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GENERATION OF ANALYTIC SEMIGROUPS
BY DIFFERENTIAL OPERATORS WITH

MIXED BOUNDARY CONDITIONS

JOSÉ M. GALLARDO

ABSTRACT. We study the generation of analytic semi-
groups in the space L1(α, β) by a second order operator
Lu = u′′ + q1(x)u′ + q0(x)u with mixed non-separated and
integral boundary conditions of the form

Bi(u) ≡ aiu(α) + biu
′(α) + ciu(β) + diu

′(β)

+

∫ β

α

Ri(t)u(t) dt +

∫ β

α

Si(t)u
′(t) dt

= 0, i = 1, 2.

We obtain quite general results that extend previous works by
the author (see [3] [4]).

The key for showing the generation of analytic semigroups
will be an estimate of the form

‖R(λ : L)‖ ≤ M |λ|−1

for the resolvent operator in a suitable sector of the complex
plane.

1. Introduction and preliminaries. This work has been inspired
by a model arising in optical physics, specifically that in [8] [9],
where BOITAL (Thermally Induced Optical Bistability with Localized
Absorption) multilayer devices are considered and the proposed models
numerically analyzed. The authors in [8] [9] give a PDE model that,
after physical considerations, can be reduced to a finite dimensional
ODE model exhibiting similar dynamics. Both in the PDE and ODE
models, the boundary conditions that appear are mixed non-separated
and integral ones, although a nonlinear function on the boundary is
also involved.
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In this paper we consider a linearized version of the boundary condi-
tions mentioned above, and we study the generation of semigroups by
the differential operator associated to the system in the space L1(α, β)
of integrable functions in the finite interval (α, β). This is the first step
in the analytical study of the dynamics of such systems, and it connects
directly with previous works by the author [3] [4], where the generation
of analytic semigroups by differential operators with non-separated or
integral boundary conditions were investigated.

In this way the present work should also be viewed as a continuation of
our previous papers [3] [4]. The results in [3], where integral boundary
conditions are considered, can be seen as particular cases of the main
theorem 7.1 simply by taking ai = bi = ci = di = 0. The paper [4] deals
with the case of non-separated boundary conditions (i.e., Ri ≡ Si ≡ 0)
and we proved there the generation of analytic semigroups for regular
boundary conditions in every space Lp(α, β), 1 ≤ p ≤ ∞. For p = 1
the results in [4] are simply special cases of Theorem 7.1; however, as
we will see in Section 8, it is not possible to generalize this theorem to
the Lp setting, so [4] provides more precise results than Theorem 7.1
in the case of non-separated boundary conditions.

Consider a formal second order operator in the finite interval (α, β),
that is,

l(u) = u′′ + q1(x)u′ + q0(x)u, x ∈ (α, β)

where q1 and q0 are regular complex-valued functions. We associate to
l two mixed boundary conditions of the form

Bi(u) ≡ aiu(α) + biu
′(α) + ciu(β) + diu

′(β)

+
∫ β

α

Ri(t)u(t) dt+
∫ β

α

Si(t)u′(t) dt = 0

for i = 1, 2; here, the coefficients ai, bi, ci, di are complex and the
continuous functions Ri and Si are complex-valued. Of course, some
kind of independence of the boundary conditions should be imposed
for avoiding such cases as, for example,{

B1(u) ≡ u(α)− u(β) = 0

B2(u) ≡
∫ β

α
u′(t) dt = 0

where the boundary conditions are formally the same. The way for
avoiding such cases will be through the characteristic determinant, to
be defined in Section 2.
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The formal operator l together with the boundary conditions {B1, B2}
define an unbounded linear operator L in L1(α, β) known as the L1-
realization of the system:

Lu = l(u), D(L) = {u ∈ W 2,1(α, β) : B1(u) = B2(u) = 0}

where W 2,1(α, β) is the Sobolev space of order (2, 1). Our objective is to
determine the cases, depending on the boundary conditions, for which
L is the generator of an analytic semigroup of operators in L1(α, β).

As is well known [6], sufficient conditions for assuring that L generates
an analytic semigroup of bounded linear operators are:

1. The resolvent set ρ(L) contains a sector of the form

Σδ,r = {λ ∈ C : |arg (λ− r)| < δ, λ 	= r}

for some δ ∈ (π/2, π) and r ∈ R.

2. There exists a constant M such that, for each λ ∈ Σδ,r, the
following bound holds:

‖R(λ : L)‖ ≤ M

|λ− r|

where R(λ : L) = (λI−L)−1 and the norm is the usual one for bounded
linear operators in L1(α, β).

It is important to note that the semigroup generated by L is a C0-
semigroup if and only if the domain D(L) is dense in L1(α, β).

For inverting the operator λI − L we prove the existence of an
associate Green’s function G(x, s;λ), so we can express each resolvent
operator in the form

R(λ : L)f = −
∫ β

α

G(·, s;λ)f(s) ds, f ∈ L1(α, β).

As the Green’s function can be given explicitly, this provides us with
suitable formulae for bounding R(λ : L). The bounds on the resolvent
needed for assuring the generation of analytic semigroups will be
obtained for a certain class of boundary conditions that we will call
regular. The main result of the paper is Theorem 7.1, where we state
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the generation of analytic semigroups of analytic semigroups for regular
boundary conditions.

Similar constructions could be made in every space Lp(α, β), 1 ≤ p ≤
∞, but we do not arrive to such precise results as in the L1 case. We
will consider the Lp case in Section 8.

We give a brief outline of the paper. In Section 2 we introduce the
characteristic determinant ∆(λ), an entire function that characterizes
the spectrum of L, and the associated Green’s function G(x, s;λ); this
allows us to express each resolvent operator R(λ : L) in integral form.
Section 3 is devoted to give suitable formulae for ∆(λ) and G(x, s;λ)
that will be used in Section 4 for bounding R(λ : L). Here several cases
are considered which are analyzed in Section 5; this analysis leads to the
definition of regular boundary conditions. In the analysis of cases it is
necessary to impose additional regularity conditions on the coefficients
Ri and Si; in Section 6 we will see that this regularity can be relaxed.
In Section 7 we state the main result of the paper: for regular boundary
conditions the operator L generates an analytic semigroup in L1(α, β);
we also consider in this section some interesting examples. Finally, in
Section 8 we comment on some results in Lp(α, β).

2. Characteristic determinant and spectrum. Consider the
operator T given by Tu = u′′, with domain D(T ) = {u ∈ W 2,1(0, 1) :
B1(u) = B2(u) = 0}. As is well known (see [4], [7]), we can restrict
ourselves to the study of the resolvent of T without loss of generality.

Consider the problem

(2.1)
{
u′′ − λu = f in (0, 1)
B1(u) = B2(u) = 0

with f ∈ L1(0, 1) and λ ∈ C. Let {u1, u2} be a fundamental system
of solutions of the equation u′′ − λu = 0. We define the characteristic
determinant ∆(λ) to be

(2.2) ∆(λ) =
∣∣∣∣B1(u1) B1(u2)
B2(u1) B2(u2)

∣∣∣∣ .
It is straightforward to prove that the spectrum of T is given by

σ(T ) = {λ ∈ C : ∆(λ) = 0}
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and this does not depend on the fundamental system chosen for con-
structing ∆(λ).

As ∆(λ) is an entire function, the spectrum of T will be at much
a denumerable set without finite accumulation points. As we are
interested in the case for which the resolvent is not void, we will
consider only the cases for which ∆(λ) is not identically zero. This can
be interpreted as a kind of independence of the boundary conditions
B1(u) = 0 and B2(u) = 0.

Let λ ∈ C be such that ∆(λ) 	= 0 and consider the function
N : [0, 1]× [0, 1] → C defined as

(2.3) N(x, s;λ) =

∣∣∣∣∣∣
u1(x) u2(x) g(x, s;λ)
B1(u1) B1(u2) B1(g)x
B2(u1) B2(u2) B2(g)x

∣∣∣∣∣∣
(the notation Bi(g)x means that the boundary form Bi is applied to
g(x, s;λ) on the x variable). The function g(x, s;λ) is defined as

(2.4) g(x, s;λ) = ± 1
2
u1(x)u2(s)− u1(s)u2(x)
u′

1(s)u2(s)− u1(s)u′
2(s)

where it takes the plus sign for x > s and the minus sign for x < s.

The above formulae are based on those of [1] for the case of non-
separated boundary conditions. It is not difficult to prove that

(2.5) G(x, s;λ) =
N(x, s;λ)

∆(λ)

is the Green’s function for problem (2.1). Thus, for λ ∈ ρ(T ) we can
express the resolvent operator R(λ : T ) as a Hilbert-Schmidt one, as
follows:

(2.6) R(λ : T )f = −
∫ 1

0

G(·, s;λ)f(s) ds, f ∈ L1(0, 1).

3. Analysis of ∆(λ) and N(x, s;λ). Given an arbitrary δ ∈
(π/2, π), define the sector Σδ = {λ ∈ C : |arg (λ)| < δ, λ 	= 0}. For
λ ∈ Σδ, let ρ ∈ Σδ/2 be the square root of λ with positive real part. A
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fundamental system of solutions of u′′−λu = 0 is given by the functions
u1(x) = exp(−ρx) and u2(x) = exp(ρx).

Evaluating the boundary forms Bi in the functions uj , we obtain, for
i, j = 1, 2, the following expression:

Bi(uj) = ai + (−1)jbiρ+ ci exp[(−1)jρ] + (−1)jdiρ exp[(−1)jρ]

+
∫ 1

0

Ri(t) exp[(−1)jρt] dt+ (−1)jρ
∫ 1

0

Si(t) exp[(−1)jρt] dt.

Next we substitute the above formula in (2.2). For avoiding compli-
cated formulae we introduce the numbers

Γxy = x1y2 − x2y1

and the functions

ΓxF (t) = x1F2(t)− x2F1(t),

where x, y ∈ {a, b, c, d} and F,G ∈ {R,S}. We also define

ΓR(t, ξ) = R1(t)R2(ξ)−R1(ξ)R2(t), ΓS(t, ξ) = S1(t)S2(ξ)−S1(ξ)S2(t)

and
ΓRS(t, ξ) = R1(t)S2(ξ)−R2(t)S1(ξ).

Thus, after a straightforward but long calculation we obtain from (2.2)
the following formula:

(3.1)

∆(λ) = 2(Γab + Γcd)ρ
+ (−Γbdρ

2 + (Γad − Γbc)ρ+ Γac)eρ

+ (Γbdρ
2 + (Γad − Γbc)ρ− Γac)e−ρ

+ ρ2

∫ 1

0

(−ΓbS(t) + ΓdS(1− t))(eρt − e−ρt) dt

+ ρ

∫ 1

0

(ΓaS(t) + ΓcS(1− t)− Γ)bR(t)

− ΓdR(1− t))(eρt + e−ρt) dt

+
∫ 1

0

(ΓaR(t)− ΓcR(1− t))(eρt − e−ρt) dt

+
∫ 1

0

∫ 1

0

(ΓS(t, ξ)ρ2 + (ΓRS(t, ξ)

+ ΓRS(ξ, t))ρ+ ΓR(t, ξ))eρ(ξ−t) dξ dt.
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Formula (2.4) can be written as

g(x, s;λ) =




eρ(x−s) − eρ(s−x)

4ρ
if x > s

eρ(s−x) − eρ(x−s)

4ρ
if x < s.

Thus, for i = 1, 2, we have

Bi(g)x

= (ai − biρ− cie
−ρ + diρe

−ρ)
eρs

4ρ
+ (−ai − biρ+ cie

ρ + diρe
ρ)

e−ρs

4ρ

+
( ∫ s

0

(Ri(t)− ρSi(t)
)
e−ρt dt +

∫ 1

s

(−Ri(t) + ρSi(t))e−ρt dt)
eρs

4ρ

+
(
−

∫ s

0

(Ri(t) + ρSi(t)
)
eρt dt +

∫ 1

s

(Ri(t) + ρSi(t))eρt dt)
e−ρs

4ρ
.

Substituting in (2.3) the expressions obtained for Bi(uj) and Bi(g)x,
we have

N(x, s;λ)

(3.2)

= ϕ(x, s;λ) +
eρ(x+s)

2ρ

[
(Γbdρ

2 − (Γad + Γbc)ρ+ Γac)e−ρ

+
∫ 1

s

(ΓbS(t)ρ2 − (ΓaS(t) + ΓbR(t))ρ+ ΓaR(t))e−ρt dt

+
∫ s

0

(−ΓdS(t)ρ2 + (ΓcS(t) + ΓdR(t))ρ− ΓcR(t))e−ρ(t+1) dt

+
∫ s

0

∫ 1

s

(ΓS(t, ξ)ρ2+(ΓRS(ξ, t)−ΓRS(t, ξ))ρ+ΓR(t, ξ))e−ρ(t+ξ) dξ dt

]

+
e−ρ(x+s)

2ρ

[
(Γbdρ

2 + (Γad + Γbc)ρ+ Γac)eρ

+
∫ 1

s

(ΓbS(t)ρ2 + (ΓaS(t) + ΓbR(t))ρ+ ΓaR(t))eρt dt
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+
∫ s

0

−(ΓdS(t)ρ2 + (ΓcS(t) + ΓdR(t))ρ+ ΓcR(t))eρ(t+1) dt

+
∫ s

0

∫ 1

s

(ΓS(t, ξ)ρ2+(ΓRS(t, ξ)−ΓRS(ξ, t))ρ+ΓR(t, ξ))eρ(t+ξ) dξ dt

]

where

(3.3) ϕ(x, s;λ) =
{
ϕ1(x, s;λ) if x > s

ϕ2(x, s;λ) if x < s.

The functions ϕ1(x, s;λ) and ϕ2(x, s;λ) are defined as

ϕ1(x, s;λ) =
eρ(x−s)

2ρ

[
(Γbdρ

2 + (Γad − Γbc)ρ− Γac)e−ρ + 2Γabρ

+
∫ 1

0

(ΓbS(t)ρ2 + (ΓaS(t)− ΓbR(t))ρ− ΓaR(t))e−ρt dt

+
∫ s

0

(−ΓbS(t)ρ2 + (ΓaS(t)− ΓbR(t))ρ+ ΓaR(t))eρt dt

+
∫ s

0

(−ΓdS(t)ρ2+(ΓcS(t)−ΓdR(t))ρ+ΓcR(t))eρ(t−1) dt

+
∫ 1

0

∫ s

0

(−ΓS(t, ξ)ρ2 + (ΓRS(t, ξ)

+ ΓRS(ξ, t))ρ+ ΓR(t, ξ))eρ(ξ−t) dξ dt

]

+
eρ(s−x)

2ρ

[
(Γbdρ

2+(−Γad+Γbc)ρ−Γac)eρ+2Γabρ

+
∫ 1

0

(ΓbS(t)ρ2+(−ΓaS(t)+ΓbR(t))ρ−ΓaR(t))eρt dt

+
∫ s

0

(−ΓbS(t)ρ2+(−ΓaS(t)+ΓbR(t))ρ+ΓaR(t))e−ρt dt

+
∫ s

0

(−ΓdS(t)ρ2+(−ΓcS(t)+ΓdR(t))ρ+ΓcR(t))eρ(1−t) dt

+
∫ 1

0

∫ s

0

(−ΓS(t, ξ)ρ2 − (ΓRS(t, ξ) + ΓRS(ξ, t))ρ

+ ΓR(t, ξ))eρ(t−ξ) dξ dt

]
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and

ϕ2(x, s;λ)

=
eρ(x−s)

2ρ

[
(Γbdρ

2 + (−Γad + Γbc)ρ− Γac)eρ − 2Γcdρ

+
∫ 1

0

(−ΓdS(t)ρ2 + (−ΓcS(t) + ΓdR(t))ρ+ ΓcR(t))eρ(1−t) dt

+
∫ 1

s

(ΓbS(t)ρ2 + (−ΓaS(t) + ΓbR(t))ρ− ΓaR(t))eρt dt

+
∫ 1

s

(ΓdS(t)ρ2 + (−ΓcS(t) + ΓdR(t))ρ− ΓcR(t))eρ(t−1) dt

+
∫ 1

0

∫ 1

s

(ΓS(t, ξ)ρ2−(ΓRS(t, ξ)+ΓRS(ξ, t))ρ−ΓR(t, ξ))eρ(ξ−t) dξ dt

]

+
eρ(s−x)

2ρ

[
(Γbdρ

2 + (Γad − Γbc)ρ− Γac)e−ρ + 2Γcdρ

+
∫ 1

0

(−ΓdS(t)ρ2 + (ΓcS(t)− ΓdR(t))ρ+ ΓcR(t))eρ(t−1) dt

+
∫ 1

s

(ΓbS(t)ρ2 + (ΓaS(t)− ΓbR(t))ρ− ΓaR(t))e−ρt dt

+
∫ 1

s

(ΓdS(t)ρ2 + (ΓcS(t)− ΓdR(t))ρ− ΓcR(t))eρ(1−t) dt

+
∫ 1

0

∫ 1

s

(ΓS(t, ξ)ρ2+(ΓRS(t, ξ)+ΓRS(ξ, t))ρ−ΓR(t, ξ))eρ(t−ξ) dξ dt

]
.

In the following we are going to bound |N(x, s;λ)| from (3.2) (3.3).
For the sake of simplicity we will denote with the same symbol ‖ · ‖ the
supremum norm in one and two variables, so

‖F (t)‖ = sup{|F (t)| : 0 ≤ t ≤ 1},
‖F (t, ξ)‖ = sup{|F (t, ξ)| : 0 ≤ t, ξ ≤ 1}.

Also, let �(ρ) denote the real part of ρ. As ρ ∈ Σδ/2, then �(ρ) > 0.
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Using the triangle inequality and performing the resulting integrals,
we obtain

|N(x, s;λ)|
(3.4)

≤ |ϕ(x, s;λ)|+ ex�(ρ)

2|ρ|
[
(|Γbd||ρ|2 + |Γad + Γbc||ρ|+ |Γac|)e(s−1)�(ρ)

+ (‖ΓbS‖|ρ|2 + ‖ΓaS + ΓbR‖|ρ|+ ‖ΓaR‖) 1− e(s−1)�(ρ)

�(ρ)

+ (‖ΓdS‖|ρ|2 + ‖ΓcS + ΓdR‖|ρ|+ ‖ΓcR‖) e
(s−1)�(ρ) − e−�(ρ)

�(ρ)

+ (‖ΓS‖|ρ|2 + 2‖ΓRS‖|ρ|+ ‖ΓR‖) 1− e(s−1)�(ρ)− e−s�(ρ)+ e−�(ρ)

�(ρ)2

]

+
e−x�(ρ)

2|ρ|
[
(|Γbd||ρ|2 + |Γad + Γbc||ρ|+ |Γac|)e(1−s)�(ρ)

+ (‖ΓbS‖|ρ|2 + ‖ΓaS + ΓbR‖|ρ|+ ‖ΓaR‖) e
(1−s)�(ρ) − 1

�(ρ)

+ (‖ΓdS‖|ρ|2 + ‖ΓcS + ΓdR‖|ρ|+ ‖ΓcR‖) e
�(ρ)−e(1−s)�(ρ)

�(ρ)

+ (‖ΓS‖|ρ|2 + 2‖ΓRS‖|ρ|+ ‖ΓR‖) 1− e(1−s)�(ρ)−es�(ρ)+e�(ρ)

�(ρ)2

]
.

From (3.3) we have

(3.5) |ϕ(x, s;λ)| =
{ |ϕ1(x, s;λ)| if x > s

|ϕ2(x, s;λ)| if x < s

where

|ϕ1(x, s;λ)|
(3.6)

≤ ex�(ρ)

2|ρ|
[
(|Γbd||ρ|2+|Γad−Γbc||ρ|+|Γac|)e−(s+1)�(ρ)+2|Γab||ρ|e−s�(ρ)

+ (‖ΓbS‖|ρ|2 + ‖ΓaS − ΓbR‖|ρ|+ ‖ΓaR||) 1− e−(s+1)�(ρ)

�(ρ)
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+ (‖ΓdS‖|ρ|2+‖ΓcS−ΓdR‖|ρ|+‖ΓcR‖) e
−�(ρ)− e−(s+1)�(ρ)

�(ρ)

+(‖ΓS‖|ρ|2+2‖ΓRS‖|ρ|+‖ΓR‖) 1−e−�(ρ)+e−(s+1)�(ρ)−e−s�(ρ)

�(ρ)2

]

+
e−x�(ρ)

2|ρ|
[
(|Γbd||ρ|2+|Γad+Γbc||ρ|+Γac|)e(s+1)�(ρ)

+2|Γab||ρ|es�(ρ)+(‖ΓbS‖|ρ|2+‖ΓaS−ΓbR‖|ρ|+‖ΓaR‖) e
(s+1)�(ρ)−1

�(ρ)

+(‖ΓdS‖|ρ|2+‖ΓcS−ΓdR‖|ρ|+‖ΓcR‖) e
(s+1)�(ρ)−e�(ρ)

�(ρ)

+(‖ΓS‖|ρ|2+2‖ΓRS‖|ρ|+‖ΓR‖) 1+e(s+1)�(ρ)−es�(ρ)−e�(ρ)

�(ρ)2

]
.

and

|ϕ2(x, s;λ)|
(3.7)

≤ ex�(ρ)

2|ρ|
[
(|Γbd||ρ|2 + |Γad − Γbc||ρ|+ |Γac|)e(1−s)�(ρ)+ 2|Γcd||ρ|e−s�(ρ)

+ (‖ΓbS‖|ρ|2 + ‖ΓaS − ΓbR‖|ρ|+ ‖ΓaR‖) e
(1−s)�(ρ) − 1

�(ρ)

+ (‖ΓdS‖|ρ|2 + ‖ΓcS − ΓdR‖|ρ|+ ‖ΓcR‖) e
(1−s)�(ρ) − e−�(ρ)

�(ρ)

+ (‖ΓS‖|ρ|2 + 2‖ΓRS‖|ρ|+ ‖ΓR‖)e
(1−s)�(ρ)−e−s�(ρ)+e−�(ρ)− 1

�(ρ)2

]

+
e−x�(ρ)

2|ρ|
[
(|Γbd||ρ|2+|Γad+Γbc||ρ|+|Γac|)e(s−1)�(ρ)+2|Γcd||ρ|es�(ρ)

+ (‖ΓbS‖|ρ|2 + ‖ΓaS − ΓbR‖|ρ|+ ‖ΓaR‖) 1− e(s−1)�(ρ)

�(ρ)

+ (‖ΓdS‖|ρ|2 + ‖ΓcS − ΓdR‖|ρ|+ ‖ΓcR‖) e
�(ρ) − e(s−1)�(ρ)

�(ρ)

+ (‖ΓS‖|ρ|2 + 2‖ΓRS‖|ρ|+ ‖ΓR‖) e
�(ρ) − es�(ρ) + e(s−1)�(ρ) − 1

�(ρ)2

]
.
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4. Bounds in L1(0, 1). Take an arbitrary 0 	= f ∈ L1(0, 1) and
suppose that ∆(λ) 	= 0. From (2.6) we have

‖R(λ : T )f‖L1(0,1) ≤
(

sup
0≤s≤1

∫ 1

0

|G(x, s;λ)| dx
)
‖f‖L1(0,1)

so
(4.1)

‖R(λ : T )‖ ≤ sup
0≤s≤1

∫ 1

0

|G(x, s;λ)| dx =
1

|∆(λ)| sup
0≤s≤1

∫ 1

0

|N(x, s;λ)| dx.

It will then be necessary to bound
∫ 1

0
|N(x, s;λ)| dx appropriately.

From (3.4) we obtain, after performing the integrals, the following
inequality:

∫ 1

0

|N(x, s;λ)| dx ≤
∫ 1

0

|ϕ(x, s;λ)| dx

+
1

|ρ|�(ρ)

[
(Γbd||ρ|2 + |Γad + Γbc||ρ|+ |Γac|)

· (sinh[s�(ρ)] + sinh[(1− s)�(ρ)])

+ (‖ΓbS‖|ρ|2 + ‖ΓaS + ΓbR‖|ρ|+ ‖ΓaR‖)

· cosh[�(ρ)]− cosh[s�(ρ)] + cosh[(1− s)�(ρ)]− 2
�(ρ)

+ (‖ΓdS‖|ρ|2 + ‖ΓcS + ΓdR‖|ρ|+ ‖ΓcR‖)

· cosh[�(ρ)] + cosh[s�(ρ)]− cosh[(1− s)�(ρ)]− 2
�(ρ)

+ 2(‖ΓS‖|ρ|2 + 2‖ΓRS‖|ρ|+ ‖ΓR‖)

· sinh[�(ρ)]− sinh[s�(ρ)]− sinh[(1− s)�(ρ)]
�(ρ)2

]
.

In order to evaluate
∫ 1

0
|ϕ(x, s;λ)| dx, from (3.5) we write

∫ 1

0

|ϕ(x, s;λ)| dx =
∫ s

0

|ϕ2(x, s;λ)| dx+
∫ 1

s

|ϕ1(x, s;λ)| dx.
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From (3.7) and (3.6) we have, respectively,

∫ s

0

|ϕ2(x, s;λ)| dx

≤ 1
|ρ|�(ρ)

[
2|Γcd||ρ| sinh[s�(ρ)]

+ (|Γbd||ρ|2 + |Γad − Γbc||ρ|+ |Γac|)
· (sinh[�(ρ)]− sinh[(1− s)�(ρ)])
+ (‖ΓbS‖|ρ|2 + ‖ΓaS − ΓbR‖|ρ|+ ‖ΓaR‖)

· cosh[�(ρ)]− cosh[s�(ρ)]− cosh[(1− s)�(ρ)] + 2
�(ρ)

+ 2(‖ΓdS‖|ρ|2 + ‖ΓcS − ΓdR‖|ρ|+ ‖ΓcR‖)

· cosh[�(ρ)]− cosh[(1− s)�(ρ)]
�(ρ)

+ 2(‖ΓS‖|ρ|2 + 2‖ΓRS‖|ρ|+ ‖ΓR‖)

· sinh[�(ρ)]− sinh[s�(ρ)]− sinh[(1− s)�(ρ)]
�(ρ)2

]
and ∫ 1

s

|ϕ1(x, s;λ)| dx

≤ 1
|ρ|�(ρ)

[
2|Γab||ρ| sinh[(1− s)�(ρ)]

+ (|Γbd||ρ|2 + |Γad − Γbc||ρ|+ |Γac|)
· (sinh[�(ρ)]− sinh[s�(ρ)])
+ 2(‖ΓbS‖|ρ|2 + ‖ΓaS − ΓbR‖|ρ|+ ‖ΓaR‖)

· cosh[�(ρ)]− cosh[s�(ρ)]
�(ρ)

+ (‖ΓdS‖|ρ|2 + ‖ΓcS − ΓdR‖|ρ|+ ‖ΓcR‖)

· cosh[�(ρ)]− cosh[s�(ρ)]− cosh[(1− s)�(ρ)] + 2
�(ρ)

+ 2(‖ΓS‖|ρ|2 + 2‖ΓRS‖|ρ|+ ‖ΓR‖)

· sinh[�(ρ)]− sinh[s�(ρ)]− sinh[(1− s)�(ρ)]
�(ρ)2

]
.
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Adding up the inequalities above, we get∫ 1

0

|N(x, s;λ)| dx

≤ 2
|ρ|�(ρ)

[
(|Γbd‖|ρ|2+(|Γad|+|Γbc|)|ρ|+|Γac|) sinh[�(ρ)]

+ |Γab||ρ| sinh[(1− s)�(ρ)] + |Γcd||ρ| sinh[s�(ρ)]
+ 2(‖ΓbS‖|ρ|2 + (‖ΓaS‖+ ‖ΓbR‖)|ρ|+ ‖ΓaR‖)
· cosh[�(ρ)]− cosh[s�(ρ)]

�(ρ)
+ 2(‖ΓdS‖|ρ|2 + (‖ΓcS‖+ ‖ΓdR‖)|ρ|+ ‖ΓcR‖)
· cosh[�(ρ)]− cosh[(1− s)�(ρ)]

�(ρ)
+ 3(‖ΓS‖|ρ|2 + 2‖ΓRS‖|ρ|+ ‖ΓR‖)
· sinh[�(ρ)]− sinh[s�(ρ)]− sinh[(1− s)�(ρ)]

�(ρ)2

]
.

Note that, as ρ ∈ Σδ/2, we have �(ρ) ≥ cos(δ/2)|ρ|. Then, taking the
supremum and eliminating the negative terms, we obtain the following
inequality:

sup
0≤s≤1

∫ 1

0

|N(x, s;λ)| dx

≤ e�(ρ)

cos(δ/2)|ρ|2 (|Γbd||ρ|2 + (|Γab|+ |Γad|+ |Γbc|+ |Γcd|)|ρ|+ |Γac|)

+
2e�(ρ)

cos2(δ/2)|ρ|3
[
(‖ΓbS‖+ ‖ΓdS‖)|ρ|2

+ (‖ΓaS‖+‖ΓbR‖+ ‖ΓcS‖+ ‖ΓdR‖)|ρ|+ ‖ΓaR‖+ ‖ΓcR‖
]

+
3e�(ρ)

cos3(δ/2)|ρ|4 (‖ΓS‖|ρ|2 + 2‖ΓRS‖|ρ|+ ‖ΓR‖).

Takingm := max[(1/ cos(δ/2)), (2/ cos2(δ/2)), (3/ cos3(δ/2))] and, group-
ing the terms of the same order, we finally obtain

(4.2) sup
0≤s≤1

∫ 1

0

|G(x, s;λ)| dx ≤ m
H(ρ)
|ρ|2 = m

H(ρ)
|λ|
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where
(4.3)

H(ρ) =
e�(ρ)

|∆(λ)|
[
|Γbd||ρ|2 + (|Γab|+|Γad|+|Γbc|+|Γcd|+‖ΓbS‖+‖ΓdS‖)

· |ρ|+ (|Γac|+ ‖ΓaS‖+ ‖ΓbR‖+ ‖ΓcS‖+ ‖ΓdR‖+ ‖ΓS‖)

+
‖ΓaR‖+ ‖ΓcR‖+ 2‖ΓRS‖

|ρ| +
‖ΓR‖
|ρ|2

]
.

Now we must analyze the function H(ρ) in order to determine the cases
for which it is bounded in the sector Σδ/2.

It will be convenient to write the formula (3.1) for the characteristic
determinant in a slightly different form, as follows:
(4.4)

∆(λ) = eρ

[
(−Γbdρ

2 + (Γad − Γbc)ρ+ Γac)

+ (Γbdρ
2 + (Γad − Γbc)ρ− Γac)e−2ρ + 2(Γab + Γcd)ρe−ρ

+ ρ2

∫ 1

0

(−ΓbS(t) + ΓdS(1− t))(eρ(t−1) − e−ρ(t+1)) dt

+ ρ

∫ 1

0

(ΓaS(t) + ΓcS(1− t)− ΓbR(t)

− ΓdR(1− t))(eρ(t−1) + e−ρ(t+1)) dt

+
∫ 1

0

(ΓaR(t)− ΓcR(1− t))(eρ(t−1) − e−ρ(t+1)) dt

+
∫ 1

0

∫ 1

0

(ΓS(t, ξ)ρ2 + (ΓRS(t, ξ) + ΓRS(ξ, t))ρ

+ ΓR(t, ξ))eρ(ξ−t−1) dξ dt

]
.

Note that the second line in the above formula can be made arbitrarily
small for |ρ| sufficiently large. We can then choose r0 large enough so
that for

(4.5) |(Γbdρ
2 + (Γad − Γbc)ρ− Γac)e−2ρ + 2(Γab + Γcd)ρe−ρ| < 1

|ρ|2

holds for every ρ ∈ Σδ/2 with |ρ| > r0.
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It will also be necessary to know how the integral terms depend on
ρ. Using that �(ρ) ≥ cos(δ/2)|ρ|, it is easy to see that

(4.6a)
∣∣∣∣ρ2

∫ 1

0

(−ΓbS(t) + ΓdS(1−t))(eρ(t−1) − e−ρ(t+1)) dt
∣∣∣∣

≤ ‖ΓbS‖+ ‖ΓdS‖
cos(δ/2)

|ρ|,

(4.6b)∣∣∣∣ρ
∫ 1

0

(ΓaS(t) + ΓcS(1−t)− ΓbR(t)− ΓdR(1− t))(eρ(t−1) + e−ρ(t+1)) dt
∣∣∣∣

≤ ‖ΓbR‖+ ‖ΓdR‖+ ‖ΓaS‖+ ‖ΓcS‖
cos(δ/2)

,

(4.6c)
∣∣∣∣
∫ 1

0

(ΓaR(t)− ΓcR(1−t))(eρ(t−1) − e−ρ(t+1)) dt
∣∣∣∣

≤ ‖ΓaR‖+ ‖ΓcR‖
cos(δ/2)|ρ| ,

(4.6d)
∣∣∣∣
∫ 1

0

∫ 1

0

(ΓS(t, ξ)ρ2 + (ΓRS(t, ξ) + ΓRS(ξ, t))ρ+ ΓR(t, ξ))

eρ(ξ−t−1) dξ dt

∣∣∣∣
≤ 1

cos2(δ/2)

(
‖ΓS‖+ 2

‖ΓRS‖
|ρ| +

‖ΓR‖
|ρ|2

)
.

5. Analysis of cases. We are now ready to analyze the function
H(ρ). In the following E(ρ) will denote a bounded function of ρ that
could differ from one case to another.

Case 1. Suppose that Γbd 	= 0. From (4.4) we can write the
characteristic determinant as

∆(λ) = Γbdρ
2eρ(−1 + E(ρ))
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for a certain function E(ρ). Using (4.5) (4.6), we see that E(ρ) can be
bounded as

|E(ρ)| ≤ |Γad − Γbc|
|Γbd|ρ| +

|Γac|
|Γbd||ρ|2 +

1
|Γbd||ρ|4 +

‖ΓbS‖+ ‖ΓdS‖
cos(δ/2)|Γbd||ρ|

+ (‖ΓbR‖+ ‖ΓdR‖+ ‖ΓaS‖+ ‖ΓcS‖) 1
cos(δ/2)|Γbd||ρ|2

+
‖ΓaR‖+ ‖ΓcR‖
cos(δ/2)|Γbd||ρ|3

+
(‖ΓS‖

|ρ|2 + 2
‖ΓRS‖
|ρ|3 +

‖ΓR‖
|ρ|4

)
1

cos2(δ/2)|Γbd|

so we can choose r0 sufficiently large for |E(ρ)| ≤ 1/2 if |ρ| > r0. Thus,
for ρ ∈ r0 +Σδ/2, we have

|∆(λ)| ≥ |Γbd||ρ|2e�(ρ)(1− |E(ρ)|) ≥ |Γbd|
2

|ρ|2e�(ρ).

Finally, from (4.3) we obtain

H(ρ) ≤ 2
|Γbd|

[
1+r−1

0 (|Γab|+|Γad|+|Γbc|+|Γcd|+‖ΓbS‖+‖ΓdS‖)

+ r−2
0 (|Γac|+ ‖ΓaS‖+ ‖ΓbR‖+ ‖ΓcS‖+ ‖ΓdR‖+ ‖ΓS‖)

+ r−3
0 (‖ΓaR‖+ ‖ΓcR‖+ 2‖ΓRS‖) + r−4

0 ‖ΓR‖
]
=: H0

which proves that H(ρ) is bounded by a constant H0 in the sector
r0 +Σδ/2.

From now on, we will suppose that Γbd = 0; then, the dominant term
in H(ρ) will be |Γab|+ |Γad|+ |Γbc|+ |Γcd|+ ‖ΓbS‖+ ‖ΓdS‖.

Case 2. Suppose that |Γab|+ |Γad|+ |Γbc|+ |Γcd|+‖ΓbS‖+‖ΓdS‖ 	= 0.
Taking into account (4.4) and (4.6a), we see that the dominant term
in ∆(λ) is

(Γad − Γbc)ρ+ ρ2

∫ 1

0

∫ 1

0

(−ΓbS(t) + ΓdS(1− t))(eρ(t−1) − e−ρ(t+1)) dt.
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In order to get appropriate bounds, we should give the above term
a more suitable form. For doing that we suppose that S1, S2 ∈
C1([0, 1];C) (eventually, we will see that this will not rest generality to
our results) and perform an integration by parts. Then the above term
can be written as

ρ

[
(Γad − Γbc − ΓbS(1) + ΓdS(0)) + (ΓdS(0)− ΓbS(1))e−2ρ

+ 2(ΓbS(0)− ΓdS(1))e−ρ +
∫ 1

0

(ΓbS′(t)(t) + ΓdS′(1−t))

· (eρ(t−1) + e−ρ(t+1)) dt
]
.

If m0 := max(‖S1‖∞, ‖S2‖∞) and r0 is large enough, we have for
|ρ| > r0 that

∣∣∣∣(Γad−Γbc)ρ+ρ2

∫ 1

0

∫ 1

0

(−ΓbS(t)+ΓdS(1−t))(eρ(t−1)−e−ρ(t+1)) dt
∣∣∣∣

≤ |ρ|
(
|Γad− Γbc− ΓbS(1)+ ΓdS(0)|+ 1

|ρ|2 +
m0

cos(δ/2)|ρ|
)
.

We have two subcases to consider.

Case 2.1. Γad − Γbc − ΓbS(1) + ΓdS(0) 	= 0. For |ρ| > r0 we have

|∆(λ)| ≥ |ρ|e�(ρ)(|Γad − Γbc − ΓbS(1) + ΓdS(0)| − |E(ρ)|)

where

|E(ρ)| ≤ 2
|ρ|2 +

|Γac|
|ρ| +

m0 + ‖ΓbR‖+ ‖ΓdR‖+ ‖ΓaS‖+ ‖ΓcS‖
cos(δ/2)|ρ|

+
‖ΓaR‖+ ‖ΓcR‖
cos(δ/2)|ρ|2 +

1
cos2(δ/2)

(‖ΓS‖
|ρ| + 2

‖ΓRS‖
|ρ|2 +

‖ΓR‖
|ρ|3

)
.

This last term can be done less than 1
2 |Γad −Γbc −ΓbS(1)+ΓdS(0)| by

choosing r0 large enough. Thus, we have for |ρ| > r0 that

|∆(λ)| ≥ |ρ|
2

e�(ρ)|Γad − Γbc − ΓbS(1) + ΓdS(0)|
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so

H(ρ) ≤ 2
|Γad − Γbc − ΓbS(1) + ΓdS(0)|
· [|Γab|+ |Γad|+ |Γbc|+ |Γcd|+ ‖ΓbS‖+ ‖ΓdS‖
+ r−1

0 (|Γac|+ ‖ΓbR‖+ ‖ΓdR‖+ ‖ΓaS‖+ ‖ΓcS‖+ ‖ΓS‖)
+ r−2

0 (‖ΓaR‖+ ‖ΓcR‖+ 2‖ΓRS‖) + r−3
0 ‖ΓR‖r3

0

]
=: H0.

This shows that H(ρ) is bounded in r0 +Σδ/2.

Case 2.2. Γad − Γbc − ΓbS(1) + ΓdS(0) = 0. Note that

|∆(λ)| ≤ e�(ρ)|ρE(ρ)|

where E(ρ) is the same function as in Case 2.1, and |ρE(ρ)| can be
bounded by a certain constant c0 > 0. Thus, we have

H(ρ) ≥ c−1
0

[
(|Γab|+ |Γad|+ |Γbc|+ |Γcd|+ ‖ΓbS‖+ ‖ΓdS‖)|ρ|

+ (|Γac|+ ‖ΓbR‖+ ‖ΓdR‖+ ‖ΓaS‖+ ‖ΓcS‖+ ‖ΓS‖)
+

‖ΓaR‖+ ‖ΓcR‖+ 2‖ΓRS‖
|ρ| +

‖ΓR‖
|ρ|2

]

which shows that H(ρ) is not bounded.

In the following we will suppose that Γab = Γad = Γbc = Γbd = Γcd =
0, ΓbS ≡ 0 and ΓdS ≡ 0. Now the behavior of H(ρ) depends on the
coefficient |Γac|+ ‖ΓbR‖+ ‖ΓdR‖+ ‖ΓaS‖+ ‖ΓcS‖+ ‖ΓS‖.

Case 3. Suppose that |Γac|+‖ΓbR‖+‖ΓdR‖+‖ΓaS‖+‖ΓcS‖+‖ΓS‖ 	=
0. Now the dominant term in ∆(λ) is

Γac + ρ

∫ 1

0

(ΓaS(t) + ΓcS(1− t)− ΓbR(t)− ΓdR(1− t))

· (eρ(t−1) + e−ρ(t+1)) dt+ ρ2

∫ 1

0

∫ 1

0

ΓS(t, ξ)eρ(ξ−t−1) dξ dt.
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As in Case 2, we must give to this term a more suitable form. Supposing
that also R1 and R2 are in C1([0, 1];C) and performing an integration
by parts, we can write the expression above in the following form:

Γac + ΓaS(1) + ΓcS(0)− ΓbR(1)− ΓdR(0) + ΓS(0, 1) +
Ẽ(ρ)
ρ

where Ẽ(ρ) is a bounded function. We can rewrite the characteristic
determinant as

∆(λ) = eρ

(
Γac+ΓaS(1)+ΓcS(0)−ΓbR(1)−ΓdR(0)+ΓS(0, 1)+

E(ρ)
ρ

)

with E(ρ) another bounded function. We must distinguish two sub-
cases.

Case 3.1. Γac + ΓaS(1) + ΓcS(0) − ΓbR(1) − ΓdR(0) + ΓS(0, 1) 	= 0.
Choosing |ρ| > r0 large enough so that∣∣∣∣E(ρ)

ρ

∣∣∣∣ ≤ 1
2
|Γac+ ΓaS(1)+ ΓcS(0)− ΓbR(1)− ΓdR(0)+ ΓS(0, 1)|

we have

|∆(λ)| ≥ 1
2
|Γac + ΓaS(1) + ΓcS(0)− ΓbR(1)− ΓdR(0) + ΓS(0, 1)|e�(ρ).

This shows that H(ρ) is bounded.

Case 3.2. Γac + ΓaS(1) + ΓcS(0) − ΓbR(1) − ΓdR(0) + ΓS(0, 1) = 0.
We have that

|∆(λ)| = E(ρ)
|ρ| e�(ρ) ≤ c0

|ρ| e
�(ρ)

for a certain constant c0 > 0. Thus,

H(ρ) ≤ c−1
0

[
(|Γac|+ ‖ΓbR‖+ ‖ΓdR‖+ ‖ΓaS‖+ ‖ΓcS‖+ ‖ΓS‖)|ρ|

+ ‖ΓaR‖+ ‖ΓcR‖+ 2‖ΓRS‖+
‖ΓR‖
|ρ|

]
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so H(ρ) cannot be bounded.

From now on, we suppose that Γab = Γac = Γad = Γbc = Γbd = Γcd =
0, ΓbR ≡ 0, ΓdR ≡ 0, ΓaS ≡ 0, ΓcS ≡ 0, ΓbS ≡ 0, ΓdS ≡ 0 and ΓS ≡ 0.
Then H(ρ) and ∆(λ) can be written in simplified form as

H(ρ) =
e�(ρ)

|∆(λ)|
(‖ΓaR‖+ ‖ΓcR‖+ 2‖ΓRS‖

|ρ| +
‖ΓR‖
|ρ|2

)

and

∆(λ) = eρ

[ ∫ 1

0

(ΓaR(t)− ΓcR(1− t))(eρ(t−1) − e−ρ(t+1)) dt

+
∫ 1

0

∫ 1

0

((ΓRS(t, ξ) + ΓRS(ξ, t))ρ+ ΓR(t, ξ))eρ(ξ−t−1) dξ dt

]
.

Case 4. Suppose that ‖ΓaR‖+ ‖ΓcR‖+ 2‖ΓRS‖ 	= 0. The dominant
term in ∆(λ) is, in this case,∫ 1

0

(ΓaR(t)− ΓcR(1− t))(eρ(t−1) − e−ρ(t+1)) dt

+ ρ

∫ 1

0

∫ 1

0

(ΓRS(t, ξ) + ΓRS(ξ, t))eρ(ξ−t−1) dξ dt

that, after an integration by parts, can be written as

1
ρ
(ΓaR(1)− ΓcR(0) + ΓRS(0, 1) + ΓRS(1, 0)) +

Ẽ(ρ)
ρ2

where Ẽ(ρ) is bounded. Thus we have

∆(λ) =
eρ

ρ

(
ΓaR(1)− ΓcR(0) + ΓRS(0, 1) + ΓRS(1, 0) +

E(ρ)
ρ

)
.

We consider two subcases.

Case 4.1. ΓaR(1)−ΓcR(0)+ΓRS(0, 1)+ΓRS(1, 0) 	= 0. We can choose
r0 sufficiently large so that

|∆(λ)| ≥ e�(ρ)

2|ρ| |ΓaR(1)− ΓcR(0) + ΓRS(0, 1) + ΓRS(1, 0)|
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holds for |ρ| > r0, so

H(ρ) ≤ 2
‖ΓaR‖+ ‖ΓcR‖+ 2‖ΓRS‖+ ‖ΓR‖r−1

0

|ΓaR(1)− ΓcR(0) + ΓRS(0, 1) + ΓRS(1, 0)| =: H0

which shows that H(ρ) is bounded in the sector r0 +Σδ/2.

Case 4.2. ΓaR(1)−ΓcR(0)+ΓRS(0, 1)+ΓRS(1, 0) = 0. We have that

|∆(λ)| =
∣∣∣∣eρ

ρ2
E(ρ)

∣∣∣∣ ≤ c0
e�(ρ)

|ρ|2

for a certain constant c0 > 0. Thus,

H(ρ) ≥ |ρ|
r0

(
‖ΓaR‖+ ‖ΓcR‖+ 2‖ΓRS‖+

‖ΓR‖
|ρ|

)
.

This shows that H(ρ) is not bounded.

Finally, we also suppose that ΓaR ≡ 0, ΓcR ≡ 0 and ΓRS ≡ 0. Thus,

H(ρ) = ‖ΓR‖ e�(ρ)

|∆(λ)||ρ|2 , ∆(λ) =
∫ 1

0

∫ 1

0

ΓR(t, ξ)eρ(ξ−t) dξ dt.

Integrating by parts, the characteristic determinant can be written as

∆(λ) =
eρ

ρ2

(
ΓR(0, 1) +

E(ρ)
ρ

)

for a certain bounded function E(ρ).

Case 5. Suppose that ΓR(0, 1) 	= 0. Then it is possible to take r0
large enough so that

|∆(λ)| ≥ |ΓR(0, 1)| e
�(ρ)

2|ρ|2

holds for |ρ| > r0. Thus, H(ρ) can be bounded as

H(ρ) ≤ 2
‖ΓR‖

|ΓR(0, 1)| =: H0
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in the sector r0 +Σδ/2.

Case 6. Suppose that ΓR(0, 1) = 0. Then for some constant c0 > 0,
we have

|∆(λ)| =
∣∣∣∣eρ E(ρ)

ρ3

∣∣∣∣ ≤ c0
e�(ρ)

|ρ|3
so

H(ρ) ≥ c−1
0 ‖ΓR‖|ρ|.

This shows that H(ρ) is not bounded.

We have see that H(ρ) is bounded by a constant H0 > 0 in a sector of
the form r0 +Σδ/2, only in the following five cases: 1, 2.1, 3.1, 4.1 and
5. This leads to the following definition (note that some redundancies
have been avoided):

Definition 5.1. Suppose that Ri, Si ∈ C([0, 1];C) for i = 1, 2.
The boundary conditions {B1, B2} are regular if they verify one of the
following conditions:

1. Γbd 	= 0.

2. Γbd = 0 and Γad − Γbc − ΓbS(1) + ΓdS(0) 	= 0.

3. Γab = Γad = Γbc = Γbd = Γcd = 0, ΓbS ≡ 0, ΓdS ≡ 0 and

Γac + ΓaS(1) + ΓcS(0)− ΓbR(1)− ΓdR(0) + ΓS(0, 1) 	= 0.

4. Γab = Γac = Γad = Γbc = Γbd = Γcd = 0, ΓbR ≡ 0, ΓdR ≡ 0,
ΓaS ≡ 0, ΓbS ≡ 0, ΓcS ≡ 0, ΓdS ≡ 0, ΓS ≡ 0 and

ΓaR(1)− ΓcR(0) + ΓRS(0, 1) + ΓRS(1, 0) 	= 0.

5. ai = bi = ci = di = 0, Si ≡ 0 for i = 1, 2 and ΓR(0, 1) 	= 0.

It is not difficult to see that Definition 5.1 does not depend on possi-
ble elementary simplifications on the boundary conditions or possible
integrations by parts.

From (4.1) and (4.2), we deduce that, in the case of regular boundary
conditions with C1 coefficients, the sector r2

0 + Σδ is contained in
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ρ(T ) and there is a constant M0 := mH0 such that ‖R(λ : T )‖ ≤
(M0/|λ|) for every λ ∈ r2

0 + Σδ. Defining r := (r2
0/ sin(δ)) and

M := M0[1 + (1/ sin(δ))], we have that Σδ,r ≡ r +Σδ ⊂ ρ(T ) and

(5.1) ‖R(λ : T )‖ ≤ M

|λ− r| , λ ∈ Σδ,r.

As a consequence, in this case T is the generator of an analytic
semigroup of bounded linear operators in L1(0, 1); in general, this
semigroup will not be a C0-semigroup.

6. Approximation. At some point in the analysis of cases made in
the previous section, we needed to impose some regularity conditions
of the functions Ri and Si, specifically, that they were of class C1. In
this section we will show that it is sufficient with supposing continuity.
The idea is to use the well-known approximation results of Kato ([5],
Chapter 9).

Suppose that boundary conditions {B1, B2} are regular (note that
we only suppose Ri, Si ∈ C([0, 1];C) for i = 1, 2). We can build two
sequences {Rn

i } and {Sn
i } in C1([0, 1];C) such that

1. The sequences {Rn
i }, {Sn

i }, {(Rn
i )

′} and {(Sn
i )

′} are uniformly
bounded.

2. {Rn
i } and {Sn

i } converge uniformly to R and S, respectively.

3. Rn
i (0) = R(0), Rn

i (1) = R(1), Sn
i (0) = S(0) and Sn

i (1) = S(1) for
each n ∈ N. If Si ≡ 0 we take Sn

i ≡ 0, and the same for Ri.

For i = 1, 2, consider the boundary conditions

Bn
i (u) ≡ aiu(0) + biu

′(0) + ciu(1) + diu
′(1)

+
∫ 1

0

Rn
i (t)u(t) dt+

∫ 1

0

Sn
i (t)u

′(t) dt = 0

and let Tn be the associated operator in L1(0, 1), i.e.,

Tnu = u′′, D(Tn) = {u ∈ W 2,1(0, 1) : Bn
1 (u) = Bn

2 (u) = 0}.

It is clear for construction that {Bn
1 , B

n
2 } verify the same regularity

condition as {B1, B2}. Thus, there exist constants rn and Mn such that
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the sector Σδ,rn
is contained in ρ(Tn) and ‖(R(λ : Tn)‖ ≤ Mn/(|λ−rn|)

holds for every λ ∈ Σδ,rn
. From 1 3 and the analysis of cases made in

Section 5, it is not difficult to see that the constants rn and Mn can be
chosen in a uniform way. Thus we have constants r and M such that

(6.1) ‖R(λ : Tn)‖ ≤ M

|λ− r| , λ ∈ ρ(Tn) ⊂ Σδ,r, n ∈ N.

Let ∆n(λ) and ∆(λ) be the characteristic determinants associated to
Tn and T , respectively. As ∆(λ) has at most a denumerable number
of zeros, we can choose λ0 ∈ Σδ,r ⊂ ρ(Tn) such that ∆(λ0) 	= 0 so
λ0 ∈ ρ(T ).

Take an arbitrary f ∈ L1(0, 1). Then we have

‖R(λ0 : Tn)f −R(λ0 : T )f‖L1(0,1)

≤
(

sup
0≤s≤1

∫ 1

0

|G(x, s;λ0)−Gn(x, s;λ0)| dx
)
‖f‖L1(0,1)

where G(x, s;λ) and Gn(x, s;λ) are the Green’s functions associated to
T and Tn, respectively. Using formulae (2.2) (2.5), it is easy to see that
the right member in the above inequality goes to zero as n → ∞. This
proves that R(λ0 : Tn)f converges to R(λ : T )f in L1(0, 1) as n → ∞,
for every f ∈ L1(0, 1).

From [5], Chapter 9, we deduce that Σδ,r ⊂ ρ(T ) and R(λ : Tn)
converges to R(λ : T ) strongly in L1(0, 1) as n → ∞, for every λ ∈ Σδ,r.
This implies that (6.1) holds for the operator T .

We can resume this section with the following result:

Proposition 6.1. Suppose that the boundary conditions {B1, B2}
are regular. Fix an arbitrary δ ∈ (π/2, π). Then there exist constants
r ∈ R and M ≥ 0 such that the sector Σδ,r is contained in ρ(T ) and
the following bound holds:

‖R(λ : T )‖ ≤ M

|λ− r|
for every λ ∈ Σδ,r. As a consequence, the operator T generates an
analytic semigroup of bounded linear operators in L1(0, 1).
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7. Generation of analytic semigroups. As we commented in
Section 2, it is possible to extend Proposition 6.1 to the more general
operator L by means of some standard transformations, (see [4] or [7]
for the details). It is a simple exercise to show that the regularity of
the boundary conditions is not affected by such transformations.

We can now state the main result of this paper:

Theorem 7.1. Consider the second-order differential system

{
l(u) = u′′ + q1(x)u′ + q0(x)u in (α, β)
B1(u) = B2(u) = 0

where q1 ∈ C1([α, β];C) and q0 ∈ C([α, β];C). For i = 1, 2, the
boundary conditions are mixed non-separated and integral ones:

Bi(u) ≡ aiu(α) + biu
′(α) + ciu(β) + diu

′(β)

+
∫ β

α

Ri(t)u(t) dt+
∫ β

α

Si(t)u′(t) dt = 0,

where ai, bi, ci, di ∈ C and Ri, Si ∈ C([α, β];C). Suppose that the
boundary conditions are regular, i.e., their coefficients verify one of the
following conditions:

1. Γbd 	= 0.

2. Γbd = 0 and Γad − Γbc − ΓbS(β) + ΓdS(α) 	= 0.

3. Γab = Γad = Γbc = Γbd = Γcd = 0, ΓbS ≡ 0, ΓdS ≡ 0 and

Γac + ΓaS(β) + ΓcS(α)− ΓbR(β)− ΓdR(α) + ΓS(α, β) 	= 0,

4. Γab = Γac = Γad = Γbc = Γbd = Γcd = 0, ΓbR ≡ 0, ΓdR ≡ 0,
ΓaS ≡ 0, ΓbS ≡ 0, ΓcS ≡ 0, ΓdS ≡ 0, ΓS ≡ 0 and

ΓaR(β)− ΓcR(α) + ΓRS(α, β) + ΓRS(β, α) 	= 0.

5. ai = bi = ci = di = 0, Si ≡ 0 for i = 1, 2, and ΓR(α, β) 	= 0.
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Consider the L1-realization of the differential system, that is, the
unbounded linear operator L : D(L) ⊂ L1(α, β) → L1(α, β) defined
as

Lu = u′′ + q1(x)u′ + q0(x)u

with domain D(L) = {u ∈ W 2,1(α, β) : B1(u) = B2(u) = 0}. Then
L is the generator of an analytic semigroup {etL}t≥0 of bounded linear
operators in L1(α, β). When the domain D(L) is dense in L1(α, β),
the analytic semigroup is a C0-semigroup.

If the domain D(L) is not dense in L1(α, β), it is possible to obtain
a C0-semigroup on a subspace of L1(α, β). Define X0 as the closure of
D(L) in L1(α, β). Let L0 be the part of L in X0, that is, D(L0) = {u ∈
D(L) : Lu ∈ X0} and L0u = Lu for u ∈ D(L0). Then the operator L0

verifies the hypotheses of Theorem 7.1 and its domain D(L0) is dense
in X0. Thus L0 generates an analytic C0-semigroup {etL0}t≥0 on X0

and the following relation holds:

etL0u = etLu, u ∈ X0, t ≥ 0.

We conclude this section with some interesting cases of regular mixed
boundary conditions.

Example 7.1 (Non-separated boundary conditions). Consider the
conditions{

B1(u) ≡ a1u(α) + b1u
′(α) + c1u(β) + d1u

′(β) = 0
B2(u) ≡ a2u(α) + b2u

′(α) + c2u(β) + d2u
′(β) = 0,

which are supposed to be linearly independent. The regularity condi-
tions are, in this case,

1. Γbd 	= 0.

2. Γbd = 0 and Γad − Γbc 	= 0.

3. Γab = Γad = Γbc = Γbd = Γcd = 0 and Γac 	= 0.

In all cases the domain D(L) is dense in L1(α, β), so the analytic
semigroup generated by L is a C0-semigroup.

Regular conditions {B1, B2} are known as Birkhoff-regular boundary
conditions, and they were introduced by Birkhoff in his early paper
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[1] for obtaining asymptotic expansions for the eigenvalues of the
associated operator. The spectral theory of non-separated boundary
conditions has been widely investigated: see [7] and the references
therein. In our paper [4] we stated that it is also possible to obtain
generation of analytic semigroups in every space Lp(α, β), 1 ≤ p ≤ ∞
(see Section 8).

Classical examples of Birkhoff-regular boundary conditions are the
separated and periodic ones:

{
a1u(α) + b1u

′(α) = 0
c2u(β) + d2u

′(β) = 0
and

{
u(α) = ru′(α)
u(β) = ru′(β)

r 	= 0.

As an example of Birkhoff-irregular boundary conditions, we can con-
sider the initial value conditions: u(α) = u′(α) = 0; it is not difficult
to prove that in this case we do not obtain generation of analytic semi-
groups.

Example 7.2 (Integral boundary conditions). Consider the condi-
tions




B1(u) ≡
∫ β

α

R1(t)u(t) dt+
∫ β

α

S1(t)u′(t) dr = 0

B2(u) ≡
∫ β

α

R2(t)u(t) dt+
∫ β

α

S2(t)u′(t) dr = 0,

with Ri, Si ∈ C([α, β];C), i = 1, 2. These kinds of integral boundary
conditions have been widely studied in our paper [3], the main results
of which can be considered as special cases of Theorem 7.1.

The conditions for regularity are

1. ΓS(α, β) 	= 0.

2. ΓS ≡ 0 and ΓRS(α, β) + ΓRS(β, α) 	= 0. This condition can be
separated into two subcases:

(a) S1 ≡ 0 and R1(α)S2(β) +R1(β)S2(α) 	= 0.

(b) S2 ≡ 0 and R2(α)S1(β) +R2(β)S1(α) 	= 0.

3. S1 ≡ 0, S2 ≡ 0 and ΓR(α, β) 	= 0.



ANALYTIC SEMIGROUPS 859

The domain D(L) could not be dense in L1(α, β). To see that,
consider the following examples:



∫ β

α

etu(t) dt = 0∫ β

α

tu′(t) dt = 0
and




∫ β

α

u′(t) dt = 0∫ β

α

u(t) dt+
∫ β

α

tu′(t) dt = 0.

In both cases the conditions are regular. In the first one the domain
D(L) is not dense in L1(α, β), so the semigroup generated by L is not
a C0-semigroup. However, the second example can be written as{

u(α)− u(β) = 0
αu(α)− βu(β) = 0

so D(L) is dense in L1(α, β) and the analytic semigroup is a C0-
semigroup.

8. The Lp case. Consider the case of non-separated boundary
conditions{

B1(u) ≡ a1u(α) + b1u
′(α) + c1u(β) + d1u

′(β) = 0
B2(u) ≡ a2u(α) + b2u

′(α) + c2u(β) + d2u
′(β) = 0.

For 1 ≤ p ≤ ∞, consider the linear operator Lp : Lp(α, β) → Lp(α, β)
defined as Lpu = l(u), D(Lp) = {u ∈ W 2,p(α, β) : B1(u) = B2(u) =
0}. In our paper [4] we proved that, for Birkhoff-regular boundary
conditions (see Example 7.1), the operator Lp is the generator of an
analytic semigroup in Lp(α, β) (if p 	= ∞ the semigroup is also a C0-
semigroup). For proving this result we obtained bounds of the form
M/|λ| for the resolvent operators R(λ : Lp), both in the spaces L1(α, β)
and L∞(α, β); then, by interpolation, we deduced the same kind of
bounds in all the scale of spaces Lp(α, β), 1 ≤ p ≤ ∞. The case p = 1
can be viewed as a particular case of Theorem 7.1.

A natural question arises: is it possible to generalize Theorem 7.1 to
the Lp setting, as in the case of non-separated boundary conditions?
We will give a partial answer.

Consider the Lp-realization Lp with mixed boundary conditions
{B1, B2} as in Theorem 8.1. Of course, a direct approach for bound-
ing R(λ : Lp) from formulae (2.2) (2.6) is not possible if 1 < p < ∞.
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Instead, we should try to bound the resolvent in L∞(α, β) in order to
interpolate. However, even for regular boundary conditions we do not
arrive to bounds of the form M/|λ| for R(λ : L∞), as the following
example shows:

Example 8.1. Consider the boundary conditions




B1(u) ≡
∫ 1

0

u′(t) dt = 0

B2(u) ≡
∫ 1

0

etu(t) dt = 0

that verify condition 4 of regularity. Note also that the coefficients are
of class C1, so we have stronger conditions than mere regularity.

Fix M > 0 and take f0 ≡ 1. If λ = ρ2 ∈ Σδ,r with r sufficiently large,
we have

‖R(λ : T∞)‖ ≥ ‖R(λ : T∞)f0‖L∞(0,1) = sup
0≤x≤1

|R(λ : T∞)f0(x)|

= sup
0≤x≤1

∣∣∣∣
∫ 1

0

G(x, s;λ) ds
∣∣∣∣ = sup

0≤x≤1

∣∣∣∣
∫ 1

0

N(x, s;λ)
∆(λ)

ds

∣∣∣∣.
The characteristic determinant is, in this case,

∆(λ) =
e−ρ − 1
ρ2 − 1

[ρ(e+ 1)(eρ − 1)− (e− 1)(eρ + 1)].

After some calculations, we obtain

∫ 1

0

N(x, s;λ) ds = (e− 1)
eρ − 1

ρ(ρ2 − 1)
[−ρ(1 + e−ρ) + (1− e−ρ)]

so

sup
0≤x≤1

∣∣∣∣
∫ 1

0

N(x, s;λ)
∆(λ)

ds

∣∣∣∣
≥

∣∣∣∣ (e− 1)(eρ − 1)[(1− e−ρ)− ρ(1 + e−ρ)]
ρ(e−ρ − 1)[ρ(1 + e)(eρ − 1)− (e− 1)(eρ + 1)]

∣∣∣∣.
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The second member can be made greater than M/|ρ|2, taking |ρ| > r
large enough.

We have seen that, for every M > 0, we can take r > 0 such that

‖R(λ : T∞)‖ >
M

|λ| >
M

|λ− r| , λ ∈ Σδ,r

so T∞ cannot be the generator of an analytic semigroup.

What can be then said in the L∞ case? First of all, note that sections
2 4 are valid in every space Lp(α, β), with the obvious modifications.
Thus, for the operator T∞, we have that

‖R(λ : T∞)‖ ≤ sup
0≤x≤1

∫ 1

0

|G(x, s;λ)| ds

=
1

|∆(λ)| sup
0≤x≤1

∫ 1

0

|N(x, s;λ)| ds

≤ m

|λ|H∞(ρ).

The function H∞(ρ) is obtained from (3.4) (3.7) after a long calcula-
tion:

H∞(ρ) =
e�(ρ)

|∆(λ)|
[
(|Γbd|+ ‖ΓbS‖+ ‖ΓdS‖)|ρ|2

+ (|Γab|+ |Γad|+ |Γbc|+ |Γcd|+ ‖ΓaS‖
+ ‖ΓbR‖+ ‖ΓcS‖+ ‖ΓdR‖+ ‖ΓS‖)|ρ|
+ |Γac|+ ‖ΓaR‖+ ‖ΓcR‖+ 2‖ΓRS‖+

‖ΓR‖
|ρ|

]
.

(Observe that H∞(ρ) is not the same function H(ρ) obtained in the
L1 case.) Making an analysis of cases similar to that in Section 5, we
obtain that H∞(ρ) is bounded in r0 +Σδ/2 only in the following three
cases:

1. Γbd 	= 0.

2. Γbd = 0, Γad − Γbc 	= 0 and ΓbS ≡ ΓdS ≡ 0.

3. Γab = Γad = Γbc = Γbd = Γcd = 0, ΓbR ≡ ΓdR ≡ ΓaS ≡ ΓbS ≡
ΓcS ≡ ΓdS ≡ ΓS ≡ 0 and Γac 	= 0.
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We say that the boundary conditions {B1, B2} are L∞-regular if they
verify one of the conditions above.

The first case Γbd 	= 0 corresponds to both regular and L∞-regular
boundary conditions. Then, by means of the Riesz-Thorin interpolation
theorem [2], we obtain the following result:

Theorem 8.1. If the mixed boundary conditions verify Γbd 	= 0,
then the operator Lp generates an analytic semigroup of bounded linear
operators in Lp(α, β) for every 1 ≤ p ≤ ∞.

What happens with cases 2 and 3 of L∞-regular boundary conditions?
It is clear that they are particular cases of regular boundary conditions;
however, they are not well-defined, as the following example shows:

Example 8.2. Suppose (α, β) = (0, 1) and consider the boundary
conditions {

B1(u) ≡ u(0)− u(1) = 0

B2(u) ≡ u′(1) +
∫ 1

0
etu(t) dt = 0,

that verify condition 2 of L∞-regularity. But condition B1 could be
written as:

B1(u) ≡
∫ 1

0

u′(t) dt = 0,

which leads to L∞-irregular boundary conditions. This shows that the
definition of L∞-regularity is not consistent.

Example 8.3. In the case of non-separated boundary conditions, the
function H∞(ρ) is exactly the same as H(ρ), so the analysis of cases
made in Section 5 is valid also in L∞(α, β). We have the following
result:

Theorem 8.2. Let {B1, B2} be Birkhoff-regular non-separated
boundary conditions. Then, for 1 ≤ p ≤ ∞, the operator Lp gener-
ates an analytic semigroup in Lp(α, β). If p 	= ∞, the semigroup is
also a C0-semigroup.

The above theorem was previously proved in our paper [4].
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