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A POLYNOMIAL VARIANT OF A PROBLEM
OF DIOPHANTUS AND EULER

ANDREJ DUJELLA AND CLEMENS FUCHS

ABSTRACT. In this paper we prove that there does not
exist a set of four polynomials with integer coefficients, which
are not all constant, such that the product of any two of
them is one greater than a square of a polynomial with integer
coefficients.

1. Introduction. Let n be an integer. A set of m positive integers is
called a Diophantine m-tuple with the property D(n) or simply D(n)-
m-tuple if the product of any two of them increased by n is a perfect
square. The first D(1)-quadruple, the set {1, 3, 8, 120}, was found by
Fermat. The folklore conjecture is that there does not exist a D(1)-
quintuple. In 1969, Baker and Davenport [1] proved that the Fermat’s
set cannot be extended to a D(1)-quintuple. Recently the first author
proved that there does not exist a D(1)-sextuple and that there are
only finitely many D(1)-quintuples (see [10]).

In the case n = −1, the conjecture is that there does not exist a
D(−1)-quadruple (see [5]). It is known that some particular D(−1)-
triples cannot be extended toD(−1)-quadruples (see [2], [6], [13], [14]).
Let us mention that, from [9, Theorem 4], it follows that there does
not exist a D(−1)-33-tuple.

This n = −1 case is closely connected with an old problem of
Diophantus and Euler. Namely, Diophantus studied the problem of
finding numbers such that the product of any two increased by the
sum of these two gives a square. He found two triples {4, 9, 28} and
{3/10, 21/5, 7/10} satisfying this property. Euler found a quadruple
{5/2, 9/56, 9/224, 65/224} (see [4], [3]). In [8] an infinite family of
rational quintuples with the same property was given. Since

xy + x+ y = (x+ 1)(y + 1)− 1,
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we see that the problem of finding integer m-tuples with the same
property is equivalent to finding D(−1)-m-tuples.

A polynomial variant of the above problems was first studied by Jones
[11], [12], and it was for the case n = 1.

Definition 1. Let n be an integer. A set {a1, a2, . . . , am} of m
polynomials with integer coefficients, which are not all constant, is
called a polynomial D(n)-m-tuple if for all 1 ≤ i < j ≤ m the following
holds: ai · aj + n = b2ij , where bij ∈ Z[x].

A natural question is how large such sets can be. Let us define

Pn = sup{|S| : S is a polynomial D(n)-tuple}.
From [9, Theorem 1], it follows that Pn ≤ 22 for all n ∈ Z. The
above mentioned result about the existence of only finitely many D(1)-
quintuples implies that P1 = 4.

In the present paper we will prove that P−1 = 3. First of all, P−1 ≥ 3.
More precisely, if a · b− 1 = r2, then

{a, b, a+ b+ 2r}
is a polynomial D(−1)-triple. For example,

{x2 + 1, x2 + 2x+ 2, 4x2 + 4x+ 5}
is a polynomial D(−1)-triple (see [2]). Therefore we have to prove that
P−1 < 4, and this is the statement of our main theorem.

Theorem 1. There does not exist a polynomial D(−1)-quadruple.

The proof of Theorem 1 is divided into several parts. In Section 2
we transform our problem into a system of polynomial Pellian equa-
tions which leads to finding intersections of some binary recursive se-
quences. We obtain some useful information about initial terms of these
sequences.

In Section 3 we show that there is no loss of generality in assuming
that one element of our initial triple is equal to 1. This, together with
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results from Section 2, allows us to completely determine initial terms
of corresponding sequences.

In Section 4 we prove Theorem 1 by showing that our sequences
cannot have nontrivial common terms. This is done by comparing
degrees and leading coefficients of corresponding polynomials.

2. Two sequences of polynomials. Let Z+[x] denote the set of all
polynomials with integer coefficients with positive leading coefficient.
For a, b ∈ Z[x], a < b means that b−a ∈ Z+[x]. The usual fundamental
properties of inequality hold for this order. For a ∈ Z[x], we define
|a| = a if a ≥ 0 and |a| = −a if a < 0.

If {a, b, c, d}, a < b < c < d is a polynomial D(−1)-quadruple, then
d is nonconstant. Assume now that a and b are constant polynomials.
Considering leading coefficients of ad− 1 and bd− 1, we conclude that
ab is a perfect square, contradicting the assertion that ab − 1 is also
a perfect square. Therefore, we proved that in a polynomial D(−1)-
quadruple there is at most one constant polynomial. It is also clear that
all leading coefficients of the polynomials in a polynomial D(−1)-m-
tuple have the same sign. This implies that there is no loss of generality
in assuming that they are all positive, i.e., that all polynomials are in
Z+[x].

Let {a, b, c} where 0 < a < b < c be a polynomial D(−1)-triple, and
let r, s, t ∈ Z+[x] be defined by

ab− 1 = r2, ac− 1 = s2, bc− 1 = t2.

In this paper the symbols r, s, t will always have this meaning. Assume
that d ∈ Z+[x], d > c, is a polynomial such that {a, b, c, d} is a
polynomial D(−1)-quadruple. We have

(1) ad− 1 = u2, bd− 1 = y2, cd− 1 = z2,

with u, y, z ∈ Z+[x]. Eliminating d from (1) we obtain the following
system of polynomial Pellian equations

az2 − cu2 = c− a,(2)
bz2 − cy2 = c− b.(3)
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We will describe the sets of solutions of equations (2) and (3). We
will follow the arguments in the classical case of Pellian equations in
integers (cf. [7]).

Lemma 1. If (z, u) and (z, y) with u, y, z ∈ Z+[x] are polynomial
solutions of (2) and (3), respectively, then there exist z0, u0 ∈ Z[x] and
z1, y1 ∈ Z[x] with

(i) (z0, u0) and (z1, y1) are solutions of (2) and (3), respectively,

(ii) the following inequalities are satisfied:

0 ≤ |u0| < s,(4)
0 < z0 < c,(5)
0 ≤ |y1| < t,(6)
0 < z1 < c,(7)

and there exist integers m,n ≥ 0 such that

z
√
a+ u

√
c = (z0

√
a+ u0

√
c)(s+

√
ac)2m,(8)

z
√
b+ y

√
c = (z1

√
b+ y1

√
c)(t+

√
bc)2n,(9)

where this means that the coefficients of
√
a,

√
b and

√
c, respectively,

on both sides are equal.

Proof. It is clear that it suffices to prove the statement of the lemma
for equation (2). First observe that

(s+
√
ac)2m = (s2 + ac+ 2s

√
ac)m = (2ac− 1 + 2s

√
ac)m

and by multiplying with the conjugate (s−√
ac)2m, we see that

(10) (s+
√
ac)2m(s−√

ac)2m = (s2 − ac)2m = (−1)2m = 1.

Now let (z, u) be a solution of (2) in polynomials from Z+[x]. Consider
all pairs (z∗, u∗) of polynomials of the form

z∗
√
a+ u∗√c = (z

√
a+ u

√
c)(s+

√
ac)2m, m ∈ Z.

By (10) it is clear that (z∗, u∗) satisfies (2).
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We would like to show that z∗ > 0. We write (s +
√
ac)2m =

A+B
√
ac, where A,B ∈ Z[x] satisfying A2 − acB2 = 1. Therefore, we

have

z∗
√
a+ u∗√c = (z

√
a+ u

√
c)(A+B

√
ac)

= (Az + cuB)
√
a+ (Au+ azB)

√
c,

and this yields
z∗ = Az + cuB.

Now, if m ≥ 0, then we have A,B > 0 and thus z∗ > 0. On the
other hand, if m < 0, we have A > 0, B < 0. If we assume that
z∗ ≤ 0, we have Az ≤ −Bcu and both sides are > 0. Squaring
yields A2z2 < B2c2z2. Using the fact that A2 − acB2 = 1, we obtain
z2B2ac+ z2 ≤ B2c2u2 and therefore

z2 ≤ cB2(cu2 − az2) = cB2(a− c) < 0,

a contradiction.

Among all pairs (z∗, u∗), we can now choose a pair with the property
that z∗ is minimal, and we denote that pair by (z0, u0). Define
polynomials z′ and u′ by

z′
√
a+ u′√c = (z0

√
a+ u0

√
c)(2ac− 1− 2sε

√
ac),

where ε = 1 if u0 > 0 and ε = −1 if u0 < 0. From the minimality of
z0, we conclude that z′ = z0(2ac− 1)− 2csu0ε ≥ z0, and this leads to
cs|u0| ≤ z0(ac− 1) and further to c|u0| ≤ sz0. Squaring this inequality
we obtain

acz2
0 − c(c− a) = c2u2

0 ≤ acz2
0 − z2

0

and finally
z2
0 ≤ c(c− a) < c2,

which implies (5). Now we have

(11) cu2
0 = az2

0 − c+ a ≤ ac2 − a2c− c+ a < ac2 − c = cs2

and therefore we also obtain (4). Hence we have proved that there
exists a solution (z0, u0) of (2), which satisfies (4) and (5), and an
integer m ∈ Z such that

z
√
a+ u

√
c = (z0

√
a+ u0

√
c)(s+

√
ac)2m.
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It remains to show that m ≥ 0. Suppose that m < 0. Then, as
above, we have (s+

√
ac)2m = A−B

√
ac with A,B ∈ Z+[x] satisfying

A2−acB2 = 1. We have u = Au0−z0Ba and, from the condition u > 0,
we obtain Au0 > z0Ba and, by squaring u2

0 > B2a(c − a) ≥ ac − a2,
which by (11) implies

ac2 − a2c ≤ cu2
0 ≤ ac2 − a2c− c+ a.

This implies −c+ a ≥ 0, which is clearly a contradiction.

The solutions z arising for given (z0, u0) from formula (8) for varying
m ≥ 0 form a binary recurrent sequence (vm)m≥0 whose initial terms
are found by solving equation (8) for z when m = 0 and 1, and
whose characteristic equation has the roots (s+

√
ab)2 and (s−√

ab)2.
Therefore, we conclude that z = vm for some (z0, u0) with the above
properties and integer m ≥ 0, where

(12) v0 = z0, v1 = (2ac−1)z0+2scu0, vm+2 = (4ac−2)vm+1−vm.

In the same manner, from (9) we conclude that z = wn for some (z1, y1)
with the above properties and integer n ≥ 0, where

(13) w0 = z1, w1 = (2bc−1)z1+2tcy1, wn+2 = (4bc−2)wn+1−wn.

Now the following congruence relations follow easily from (12) and (13)
by induction.

Lemma 2. Let the sequences (vm) and (wn) be given by (12) and
(13). Then we have

vm ≡ (−1)mz0 (mod 2c), wn ≡ (−1)nz1 (mod 2c).

Proof. It suffices to prove the statement of the lemma for vm. By
looking at (12) we have

v0 = z0, v1 ≡ −z0 (mod 2c).

Proceeding from the induction step, we see, using (12),

vm+2 ≡ −2(−1)m+1z0 − (−1)mz0 = (−1)m+2z0 (mod 2c),
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as stated.

Now we can prove the following lemma, which says that a solution of
vm = wn also implies a solution at the beginning of the sequences.

Lemma 3. If the equation vm = wn has a solution, then z0 = z1.

Proof. Assume that vm = wn has a solution. By Lemma 2 we
conclude that

z0 ≡ ±z1 (mod 2c).

If we assume that z0 ≡ z1 (mod 2c), then we can conclude by using
(4) and (7) from Lemma 1, namely

0 < z0 < c, 0 < z1 < c,

that z0 = z1 holds. If we assume that z0 ≡ −z1 (mod 2c), we have
2c|z0 + z1, which contradicts the fact that z0 + z1 < 2c. This finishes
the proof.

3. Reduction to the case a = 1. In this section we show that it
suffices to prove that polynomial D(−1)-triples {a, b, c}, where a = 1,
cannot be extended to a polynomial D(−1)-quadruple.

Lemma 4. Let {a, b, c, d} with 0 < a < b < c < d be a polynomial
D(−1)-quadruple. Then there exists d0 ∈ Z+[x] with d0 < c such that
ad0 − 1, bd0 − 1, cd0 − 1 are perfect squares.

Proof. We are interested in sequences (vm), and (wn), such that
z2 = v2

m = w2
n = cd− 1, where d ∈ Z+[x]. This implies that v2

m ≡ −1
(mod c). By Lemma 2 this means

z2
0 ≡ −1 (mod c).

In this case we define

d0 =
z2
0 + 1
c

∈ Z+[x].
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For this d0, we have
cd0 − 1 = z2

0 .

By Lemma 3 we find

bd0 − 1 = b
z2
1 + 1
c

− 1 =
cy2

1 + c− b+ b

c
− 1 = y2

1

and finally also

ad0 − 1 = a
z2
0 + 1
c

− 1 =
1
c
(az2

0 + a− c) =
1
c
cu2

0 = u2
0

holds. Furthermore, we have

cd0 = z2
0 + 1 < c2,

which implies
d0 < c.

Assume now that {a, b, c, d} is a polynomial D(−1)-quadruple with
minimal d. We may use Lemma 4 to construct d0. From the minimality
of d, it follows that {a, b, c, d0} is not a polynomial D(−1)-quadruple
and this means that d0 ∈ {a, b}. But this implies that d2

0−1 is a perfect
square, which can only hold in the case when d0 = 1. Since b > a ≥ 1,
we conclude that a = 1.

Remark 1. It follows that it suffices to consider polynomial D(−1)-
quadruples, which contain the constant polynomial 1.

Now let {1, b, c} with 1 < b < c be a polynomial D(−1)-triple. By
the previous discussion, we have d0 = 1. This implies that z2

0 + 1 = c
and therefore we have z0 = ±s. Because of the fact that z0 > 0, we
have z0 = s. In the same way we can conclude that z1 = s. Now we
have

cu2
0 = z2

0 − c+ 1 = c− 1− c+ 1 = 0,

and this yields u0 = 0. Finally we get

cy2
1 = bz2

1 − c+ b = b(c− 1)− c+ b = bc− c = cr2,
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and therefore y1 = ±r. To sum up, it suffices to consider the following
three sequences

v0 = s, v1 = (2c−1)s, vm+2 = (4c−2)vm+1−vm,(14)

and

w0 = s, w1 = (2bc−1)s+2tcr, wn+2 = (4bc−2)wn+1−wn,(15)
w′

0 = s, w′
1 = (2bc−1)s−2tcr, w′

n+2 = (4bc−2)w′
n+1−w′

n.(16)

4. Proof of Theorem 1. Let {1, b, c} be a polynomialD(−1)-triple.
Let us repeat the defining equations:

b− 1 = r2, c− 1 = s2, bc− 1 = t2.

In what follows we need the leading coefficients of b and c. We know
that b and c are nonconstant and thus their leading coefficients are
perfect squares. Let us give them names:

lc (b) = β2 lc (c) = γ2,

where β and γ are positive integers. Let vm and wn, w
′
n be the

remaining sequences from the last section. To finish the proof, we have
to show that no nontrivial solution is obtained from these sequences.
The trivial solution is always v0 = w0 = s, which leads to d = 1 which
does not yield the extension of our triple {1, b, c}. We divide the proof
in three cases. The first one is handled by the following lemma.

Lemma 5. The equation vm = wn has no nontrivial solution.

Proof. First let us mention that deg vm < deg vm+1, m = 0, 1, 2, . . . .
To be precise, we have

(17) deg vm =
1
2
deg c+m deg c, m ≥ 0.

This follows at once by induction using the recurring formula (14). The
same is also true for the second sequence wn with

(18) degwn =
1
2
deg c+ n(deg b+ deg c), n ≥ 0.
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Again, by induction, we can now read off the leading coefficient of vm,
which is

22m−1γ2m+1, m ≥ 1.

We have lc (v0) = γ, lc (v1) = 2γ3 and, using the recursive formula
(14), we get

lc (vm+1) = 4γ2lc (vm) = 4γ222m−1γ2m+1

= 22(m+1)−1γ2(m+1)+1.

In the same way we find the leading coefficient of wn, which is

22nβ2nγ2n+1.

First we have lc (w0) = γ, lc (w1) = 2β2γ2γ + 2βγγ2β = 4β2γ3. By
using the recursive formula for wn, one finds

lc (wn+1) = 4β2γ2lc (wn) = 22n+2β2n+2γ2n+3.

If the equation vm = wn has a solution, we must have equal leading
coefficients, which means

22m−1γ2m+1 = 22nβ2nγ2n+1.

This implies (
2m−nγm−n

βn

)2

= 2,

which yields
√
2 =

2m−nγm−n

βn
∈ Q,

a contradiction. Thus vm = wn cannot hold and the proof is finished.

To handle the equation vm = w′
n, we have to distinguish whether

deg b < deg c or deg b = deg c holds.

Lemma 6. Assume that deg b < deg c. Then the equation vm = w′
n

has no nontrivial solution.
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Proof. First we calculate

w′
1w1 = (2bc− 1)2s2 − 4t2c2r2

= −4b2c2 + 4bc+ c− 1 + 4bc3 − 4c2.

Because our assumption deg b < deg c, we obtain that the dominating
summand is 4bc3. Therefore we get

lc (w′
1w1) = 4β2γ6

and
degw′

1w1 = 3deg c+ deg b.

On the other hand we already know that

lc (w1) = 4β2γ3

and
degw1 = deg b+

3
2
deg c.

Hence we can conclude that

lc (w′
1) = γ3 and degw′

1 =
3
2
deg c.

Now by induction and by the recursion (16), we get that degw′
n <

degw′
n+1 and that the leading coefficient of w′

n is given by

22n−2β2n−2γ2n+1, n ≥ 1.

Namely we have lc (w′
0) = γ, lc (w′

1) = γ3 and, using (16), we obtain

lc (w′
n+1) = 4β2γ2lc (w′

n) = 22nβ2nγ2n+3.

Again, if vm = w′
n has a solution, we can conclude by comparing the

leading coefficients that

22m−1γ2m+1 = 22n−2β2n−2γ2n+1.

As before we get
√
2 = 2n−mγn−mβn−1 ∈ Q,
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which is a contradiction. This yields that in this case no solution can
exist.

Before we can prove the remaining part, we need the following useful
gap principle for the elements of a polynomial D(−1)-m-tuple. The
principle is a direct modification from the integer case (see [9, Lemma
3]). The analogous statement for polynomial D(1)-triples was proved
by Jones in [12].

Lemma 7. Let {a, b, c} be a polynomial D(−1)-triple. Then there
exist polynomials e, u, y, z ∈ Z[x] such that

ae+ 1 = u2, be+ 1 = y2, ce+ 1 = z2

and
c = a+ b− e+ 2(abe+ ruy).

Proof. Define

e = −(a+ b+ c) + 2abc− 2rst.

Then

(ae+ 1)− (at− rs)2 = −a(a+ b+ c) + 2a2bc− 2arst+ 1
− a2(bc− 1) + 2arst− (ab− 1)(ac− 1) = 0.

Hence we may take u = at−rs and analogously y = bs−rt, z = cr−st.
We have

abe+ ruy = −ab(a+ b+ c) + 2a2b2c− 2abrst+ abrst

− a(ab− 1)(bc− 1)− b(ab− 1)(ac− 1) + rst(ab− 1)
= abc− (a+ b)− rst,

and finally,

a+ b− e+ 2(abe+ ruy) = 2a+ 2b+ c− 2abc+ 2rst
+ 2abc− 2a− 2b− 2rst = c.
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Using this lemma we can finish our proof.

Lemma 8. Assume that deg b = deg c. Then the equation vm = w′
n

has no nontrivial solution.

Proof. First we conclude by Lemma 7 that there exist polynomials
e, f, g, h such that

(19) e+ 1 = f2, be+ 1 = g2, ce+ 1 = h2

and
c = 1 + b− e+ 2(be+ rfg).

By looking at the proof of Lemma 7, we see that we have

e = −1− b− c+ 2bc− 2rst.

We want to show that e = 0. Let us assume that e �= 0 and define

ē = −1− b− c+ 2bc+ 2rst.

Then

(20) deg ē = deg b+ deg c = 2deg c = deg c2.

Let us calculate

eē = (2bc− 1− b− c)2 − 4r2s2t2

= (2bc− 1− b− c)2 − 4(b− 1)(c− 1)(bc− 1)
= 1 + b2 + c2 − 2b− 2bc− 2c+ 4.

This yields
deg e+ deg ē = deg eē ≤ deg c2.

Using (20), we can conclude

deg e ≤ 0.

But looking at (19) we see that

e+ 1 = ϕ2 and e = ψ2
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must hold with ϕ, ψ ∈ Z. This is only possible if e = 0.

This implies now that f = 1, g = 1 and c = 1 + b + 2r. Next let us
express all polynomials in terms of the polynomial r. We have

b = r2 + 1,

and therefore
c = r2 + 2r + 2.

Next we calculate s2 = c− 1 = b+ 2r = r2 + 2r + 1 = (r + 1)2, thus

s = r + 1.

In the same way, we get via t2 = bc− 1 = (r2 + 1)(r2 + 2r + 2)− 1 =
r4 + 2r3 + 3r2 + 2r + 1 = (r2 + r + 1)2, that

t = r2 + r + 1.

This gives us

w′
1 = (2bc− 1)s− 2tcr
= (2r4+4r3+6r2+4r+3)(r+1)− 2(r3+r2+r)(r2+2r+2)
= 2r2 + 3r + 3.

From this we conclude that

degw′
1 = deg c,

and by induction, using the recurring formula (16), we get

degw′
n = deg c+ 2(n− 1)deg c, n ≥ 1.

Let us assume that vm = w′
n has a solution. Then, by comparing the

degree of vm, which is given by (17), and the degree of w′
n, we get

1
2
deg c+m deg c = deg c+ 2(n− 1)deg c and

1
2
+m = 2n− 1,

a contradiction. Therefore vm = w′
n cannot have a solution and the

proof is finished.
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Now Theorem 1 follows directly from Lemma 5, Lemma 6 and
Lemma 8.
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