\mathcal{M}}^{\perp}
\end{aligned}
$$

and

$$
\begin{aligned}
E A f & =E A\left(\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} x_{i}+g\right) \\
& =E\left(\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} y_{i}\right)+A g \\
& =\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E E_{k, i} y_{i} \quad \text { because } A g=0 .
\end{aligned}
$$

So $A E=E A$ for every $E \in \mathcal{L}$.
If we modify the proof of Theorem 2 a little, we can get the following theorem. So we omit its proof.

Theorem 3. Let \mathcal{H} be a Hilbert space, and let \mathcal{L} be a commutative subspace lattice on \mathcal{H}. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two infinite sequences of vectors in \mathcal{H}. Then the following statements are equivalent.
(1) There is an operator A in $\operatorname{Alg} \mathcal{L}$ such that $A x_{n}=y_{n}, n=1,2, \ldots$, and every E in \mathcal{L} reduces A.
(2)

$$
\begin{gathered}
\sup \left\{\frac{\left\|\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} y_{i}\right\|}{\left\|\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} x_{i}\right\|}: m_{i}, l \in N, E_{k, i} \in \mathcal{L} \text { and } \alpha_{k, i} \in \mathbf{C}\right\} \\
<\infty
\end{gathered}
$$

Theorem 4. Let \mathcal{H} be a Hilbert space, and let \mathcal{L} be a subspace lattice on \mathcal{H}. Let x_{1}, \ldots, x_{n} and y be vectors in \mathcal{H}. If there are operators A_{1}, \ldots, A_{n} in $\operatorname{Alg} \mathcal{L}$ such that $\sum_{k=1}^{n} A_{k} x_{k}=y$ and every E in \mathcal{L} reduces $A_{k}, k=1,2, \ldots, n$, then

$$
\sup \left\{\frac{\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} y\right\|}{\sum_{k=1}^{n}\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} x_{k}\right\|}: l \in N, E_{i} \in \mathcal{L} \text { and } \alpha_{i} \in \mathbf{C}\right\}<\infty
$$

Proof. Since $\sum_{k=1}^{n} A_{k} x_{k}=y$ and $A_{k} E=E A_{k}$ for every $k=$ $1,2, \ldots, n$, and every E in $\mathcal{L}, \sum_{k=1}^{n} A_{k}\left(\sum_{i=1}^{l} \alpha_{i} E_{i} x_{k}\right)=\sum_{i=1}^{l} \alpha_{i} E_{i} y$, $l \in N, \alpha_{i} \in \mathbf{C}$ and $E_{i} \in \mathcal{L}$. So

$$
\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} y\right\| \leq\left[\sup _{k}\left\|A_{k}\right\|\right]\left(\sum_{k=1}^{n}\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} x_{i}\right\|\right)
$$

If $\sum_{k=1}^{n}\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} x_{k}\right\| \neq 0$, then

$$
\frac{\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} y\right\|}{\sum_{k=1}^{n}\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} x_{k}\right\|}<\sup _{k}\left\|A_{k}\right\|
$$

Hence,

$$
\sup \left\{\frac{\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} y\right\|}{\sum_{k=1}^{n}\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} x_{k}\right\|}: l \in N, E_{i} \in \mathcal{L} \text { and } \alpha_{i} \in \mathbf{C}\right\}<\infty
$$

Theorem 5. Let \mathcal{H} be a Hilbert space, and let \mathcal{L} be a commutative subspace lattice on \mathcal{H}. Let x_{1}, \ldots, x_{n} and y be vectors in \mathcal{H}. If

$$
\sup \left\{\frac{\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} y\right\|}{\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} x_{k}\right\|}: l \in N, E_{i} \in \mathcal{L} \text { and } \alpha_{i} \in \mathbf{C}\right\}<\infty
$$

for all $k=1,2, \ldots, n$, then there are operators A_{1}, \ldots, A_{n} in $\operatorname{Alg} \mathcal{L}$ such that $\sum_{k=1}^{n} A_{k} x_{k}=y$ and $E A_{k}=A_{k} E$ for every E in \mathcal{L} and $k=1,2, \ldots, n$.

Proof. Put $y / n=y_{k}, k=1,2, \ldots, n$. Since

$$
\begin{aligned}
& \sup \left\{\frac{\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} y\right\|}{\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} x_{k}\right\|}: l \in N, E_{i} \in \mathcal{L} \text { and } \alpha_{i} \in \mathbf{C}\right\}<\infty \\
& \sup \left\{\frac{\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} y_{k}\right\|}{\left\|\sum_{i=1}^{l} \alpha_{i} E_{i} x_{k}\right\|}: l \in N, E_{i} \in \mathcal{L} \text { and } \alpha_{i} \in \mathbf{C}\right\}<\infty
\end{aligned}
$$

and hence there is an operator A_{k} in $\operatorname{Alg} \mathcal{L}$ such that $A_{k} x_{k}=y_{k}$ and $E A_{k}=A_{k} E$ for every E in \mathcal{L} and all $k=1,2, \ldots, n$ by Theorem 1. So $A_{1} x_{1}+A_{2} x_{2}+\cdots+A_{n} x_{n}=y_{1}+y_{2}+\cdots+y_{n}=y$.

We want to apply Theorem 2 to concrete examples.

Example 1. Let \mathcal{H} be a Hilbert space with an orthonormal base $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ and $\mathcal{L}=\left\{[0],\left[e_{1}\right],\left[e_{1} e_{2}\right],\left[e_{1} e_{2} e_{3}\right], \ldots,\left[e_{1}, e_{2}, \ldots, e_{n}\right]\right\}$.
Let $\mathbf{A}=\operatorname{Alg} \mathcal{L}$. Then B is in $\operatorname{Alg} \mathcal{L}$ if and only if B has the form

$$
\left(\begin{array}{ccccc}
* & * & * & \cdots & * \\
& * & * & \cdots & * \\
& & * & \cdots & * \\
& & & \ddots & \vdots \\
& & & & *
\end{array}\right)
$$

with respect to the basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$, where all nonstarred entries are zero.
Let $\left\{x_{1}, \ldots, x_{t}\right\}$ and $\left\{y_{1}, \ldots, y_{t}\right\}$ be two sequences of vectors in \mathcal{H}. Assume that

$$
\begin{aligned}
\sup \left\{\begin{aligned}
\frac{\left\|\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} y_{i}\right\|}{\left\|\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} x_{i}\right\|} & \left.m_{i} \in N, l \leq t, \alpha_{k, i} \in \mathbf{C} \text { and } E_{k, i} \in \mathcal{L}\right\} \\
& <\infty
\end{aligned}\right.
\end{aligned}
$$

Then there is an operator A in $\operatorname{Alg} \mathcal{L}$ such that (i) $A x_{i}=y_{i}$, $i=1,2, \ldots, t$, (ii) every E reduces A, (iii) A is diagonal, and (iv) $\beta_{j i}=\alpha_{j j} \alpha_{j i}, i=1,2, \ldots, t$ and $j=1,2, \ldots, n$, where $x_{i}=$ $\left(\alpha_{1 i}, \alpha_{2 i}, \ldots, \alpha_{n i}\right)^{t}$ and $y_{i}=\left(\beta_{1 i}, \beta_{2 i}, \ldots, \beta_{n i}\right)^{t}$. For, by arguments similar to those of the proof of Theorem 2, we can get the above results.

Example 2. Let \mathcal{H} be a Hilbert space with an orthonormal base $\left\{e_{1}, e_{2}, \ldots, e_{2 n+1}\right\}$. Let $\mathcal{L}=\left\{[0],\left[e_{1}\right],\left[e_{1} e_{2} e_{3}\right],\left[e_{1} e_{2} e_{3} e_{4} e_{5}\right], \ldots,\left[e_{1}, e_{2}\right.\right.$, $\left.\left.e_{3}, \ldots, e_{2 n+1}\right]\right\}$.
Let B be in $\mathcal{B}(\mathcal{H})$. Then B is in $\operatorname{Alg} \mathcal{L}$ if and only if B has the form

$$
\left(\begin{array}{cccccccc}
* & * & * & * & * & \cdots & * & * \\
& * & * & * & * & \cdots & * & * \\
& * & * & * & * & \cdots & * & * \\
& & * & * & \cdots & * & * \\
& & & * & * & \cdots & * & * \\
& & & & & \ddots & \vdots & \vdots \\
& & & & & * & * \\
& & & & & * & *
\end{array}\right)
$$

with respect to the basis $\left\{e_{1}, e_{2}, \ldots, e_{2 n+1}\right\}$, where all nonstarred entries are zero.

Let $\left\{x_{1}, \ldots, x_{t}\right\}$ and $\left\{y_{1}, \ldots, y_{t}\right\}$ be two sequences of vectors in \mathcal{H}. Assume that

$$
\begin{aligned}
\sup \left\{\begin{aligned}
\frac{\left\|\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} y_{i}\right\|}{\left\|\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} x_{i}\right\|} & \left.m_{i} \in N, l \leq t, \alpha_{k, i} \in \mathbf{C} \text { and } E_{k, i} \in \mathcal{L}\right\} \\
& <\infty
\end{aligned}\right.
\end{aligned}
$$

Then there is an operator A in $\operatorname{Alg} \mathcal{L}$ such that
(i) $A x_{i}=y_{i}, i=1,2, \ldots, t$, (ii) every E in $\operatorname{Alg} \mathcal{L}$ reduces A, (iii) A has the form

$$
\left(\begin{array}{cccccccc}
* & & & & & & & \\
& * & * & & & & & \\
& * & * & & & & & \\
& & & * & * & & & \\
& & & * & * & & & \\
& & & & \ddots & & \\
& & & & & & & * \\
& & & & & & * \\
& & & & & & * & *
\end{array}\right)
$$

with respect to the basis $\left\{e_{1}, e_{2}, \ldots, e_{2 n+1}\right\}$, where all nonstarred entries are zero, and (iv) $\beta_{1 j}=a_{11} \alpha_{1 j}, \beta_{2 p, j}=a_{2 p, 2 p} \alpha_{2 p, j}+a_{2 p, 2 p+1} \alpha_{2 p+1, j}$ and $\beta_{2 p+1, j}=a_{2 p+1,2 p} \alpha_{2 p, j}+a_{2 p+1, w p+1} \alpha_{2 p+1, j}, j=1,2, \ldots, t$ and $p=1,2, \ldots, n$, where $A=\left(a_{p p}\right), x_{j}=\left(\alpha_{1 j}, \alpha_{2 j}, \ldots, \alpha_{2 n+1, j}\right)^{t}$ and $y_{j}=\left(\beta_{1 j}, \beta_{2 j}, \ldots, \beta_{2 n+1, j}\right)^{t}$.

For, by Theorem 2, there is an operator A in $\operatorname{Alg} \mathcal{L}$ such that (i) $A x_{i}=$ $y_{i}, i=1,2, \ldots, t$, and every E in \mathcal{L} reduces A. If we put $E=\left[e_{1}\right]$, $E=\left[e_{1}, e_{2}, e_{3}\right], E=\left[e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right], \ldots, E=\left[e_{1}, e_{2}, \ldots, e_{2 n+1}\right]$ in turn in the equation $A E=E A$, and if we compare components of $A E$ with those of $E A$, then (iii) A has the desired form. We know that $A E x_{i}=E y_{i}$ in the proof of Theorem $1, i=1,2, \ldots, t$. (iv) If we put $E=\left[e_{1}\right], E=\left[e_{1}, e_{2}, e_{3}\right], E=\left[e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right], \ldots$, $E=\left[e_{1}, e_{2}, \ldots, e_{2 n+1}\right]$ in turn in the equation $A E x_{i}=E y_{i}, i=$ $1,2, \ldots, t$, and if we compare each component of $A E x_{i}$ with that of $E y_{i}$, then we can get $\beta_{1 j}=a_{11} \alpha_{1 j}, \beta_{2 p, j}=a_{2 p, 2 p} \alpha_{2 p, j}+\alpha_{2 p, 2 p+1} \alpha_{2 p+1, j}$ and $\beta_{2 p+1, j}=a_{2 p+1,2 p} \alpha_{2 p, j}+a_{2 p+1,2 p+1} \alpha_{2 p+1, j}, j=1,2, \ldots$, and $p=1,2, \ldots, n$, where $A=\left(a_{p p}\right), x_{i}=\left(\alpha_{1 j}, \alpha_{2 j}, \ldots, \alpha_{2 n+1, j}\right)^{t}$ and $y_{i}=\left(\beta_{1 j}, \beta_{2, j}, \ldots, \beta_{2 n+1, j}\right)^{t}$.

Example 3. Let \mathcal{H} be a Hilbert space with an orthonormal base $\left\{e_{1}, e_{2}, \ldots, e_{9}\right\}$. Let \mathcal{L} be the lattice generated by $\left\{[0],\left[e_{1}, e_{2}\right]\right.$, $\left.\left[e_{1}, e_{2}, e_{3}\right],\left[e_{4}, e_{5}\right],\left[e_{1}, \ldots, e_{8}\right],\left[e_{9}\right]\right\}$.

Let B be a $\mathcal{B}(\mathcal{H})$. Then B is in $\operatorname{Alg} \mathcal{L}$ if and only if B has the form

$$
\left(\begin{array}{lllllllll}
* & * & * & & & * & * & * & \\
* & * & * & & & * & * & * & \\
& & * & & & * & * & * & \\
& & & * & * & * & * & * & \\
& & & * & * & * & * & * & \\
& & & & & * & * & * & \\
& & & & & * & * & * & \\
& & & & & * & * & * & \\
& & & & & & * & \\
& & & & & & & &
\end{array}\right)
$$

with respect to the basis $\left\{e_{1}, \ldots, e_{9}\right\}$, where all nonstarred entries are zero.

Let $\left\{x_{1}, \ldots, x_{t}\right\}$ and $\left\{y_{1}, \ldots, y_{t}\right\}$ be two sequences of vectors in \mathcal{H}, $t \leq 9$. Assume that

$$
\begin{aligned}
\sup \left\{\begin{aligned}
\frac{\left\|\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} y_{i}\right\|}{\left\|\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k, i} E_{k, i} x_{i}\right\|} & \left.m_{i} \in N, l \leq t, \alpha_{k, i} \in \mathbf{C} \text { and } E_{k, i} \in \mathcal{L}\right\} \\
& <\infty
\end{aligned}\right.
\end{aligned}
$$

Then there is an operator A in $\operatorname{Alg} \mathcal{L}$ such that
(i) $A x_{i}=y_{i}, i=1,2, \ldots, t$, (ii) every E in \mathcal{L} reduces A, (iii) A has the form

$$
\left(\begin{array}{lllllllll}
* & * & & & & & & \\
* & * & & & & & & \\
& & * & & & & & \\
& & & * & * & & & \\
& & & * & * & & & \\
& & & & & * & * & * & \\
& & & & & * & * & * & \\
& & & & & * & * & * & \\
& & & & & * & *
\end{array}\right)
$$

with respect to the basis $\left\{e_{1}, e_{2}, \ldots, e_{9}\right\}$, where all nonstarred entries are zero, and
(iv)

$$
\begin{aligned}
& \beta_{1 j}=a_{11} \alpha_{1 j}+a_{12} \alpha_{2 j}, \beta_{2 j}=a_{21} \alpha_{1 j}+a_{22} \alpha_{2 j}, \\
& \beta_{3 j}=a_{33} \alpha_{3 j}, \\
& \beta_{4 j}=a_{44} \alpha_{4 j}+a_{45} \alpha_{5 j}, \\
& \beta_{5 j}=a_{54} \alpha_{4 j}+a_{55} \alpha_{5 j}, \\
& \beta_{6 j}=a_{66} \alpha_{6 j}+a_{67} \alpha_{7 j}+a_{68} \alpha_{8 j}, \\
& \beta_{7 j}=a_{76} \alpha_{6 j}+a_{77} \alpha_{7 j}+a_{78} \alpha_{8 j} \\
& \beta_{8 j}=a_{86} \alpha_{6 j}+a_{87} \alpha_{7 j}+a_{88} \alpha_{8 j} \text { and } \\
& \beta_{9 j}=a_{99} \alpha_{9 j}, \quad j=1,2, \ldots, 9 .
\end{aligned}
$$

For, by arguments similar to those of the proof of Examples 1 and 2, we can get the above results.

We can get much information from Examples 1, 2 and 3 about A, x_{i} and y_{i}.

Acknowledgments. The author wishes to acknowledge the financial support of the Korea Research Foundation made in the program year of 1998 (1998-015-D00019).

REFERENCES

1. F. Gilfeather and D. Larson, Commutants modulo the compact operators of certain CSL algebras, Oper. Theory Adv. Appl., vol. 2, Birkhauser, Basel, 1981, pp. 105-120.
2. A. Hopenwasser, The equation $T x=y$ in a reflexive operator algebra, Indiana University Math. J. 29 (1980), 121-126.
3. - Hilbert-Schmidt interpolation in CSL algebras, Illinois J. Math. 33 (1989), 657-672.
4. Y.S. Jo, Isometries of tridiagonal algebras, Pacific J. Math. 140 (1989), 97-115.
5. Y.S. Jo and T.Y. Choi, Isomorphisms of $\operatorname{Alg} \mathcal{L}_{n}$ and $\operatorname{Alg} \mathcal{L}_{\infty}$, Michigan Math. J. 37 (1990), 305-314.
6. R. Kadison, Irreducible operator algebras, Proc. Nat. Acad. Sci. U.S.A. (1957), 273-276.
7. E.C. Lance, Some properties of nest algebras, Proc. London Math. Soc. 19 (1969), 45-68.
8. N. Munch, Compact causal data interpolation, Aarhus University reprint series 11 (1987); J. Math. Anal. Appl., to appear.
9. C.F. Schubert, Corona theorem as operator theorem, Proc. Amer. Math. Soc. 69 (1978), 73-76.

Department of Mathematics, Keimyung University, Taegu, Korea
E-mail address: ysjo@kmu.ac.kr
Department of Mathematics, Daegu University, Daegu, Korea
E-mail address: jhkang@daegu.ac.kr

[^0]: 2000 Mathematics Subject Classification. 47L35.
 Key words and phrases. Interpolation problem, commutative subspace lattice, CSL-algebras, $\operatorname{Alg} \mathcal{L}$.

 Received by the editors on January 23, 2001.

