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CONJUGATE INEQUALITIES

A.M. FINK

ABSTRACT. We propose a general theory of conjugate
inequalities which relate the norm of a function and Lf , where
L is some linear differential operator. The best constants in
these inequalities are shown to be the same as for an inequality
involving the adjoint operator L+. We concentrate on the
properties of the best constants in the hope that they can
be computed exactly when sufficient numbers of properties
are derived. Good estimates are provided for most of the
constants.

1. Introduction. Brink [1] in his thesis considered the problem of
finding best constants in the inequalities

(1) ‖f‖p ≤ M(n, p, q)‖f (n)‖q

on the interval [0, 1] with f having n zeros on the interval. He showed
that the best constant M is determined by having all of the zeros at
the ends of the interval. He was led to the problem of finding the best
constants in the inequality

(2) ‖f‖p ≤ K(n, α, p, q)‖f (n)‖q

with the boundary conditions

(3) f has α zeros at 0 and n− α zeros at 1,

i.e.,

(4) f (i)(0)=0, i=0, 1, . . . , α−1 and f (i)(1)=0, i=0, . . . , n−α−1.

If one of α or n−α− 1 is negative, then that condition is deleted. It is
to be mentioned that p and q are not related in this formulation. In the
course of Brink’s study, using a formal application of the Pontryagin
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maximal principle (it does not apply because of absolute values) he
found that

(5) K(n, α, p, q) = K(n, α, q′, p′)

where 1/p′ + 1/p = 1 with the usual provisions when p = 1. Brink was
able to prove some of the special cases. He also proved some results on
these kinds of problems which are now extended in this paper to fairly
general differential operators.

Later I found a proof of this result which does not use any calculus
of variations and also gave equations for the extremals. Here I propose
a general theory of such inequalities.

2. The general theory. We begin with an nth order linear
differential operator L defined for functions in C(n)[a, b]. This can be
weakened by considering L in disconjugate form. But for our purposes
here we do not consider ourselves with this generalization. Together
with the operator L, we consider a set of boundary conditions

(6) Uy = 0

which are linear conditions on y and its derivatives at a and b. They
may be separated or not.

We will assume

(H1) Zero is not an eigenvalue of the operator L together with the
boundary conditions (6).

Because of the linearity of the problem we immediately have Theo-
rem 1.

Theorem 1. If H1 holds, then for every continuous g, the problem

(7) Ly = g, Uy = 0

has a unique solution.

Together with such an operator and boundary conditions, there is the
formal adjoint L+ and the adjoint boundary conditions U+y = 0. We
have the Lagrange identity

(8) 〈Lf, g〉 = 〈f, L+g〉
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where 〈, 〉 is the usual inner product. See Coddington and Levinson [2,
Chapter 11].

For the fixed interval [a, b] we consider the problem: Find the best
possible constant C{L, [a, b], p, q} in the inequality

(9) ‖f‖p ≤ C{L, [a, b], p, q}(b− a)1/p−1/q‖Lf‖q for Uf = 0.

We limit ourselves to the case when U has rank n so that the adjoint
boundary condition also has rank n and Theorem 1 also applies to the
adjoint problem, i.e., the problem

(10) L+y = g, U+y = 0,

has a unique solution for any continuous g.

We can now state and prove the main result.

Theorem 2. If H1 holds and U has rank n then the problems (9)
for L and L+ both have best constants and for 1 < p, q < ∞,

(11) C{L, [a, b], p, q} = C{L+, [a, b], q′, p′}.
Furthermore, extremals exist and satisfy the equations:

L+g = |f |p−1sgn (f),(12)

Lf = c|g|q′−1sgn (g) for some constant c.(13)

Here f is the extremal for the L inequality and g is the extremal for the
L+ inequality.

Note 1. The inequalities are homogeneous and the boundary condi-
tions are also. If f is an extremal so is any multiple of f . It may be
shown therefore that the constant in (13) could be chosen to be 1 if the
correct multiples of f and g are chosen. This actually is insignificant.

Proof. From the hypotheses, there is a Green’s function G for each
of the problems for L and L+ so if f satisfies the boundary conditions
Uf = 0, then

(14) f(t) =
∫ b

a

G(t, s)Lf(s) ds
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and G is a continuous function. Then it is elementary to show that
there is some constant which satisfies the inequality (9). One applies
Hölder’s to the righthand side to get |f(t)| ≤ |G(t, ·)|q′ . Now take pth
powers and integrate. In general the constant obtained in this way is
far from being optimal.

That there are extremals follows from the weak compactness of the
unit ball in Lq, once we know that the mapping is continuous.

So let f satisfy the boundary conditions and look at

∫ b

a

|f(t)|p dt =
∫ p

a

|f(t)|p−1sgn (f(t))(f(t)) dt.

Let g be defined by L+g = |f(t)|p−1sgn (f(t)), U+g = 0. Then∫ b

a
|f(t)|p dt = 〈f, L+g〉 = 〈Lf, g〉 ≤ ‖g‖q′‖Lf‖q ≤ C{L+, [a, b], q′, p′}

(b − a)1/q′−1/p′‖Lf‖q‖L+g‖p′ where we have used Hölder’s inequality
and the inequality for g since U+g = 0. Write out what ‖L+g‖p′ is in
terms of f . It is (

∫ b

a
|f(t)|p dt)1/p′

. Divide by this quantity and we have

(15) ‖f‖p ≤ C{L+, [a, b], q′, p′}(b− a)1/p−1/q‖Lf‖q.

But C{L, [a, b], p, q} is the smallest constant for such an inequality to
hold. Therefore,

(16) C{L, [a, b], p, q} ≤ C{L+, [a, b], q′, p′}.

We can get the reverse by interchanging the roles of g and f in the
above string of inequalities. This proves (11). If f is an extremal for
the L problem, then equality must hold in (15) and therefore in all of
the intermediate inequalities. This means that g must be an extremal
also and equality holds in the Hölder’s inequality place. This gives (13)
while (12) holds by definition.

Corollary 1. The equality of the constants in (11) extends to 1 ≤ p,
q ≤ ∞.

Proof. The proof of the theorem works for p and q in this extended
interval if Hölder’s inequality is replaced by the obvious inequality in
Case 1 or ∞ is one of the indices of the norm.
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We can extend the range over which extremals exist.

Corollary 2. Extremals exist except for the four cases (p, q) ∈
{(1, 1), (1,∞), (∞, 1), (∞,∞)}.

Proof. Again we look at the proof, observing that if an extremal
exists for one of the problems it also exists for the conjugate problem.
The equality of the constants is crucial here. The weak compactness
argument gives extremals for 1 ≤ p ≤ ∞ and 1 < q < ∞. But applying
this to the conjugate problem we get extremals existing for 1 ≤ q′ ≤ ∞
and 1 < p′ < ∞. This is 1 < p < ∞ and 1 ≤ q ≤ ∞. So only the above
four remain.

Corollary 3. If the Green’s function for L is of constant sign on
[a, b]⊗ [a, b], then extremals exist also for p = 1 and p = ∞ and q = ∞.

Proof. We have from (14) that f(t) =
∫ b

a
G(t, s)Lf(s) ds. Then

(17) |f(t)| ≤ |Lf |∞
∫ b

a

|G(t, s)| ds = |Lf |∞
∫ b

a

G(t, s)sgn (G(t, s)) ds.

Consequently we have

(18) |f |∞ ≤ |Lf |∞ sup
t

∫ b

a

G(t, s)sgn (G(t, s)) ds.

If Lf = sgnG(t, s), then f ≥ 0 and equality holds throughout the
argument, in particular in (18). So there is an extremal when p = ∞
and q = ∞. For p = 1 we again begin with (17) and arrive at

(19) |f |1 ≤ |Lf |∞
∫ b

a

∫ b

a

|G(t, s)| ds dt.

Again if Lf = sgnG(t, s), we have equality in all of the inequalities. So
there is an extremal when p = 1 and q = ∞.

There are other consequences of the Green’s function being of con-
stant sign.
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Theorem 3. If the Green’s function for L with Uy = 0 is of
constant sign, then we may restrict ourselves to nonnegative functions.
In particular, the extremals have f and Lf each of constant sign.

Proof. Let f be an admissible function so that Lf is well defined and
Uf = 0. Then f(t) =

∫ b

a
G(t, s)Lf(s) ds and let g(t) be defined by

(21) g(t) =
∫ b

a

G(t, s)|Lf(s)|sgnG(t, s) ds, i.e.,

Lg = |Lf(s)|sgnG(t, s) and Ug = 0. Then

(22)
|f(t)| ≤

∫ b

a

|G(t, s)||Lf(s)| ds

=
∫ b

a

G(t, s)|Lf(s)|sgnG(t, s) ds = g(t).

Now ‖f‖p ≤ ‖g‖p, with g ≥ 0 and ‖Lf‖q = ‖Lg‖q and Lg is of constant
sign. Unless f is nonnegative to begin with, the first inequality is strict.
Therefore, the extremal will satisfy the requirements of the theorem.

Theorem 4 (Boyd [3]). If the Green’s function is of one sign, then
the extremals are unique if p ≤ q.

We will not prove this theorem here. Boyd considers inequalities
of a slightly different type and proves some theorems on relationships
between various constants as we will do.

The constants derived in the above manner satisfy other properties
which we now address.

Theorem 5. The constant C{L[a, b], p, q}
(i) is increasing in p,

(ii) is decreasing in q,

(iii) the pth power is log convex in p, and

(iv) the qth power is log convex in q.
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Proof. We begin by noting that for any continuous f

(23) ‖f‖p/(b− a)1/p is increasing in p.

For i) let p1 < p2. Then we have

(24)

‖f‖p1

(b− a)
1

p1

≤ ‖f‖p2

(b− a)
1

p2

≤ C{L, [a, β], p2, q}(b− a)−1/q‖Lf‖q.

Since C{L, [a, b], p1, q} is the smallest constant for which the extremes
of (24) hold, we have C{L, [a, b], p1, q} ≤ C{L, [a, b], p2, q} which is i).

For ii) we apply the same argument except with ‖Lf‖q1/(b−a)1/q1 ≤
‖Lf‖q2/(b− a)1/q2 .

For iii) we write for p = λp1 + (1 − λ)p2, 0 < λ < 1, and use the log
convexity of (‖f‖p)p. We have

p log ‖f‖p ≤ λp1 log ‖f‖p1 + p2(1 − λ) log ‖f‖p2

≤ λp1 log{C{L, [a, b], p1, q}(b− a)1/p1−1/q‖Lf‖q}
+ p2(1 − λ) log{C{L, [a, b], p2, q}(b− a)1/p2−1/q‖Lf‖q}

= {λp1 log{C{L, [a, b], p1, q}(b− a)1/p1−1/q}
+ p2(1 − λ) log{C{L, [a, b], p2, q}}(b− a)1/p2−1/q}
+ p log ‖Lf‖q.

If we now exponentiate and use that C{L, [a, b], p, q}(b − a)1/p−1/q

is the smallest number for which the inequality is to hold, we get the
result.

The proof of iv) is a little more computational. Let 1 < q1 < q < q2.
We will use the identity

(25) C(p, q) = C

(
q

q − 1
, p′

)

where we have suppressed the reference to the operator and interval.
Now

(26)
q2

q2 − 1
<

q

q − 1
<

q1
q1 − 1

.
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In particular, for appropriate 0 < α < 1, let

(27)
q

q − 1
= α

q1
q1 − 1

+ (1 − α)
q2

q2 − 1
.

Since C(·, p′)(·) is log convex, we have

C

(
q

q − 1
, p′

) q
q−1

≤ C

(
q1

q1 − 1
, p′

)α
q1

q1−1

C

(
q2

q2 − 1
, p′

) (1−α)q2
q2−1

.

On the other hand, we have

(29) q = λq2 + (1 − λ)q1.

We can solve (29) for λ and (27) for α and we find that αq1(q−1)/(q1−
1) = (1 − λ)q1 and (1 − α)q2(q − 1)/(q2 − 1) = λq2.

Inserting these into (28) we get the log convexity as required.

3. Examples. We now look at some examples. For this section we
let Lf = f (n) so that L+f = (−1)nf (n).

We first look at Brink’s result for this case. The boundary conditions
for the K constants in (2) are given by (4). We call these the (α, n−α)
boundary conditions. A set of adjoint conditions are given by the
boundary conditions (n−α, α), so that the Lagrange identity is merely
integration by parts and all the boundary terms which are of the form
f (i)(a)g(n−i)(a), or the same at b, are zero. We make a slight change
in the notation here. To do things on the interval [a, b] and not make
the constants K depend on the interval, we write Brink’s inequalities
as

(31) ‖f‖p ≤ K(n, α, p, q)(b− a)n+1/p−1/q‖f (n)‖q.

Then the constants are independent of the interval and are the ones for
the standard interval [0, 1]. This is easy to prove by a linear change of
variables.

We note that by graphing the functions backwards that K(n, α, p, q) =
K(n, n− α, p, q) so that the conjugate relation can be written as

(32) K(n, α, p, q) = K(n, α, q′, p′).
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Now we give some of the results here from Brink’s paper.

Theorem 6 (Brink). For any p, 1 ≤ p < ∞,

(33) K(n, α, p,∞) = ‖g‖p,

where g(t) = tα(1 − t)n−α/n!. Hence

(34)

K(n, α, p,∞) = K(n, α, 1, p′)

= (1/n!)
{

Γ(pα + 1)Γ(pn− pα + 1)
Γ(pn + 2)

}1/p

and for 1 ≤ p < ∞,

(35) K(n, α,∞,∞) = K(n, α, 1, 1) =
αα(1 − α)n−α

n!nn
.

Proof. Let g be given as in the theorem. We know that we may
assume f ≥ 0. So

‖f‖1 =
∫ 1

0

f(t)1 dt =
∫ 1

0

f(t)g(n) dt(36)

= (−1)n

∫ 1

0

g(t)f (n)(t) dt ≤ ‖f (n)‖q‖g‖q′

with equality when |f (n)|q and |g|q′
are proportional. This gives

K(n, α, 1, q) and the result (and also the extremals).

We will quote one of Brink’s other theorems.

Theorem 7. Let G(t, s) be the Green’s function for the (α, n − α)
problem, then

(37) K(n, α,∞, q) = K(n, α, q′, 1) = max{‖G(t, ·)‖q′ : 0 ≤ t ≤ 1}.

Proof. We use the fact that we may assume f ≥ 0 and the formula

(38) f(t) =
∫ 1

0

G(t, s)f (n)(s) ds.
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Then f(t) ≤ ‖G(t, ·)‖q′‖f (n)‖q ≤ ‖G(t0, ·)‖q′‖f (n)‖q, where t0 is where
the norm of G is maximized. If we take f (n)(s) = G(t0, s), then equality
holds throughout the above inequalities.

We also note that

(39) K(2, 1, 2, 2) =
1
π2

is a well-known result and is called Wirtinger’s inequality. For other
scattered results, see Brink’s paper and Fink [4]. On the other hand,
Hardy, Littlewood and Polya [5] show that

(40) K(1, 1, 2k, 2k) = (2k − 1)−1/2k(2k/π) sin(π/2k).

The equations of the extremals are given as in (12) and (13) with
the proviso that, according to our theorems, f and f (n) are of constant
sign

f (n) = (−1)nλ|g|q′−1sgn (g)(41)
and

g(n) = |f |p−1sgn (f)(42)

with f having α zeros at 0 and n− α zeros at 1 and g switching these
two numbers. The signs of the functions can be predicted. The sign of
the Green’s function for the (α, n−α) is (−1)n−α, so if we take f ≥ 0,
then sgn g = (−1)α and sgn f (n) = (−1)n−α so λ ≥ 0. For p = q = 2,
these equations are f (n) = (−1)nλg and g(n) = f so that these combine
into the single equation

(43) f (2n) = (−1)nλf.

The computation of K(n, α, 2, 2) amounts to solving the eigenvalue
problem of the differential equation (43) with the (α, n− α) boundary
conditions for f and the (n− α, α) boundary conditions for f (n).

To take the simplest case, take n = α = 1. Then K(1, 1, 2, 2) =
max{‖f‖2/‖f‖2 : f is an eigenfunction of (43)}. This is K(1, 1, 2, 2) =
max{(π/2 + kπ)−1, k = 0, 1, . . . } = 2/π.

For K(2, 1, 2, 2) the differential equation is f iv − α4f = 0, with
f(0) = f ′′(0) = f(1) = f ′′(1) = 0. The eigenfunctions are sin(nπx)
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and K(2, 1, 2, 2) = max{f‖2/‖f ′′‖2} = 1/π2, which is Wirtinger’s
inequality.

Our second example is to consider inequalities, see Fink [6], of the
form

(44) ‖f‖p ≤ H(n, p, q)(b− a)n+1/p−(1/q)‖f (n)‖q

with the boundary conditions: a non-decreasing sequence ai ∈ [a, b]
exists such that f (i)(ai) = 0, i = 0, 1, . . . , n− 1.

The integral representation

(45) f(x) =
∫ x

a0

dx1

∫ x1

a1

dx2

∫ x2

a2

· · ·
∫ xn−1

an−1

f (n)(xn) dxn

shows that the constants exist. Hartman [7] and Levin [8] both
considered such inequalities for p = ∞ and q = 1 or ∞. In particular,
Levin showed that if some ai ∈ (0, 1), then f is the midpoint of two
other functions f1 and f2, which are admissible for (44) with the same
nth derivative (but different ai). Since the p norm is convex in f , one
of the functions f1 or f2 has a larger p norm. As a result H(n, p, q) is
the maximum over α of the numbers H(n, α, p, q) for the problem of
finding the best constants in

(46) ‖f‖p ≤ H(n, α, p, q)(b− a)n+1/p−1/q‖f (n)‖q

where f has α zeros at a and f (α) has n − α zeros at b. Call these
boundary conditions Z(α, n − α). That is, all the ai are at the ends
of the interval. Again the factor of (b − a) is selected to make H
independent of the interval so for the remaining discussion we restrict
ourselves to the interval [0, 1].

Our general theory applies with the adjoint operator being the op-
erator (−1)nf (n) with the boundary conditions Z(n − α, α). So that
H(n, α, p, q) = H(n, α, q′, p′), extremals existing etc. To get some spe-
cific results, introduce the polynomials g(t, α, β) for integral α and β
by

(47)
g(t, α, β) = (1/α!β!)

∫ t

0

(1 − s)α(t− s)β ds, for α ≥ 0, β ≥ 0;

g(t, α− 1) = (1 − t)α/α!, α ≥ 0;
g(t,−1, β) = tβ/β!, β ≥ 0.
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Theorem 8. For any q

H(n, α,∞, q) = ‖g(·, α− 1, n− α− 1)‖q′ if 0 ≤ α < n;
(48)

and

H(n, α, 1, q) = ‖g(·, n− α, α− 1)‖q′ if 0 ≤ α ≤ n.

In particular

H(n, α,∞,∞) = H(n, α, 1, 1) = n−1Cα/n!, 0 ≤ α < n;
(49)

H(n, α, 1,∞) = nCα/(n + 1)!, 0 ≤ α < n;
H(n, α,∞, 1) = n−2Cα−1/(n− 1)!, 0 < α < n;
H(n, 0,∞, 1) = 1/(n− 1)!;

H(n, n, p, 1) = H(n, 0,∞, p′) = [(n− 1)p + 1]−1/p/(n− 1)!;

and

H(n, n, p,∞) = H(n, 0, 1, p′) = (np + 1)−1/p/n!.

It follows from these computations, the monotonicity of the H con-
stants and the definitions that

(50)
Cn

(n + 1)!
≤ H(n, p, q) ≤ Cn−1

(n− 1)!
,

where Cn is the central binomial coefficient nC[n/2]. Some better
bounds can be obtained than this.

Theorem 9. Let 0 < α < n. For any p, q and r

(51) H(n, α, p, q) ≤ H(α, α, p, r)H(n− α, n− α, r, q).

Proof. We note that if f satisfies the boundary conditions for the
(n, α) problem, then f satisfies the boundary conditions for the (α, α)
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problem, and f (α) satisfies the boundary conditions for the (0, n − α)
problem, so

‖f‖p ≤ H(α, α, p, r)‖f (α)‖r and ‖f (α)‖r ≤ H(n− α, 0, r, q)‖f (n)‖q.

Combining these two we have

‖f‖p ≤ H(α, α, p, r)H(n− α, 0, r, q)‖f (n)‖q.

But H(n, α, p, q) is the smallest number for which this is to hold. Now
by graphing the functions backwards, H(n− α, 0, p, q) = H(n− α, n−
α, p, q).

If we replace r by 1 and ∞, we get the following estimates.

Corollary. For 0 < α < n and any p and q

H(n, α, p, q) ≤ {(α−1)!(n−α)![(α−1)p+1]1/p[(n−α)q′+1]1/q′}−1

(52)

and

H(n, α, p, q) ≤ {α!(n−α−1)![αp+1]1/p[(n−α−1)q′+1]1/q′}−1.

(53)

Proof. We apply the results of the theorem and (48).

We now look at a third example from Fink [9]. Consider the problem
of finding the best constants in the inequality

(54) ‖f‖p ≤ D(n, p, q)(b− a)n+1/p−1/q‖f (n)‖q

with the boundary condition that f has n zeros at a and n zeros at b
which we write as f ∈ Z(n, n).

The related inequality is

(55) ‖f‖p ≤ F (n, p, q)(b− a)n+1/p−1/q‖f (n)‖q

with the boundary condition that |f |p−1sgn (f(t)) ⊥ πn−1, i.e.,∫ b

a
|f |p−1sgn (f(t))p(t) dt = 0 for all polynomials of degree ≤ n − 1.

Here p < ∞ and πn−1 is the set of polynomials of degree ≤ n− 1.
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The powers of (b−a) are chosen so that the constants are independent
of the interval so we will do the statements on [0, 1].

We plan to show that these are adjoint problems, but we need a
couple of preliminary results.

Lemma 1. If f has the required differentiability, then f ∈ Z(n, n) if
and only if f (n) ⊥ πn−1. The relationship is given by

(56) f(t) =
1

(n− 1)!

∫ t

0

(t− s)n−1f (n)(s) ds.

Proof. If f ∈ Z(n, n), then f has the representation (56). It is easy
to show that this representation having n zeros at 1 implies that f (n) ⊥
the powers of (1 − t)j for j = 0, . . . , n− 1. These are a basis for πn−1.
Conversely, if f (n) ⊥ πn−1, then define f by (56) and f ∈ Z(n, n).

Lemma 2. If g is any integrable function there is a unique f ⊥ πn−1

such that f (n) = g.

Proof. Let f0 be any function so that f
(n)
0 = g and p be a polynomial

on degree ≤ n−1. Then f = f0 +p also solves the differential equation.
Consider the problem minp∈πn−1 ‖f0 + p‖2. This finite dimensional
problem has a solution f0 +p0 ≡ f1. The inequality ‖f1‖2 ≤ ‖f1 +ap‖2

for arbitrary real a, and p ∈ πn−1 leads to
∫ 1

−1
f1p = 0 as required.

Uniqueness now follows from ‖f1‖2 = ‖f1+p‖2, p ∈ πn−1 ⇒ ‖p2‖2 = 0.

These two lemmas show that the boundary conditions are adjoint
with respect to the operator Ly = y(n) so that we immediately have
the next theorem and all of the results of the general theory.

Theorem 10. We have D(n, p, q) = F (n, q′, p′) provided 1 < q.

There is an interesting connection between this theorem and best
approximation by polynomials. Let p > 1 and f be n + 1 times
differentiable and consider the number

(57) E(f, n, p) = min{‖f − P‖p : P ∈ πn}.
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This minimum exists and it is well known that P solves this problem
if and only if ‖f − P |p−1sgn (f − P ) ⊥ πn. We seek the best possible
constant in the inequality

(58) E(f, n, p) ≤ B(n, p, q)(b− a)n+1+1/p−1/q‖f (n+1)‖q.

We have

Theorem 11. For any p > 1, B(n, p, q) = F (n + 1, p, q).

Proof. If f is given and P is a polynomial in πn that gives E(f, n, p),
then E(f, n, p) = ‖f − P‖p and ‖f − P‖p−1sgn (f − P ) ⊥ πn. Conse-
quently, we have E(f, n, p) ≤ F (n+1, p, q)(b−a)(n+1+1/p−1/q‖f (n+1)‖q

where we have used P (n+1) = 0. Since B(n, p, q) is the smallest con-
stant, we have that B(n, p, q) ≤ F (n + 1, p, q). Conversely, if f satis-
fies |f |p−1sgn (f) ⊥ πn, the boundary conditions for the F (n + 1, p, q)
problem, then the best approximation to f by polynomials is the zero
polynomial and we have ‖f‖p = E(f, p, q) = ‖f −P‖p ≤ B(n, p, q)(b−
a)n+1+1/p−1/q‖f (n+1)‖q so that F (n + 1, p, q) ≤ B(n, p, q).

Phillips [10] showed that B(n, p,∞) = δ(n, p)/(n + 1)!2n+1+1/p,
where δ(n, p) = inf {‖xn − q‖p : q ∈ πn−1}. He shows that

δ(n, 1) = δ(n,∞) =
1
2n

and

δ(n, 2) =

√
2

2n + 3

(
2n+1

2n + 2

)
Cn+1.

We mention in passing one version of the above inequalities for
discrete functions, Fink [11]. Specifically there are inequalities of the
form

(59)
( m∑

0

|xk|p
)1/p

≤ C(m,n, α, p, q)(m−n+1)n+1/p−1/q

( m−n∑
0

|∆nxk|q
)1/q
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with the boundary conditions x0 = x1 = · · · = xα−1 = 0 = xα+1 =
· · · = xm−1 = xm and ∆ is the forward difference operator ∆x =
xk−1 − xk, α + β = n. These constants satisfy the same sort of
monotonicity conditions as in the general continuous theory and are
self-conjugate in the same way as the K constants in our first example.

4. Continuity properties. There are undoubtedly other interest-
ing examples of the above inequalities, especially for operators which
are not simply f (n). In addition, there are some other properties of the
constants.

By an argument in Fink [9], one can show that extremals are unique
in the above examples. We do not reproduce that proof here.

Since the constants themselves are log convex, it follows that as
functions of p and q they are continuous and bounded on the open
intervals (1,∞) and therefore have derivatives almost everywhere and
one-sided derivatives everywhere. The continuity in p for fixed q can
be extended to the interval (1,∞]. For let f be given. Because as
p → ∞, both ‖f‖p and the constants C{L, [a, b], p, q} are increasing
and bounded, they have limits. The limit of ‖f‖p is ‖f‖∞ so that we
have

‖f‖∞ ≤ lim
p→∞C{L, [a, b], p, q}(b− a)−1/q‖Lf‖q

so that C{L, [a, b],∞, q} ≤ limp→∞ C{L, [a, b], p, q}. But since
C{L, [a, b], p, q} ≤ C{L, [a, b],∞, q} the reverse inequality also holds.
For q < ∞, we can also prove that the constant is continuous at p = 1.
For let pj ↓ 1 and fj be selected so that fj satisfies ‖Lfj‖q = 1 and
‖fj‖p > C{L, [a, b], pj , q} − 1/j. By weak compactness of the unit ball
in Lq we can assume that everything converges, fj converges to g, Lfj

converges to Lg, so that

C{L, [a, b], pj , q}(b− a)1−1/q‖Lg‖ ≥ ‖g‖1

≥ lim
j→∞

C{L, [a, b], pj , q}(b− a)(1/pj)−1/q‖Lg‖.

Since the constants are increasing in p, C{L, [a, b], 1, q} ≤
limC{L, [a, b], pj , q}. But the above argument gives the reverse. By
the conjugacy property, this gives the same continuity properties in
the variable q. These continuity properties allow us to extend the log
convexity also.
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Proposition. For any q and p1 < p2,

(60) C(p2, q)p2 ≤ C(p1, q)p1C(p1, q)p2−p1 .

Proof. Let p1 < p2 < p3 and write p2 = (1 − λ)p1 + λp3. Then
C(p2, q)p2 ≤ C(p1, q)(λ−1)p1C(p1, q)λp3 . Solving the p2 equation for λ
we find that λ → 0 as p3 → ∞, but λp3 → p2−p1. Using the continuity
of the C functions in the first variable, we find the result.

The case when p1 = 1 is particularly interesting, i.e., the inequality

(61) C(p, q)p ≤ C(1, q)C(q′, 1)p−1.

5. Further work. Of course one would also like to be able to
compute more constants explicitly. It is worth trying to discover all the
properties of the constants themselves as p and q vary. The continuity
and differentiability almost everywhere leads one to wonder if one
could derive a differential equation or differential inequality that the
constants satisfy. With enough properties of the constants one would
hope to be able to prove that there is a unique solution to the list of
properties. This would provide a way to get the constants by guessing
a function that satisfies all the requirements. I leave this as a challenge
to the interested reader.
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